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Abstract—Semantic segmentation using fully convolutional net-
works has quickly become a popular solution as they provide very
accurate per pixel classification. However, the implementation
of deconvolutional layers and their mechanics differ greatly to
those of patch based segmentation using convolutional neural
networks. Both techniques have been used for road segmentation
from satellite imagery but never compared. Thus we investigate
the difference between fully connected and deconvolutional layers
and provide an interpretation as to the correlation and differences
between each methodology for road segmentation from satellite
imagery.

Index Terms—fully convolutional networks, segmentation, con-
volutional neural networks

I. INTRODUCTION

Object detection in an image is the problem of identifying
the location and size of the bounding box for the object of
interest in the image. The bounding box does not always
exclusively contain just the object but also the background. In
contrast, image segmentation is the problem of partitioning an
image into segments which have similar properties allowing it
to be analyzed in a simpler manner [1]. Semantic segmentation
is an extension of image segmentation in which pixels in an
image are separated into a set of classes.

Although the concept of identifying shapes and outlines
in images may seem simple, finding solutions requires large
volumes of data and long periods of time to produce acceptable
results due to differing configurations that these shapes may
appear. A consequence of this problem is that some classifiers
do not perform well on objects where the background can
differ for the same object of interest [2].

Superpixels are a grouping of more than one pixel in an
image. Superpixels are commonly used in region based clas-
sification, whereby superpixels are used as inputs to classifica-
tion models and the output class is applied to each component

pixel. convolutional neural networks (convNets, CNNs) are
neural networks that implement convolutional operations, and
are most commonly used to process image data and to isolate
spatial relationships from images, allowing them to effectively
classify image data.

Recent implementations of semantic segmentation models
involve superpixels and convolutional neural networks [3]
which requires multiple passes through a classification model.
Some extensions to convolutional neural networks such as
fully convolutional networks have become a popular segmen-
tation model in which pixelwise classification is achieved
by passing the image through the network in which fully
connected layers are dropped in favor of deconvolutional
layers [4]. Extensions to the fully convolutional network
architecture [5] mitigate the need for very large datasets and
improve spatial resolution of the segmented image, but they
do disregard fully connected layers in favor of deconvolutional
layers and thus all conventional convolutional neural network
methods as possible solutions.

Patch based segmentation is the process of striding through
an image with windows of a fixed size allowing each window
to be passed through a convNet performing per pixel classi-
fication and stitching each predicted patch back together so
as to obtain a segmented image. A number of studies have
found patch based segmentation to be effective [6], but the
computational cost of processing the individual patches is
prohibitive.

The problem domain involves segmenting roads from satel-
lite images as they have a wide variety of applications in many
differing fields such as being used as a means of path planning
for aerial drones, automated road map making, disaster relief
etc. [7]. The goal is to identify certain characteristics of
roads and making them apparent to the observer but we



implement two differing methods as a means of contrasting
their effectiveness. We implement fully convolutional network
and patch based convNet segmentation models as a means of
finding all road pixels from input satellite imagery.

We implement the convNet model proposed in [7] as our
base architecture, we then implement the method proposed
by [4] to convert the base convNet to a fully convolutional
network (FCN). From there we provide a comparison be-
tween performance of the two models, which allows us to
understand more deeply the implications of implementing fully
convolutional networks over other convNet methodologies. We
compare the time taken for inference and accuracy between
a convNet and adapted fully convolutional networks on the
dataset provided in [6]. We also implement a pseudo random
patch based selection in our training methodology as a means
of mitigating the effects of minority classes in datasets.

The rest of this paper is structured as follows. Section II
outlines related works that use convNet for aerial imagery
segmentation. We discuss fully convolutional networks and
how they can be constructed from adapting existing convNet.
In section III we outline our proposed method which consists
of our base architecture, the method for adaptation and our
learning criterion. Section IV details our dataset and compar-
isons made between our convNet and adapted FCN. In section
V we summarize our findings.

II. RELATED WORKS

Methods of applying artificial neural networks to aerial
imagery as a means of pixelwise classification have already
been proposed and have achieved acceptable results [6]–
[8]. Noise is a common problem in most image processing
and vision related tasks and can arise from lens distortion,
faulty photo receptors or even in file transfer. This used to
be a problem especially due to computational restrictions.
However, due to the large number of neurons and feature
maps in convolutional neural networks , noise omission in
post processing is unneeded as the features learned allow the
network to represent labels in such a way that noise in output
labels are in the minority and have little effect on the prediction
results of such systems [6].

Both [6] and [7] approached the problem by training on
64x64 input patches with outputs of each network being a
vector of length 256 reshaped into 16x16 patches. These output
patches are the segmented 16x16 center patch of the input
image. [6] reasoned that this would improve prediction on
patches as the network will have been trained to use features in
a larger spatial vicinity to that of the output patch. A constraint
of the above mentioned architecture is that the input image will
have to be divided into patches determined by the architecture
of the network implemented.

An approach to accuracy improvement and prediction
smoothing was implemented by [7] called model averaging
with spatial displacement. Their implementation made use of
eight models with the same architecture trained for the same
number of epochs with the only difference being that each
model was initialized with different weights. Prediction was

implemented in the same manner as training where the output
of the network represents the center patch of the input image,
but each model receives the same input patch but with a
spatial displacement d (0 ≤ d ≤ 7) in both the vertical and
horizontal direction. The predicted label patches are then tiled
and divided by eight for averaging.

Popular convNets for segmentation such as [9], [6] and [7]
implement patchwise training methods which as mentioned
earlier can be expensive. The method proposed by [4] al-
lows for prediction of any image on any scale without the
need for partitioning. They suggest a method for adapting
existing convNet classifiers and a technique of fusing learned
features across layers to improve segmentation detail. The
techniques suggested involve removing all fully connected
layers and replacing them with a convolutional layer with a
1x1 kernel effectively linearizing all inputs from the previous
layer. Subsequently they introduce deconvolutional layers as
a means of upsampling the outputs from previous layer.
But [4] found that this caused a great loss in segmentation
detail and that predictions would look similar to region based
classification. As a means of addressing this issue they im-
plemented a skip architecture which combines outputs from
earlier convolutional layers with that of the output from a later
deconvolutional layer. This allows for the features detected
in the image to be integrated with the later layers before all
spatial context from the original scene was lost.

Data augmentation is the process of applying label-
preserving transformations, wherein spatial context of the
image is not lost after applying the transformation to an image
[2]. If such a transform is applied to an image with a low
probability, features will not be learned over the same set
of images repeatedly. Thus it prevents overfitting if smaller
datasets are to be used. This concept may be thought of as
equivalent to increasing the dataset size. Elastic distortions
have also been used for data augmentation [10]. The method
involves applying filters to an image which produce feasible
scenes such as stretching an image and thus elongating fea-
tures, or applying a matrix to the image which will simulate
distortions at random points in the image.

III. PROPOSED METHOD

In an effort to compare fully connected and deconvolutional
layers we first construct a base convNet and train it using
the same parameters as [7] to allow for fair comparison. We
then follow [4]’s methodology to produce a FCN. Thereafter
we train the adapted model using the same parameters and
methodology as the initial model. The goal of both models
is to perform pixelwise classification on an RGB input image
where the output is a single channel image predicting if a pixel
was a road or background. We outline the base architecture and
techniques used to perform our experiment and comparisons
below.

A. Base Architecture

The base architecture of the base covnet [7] consists of three
convolutional layers followed by two fully connected layers.



Fig. 1. The base CNN architecture used in this article (adapted from [7])

Fig. 2. Our FCN model.

All five of the layers consist of trainable parameters. The input
is a 64x64-sized RGB patch sampled from the dataset used in
[6] and [7]. The output of the network is a 256x1 vector which
is reshaped to a 16x16 patch representing the segmented road
and background center pixels of the input image.

The convolution and deconvolutional layers are described
as C/D(n, fxf/s) where n denotes the number of filters, f
describes their width and height and s describes the stride.
The fully connected layers are described by FC(k), where k
are the number of neurons in the fully connected layer. From
figure 1, we have 256 output neurons and we reshape those
into a 16x16 matrix which represents the segmented center
patch of the input image.

B. Adaptation for FCN Segmentation

Considering the above architecture mentioned in figure 1
we implement [4]’s methodology for converting convNet to
FCNs. From the trained model convNet in figure 1, we remove
the fully connected layers, then place a 1x1 convolutional
layer at the end as per the first step of conversion from [4].
Thereafter we upsample by stacking deconvolutional layers
and implementing skip connections. Skip connections are used
as we are working with data which is spatially small, in order

to preserve features in upsampling [4] we implemented skip
connections at every level. This adapted network is shown in
figure 2.

The adaptation implements 4 deconvolutional layers after
the 1x1 convolution. The first deconvolutional layer upsamples
its input, the output from that layer will be of the same
dimension to that of the third convolutional layer allowing
us to implement a skip connection between those two layers.
The second deconvolutional layer again upsamples its input.
The output will be of the same dimensionality to that of
the second convolutional layer and thus we implement an-
other skip connection to recover spatial context. The third
deconvolutional layer used before the final prediction layer
is implemented so that we may upsample its input from the
second deconvolutoinal layer as means of constructing a skip
connection to the first convolutional layer. This allows us to
integrate all learned features from all of our convolutional
layers. Finally our final layer upsamples its input to a patch
of the original width and height.

C. Learning

1) Biased Patch Based Sampling: [4], [6], [8] trained
using sampled patches from images in their dataset in an



effort to emphasize common groupings of features in close
proximity. From our findings this was effective at emphasizing
common groupings, but led to the potential disappearance of
minority classes as it is possible for these to never occur in
randomly sampled patches. In order to avoid this problem, we
biased the sampling process to ensure that minority classes
occurred in each sampled patch. In particular we notice that
from our training masks that the road pixels only represent
approximately 4% of our training data, making it unlikely that
they will appear in a majority of the sampled patches. Thus in
training both networks we implement a sampling methodology
in which every patch selected for our minibatch must consist
of a minimum of one road pixel.

2) Data Augmentation: We applied horizontal and vertical
flipping along with rotation by random angles before our
patches are sampled from the larger images.

3) Hyperparameters: Both implemented models were
trained using the following hyperparameters adapted from [6]:

• Number of patches sampled per epoch: 131072
• Batch Size: 128
• Epochs: 100
• Learning Rate: 0.001
• Dropout Rate: 0.5
• Momentum: 0.9
• Weight Decay: 0.001
Each sampled patch was of size 64x64 and they were

sampled randomly from our dataset which consists of images
with a 1500x1500 resolution. Thus the large number was
chosen as a means of spanning all images in our training
dataset.

4) Weighted Binary Cross-Entropy Loss: Due to the im-
balance between our two classes background and road we
implement a weighted binary cross entropy loss function
where the weights are chosen based on the ratio between the
amount of road and background pixels per minibatch. The
formulas used are:

ratio =
nr

nt

loss = ΣiΣj [gi,j log(pi,j) + ratio ∗ (1− gi,j)log(1− pi,j)]

Where nr is the number of road pixels sampled and nt

is the total number of pixels in a specific minibatch. gi,j
represents the ground truth and pi,j represents the predicted
value. Thus the punishment of incorrectly predicting a road is
discounted based on the number of road pixels sampled. We
optimize this loss by means of stochastic gradient descent and
backpropagation.

We implemented our models with PyTorch.

IV. EXPERIMENTS

To provide a basis of comparison between fully connected
and deconvolutional layers we train the convNet mentioned in
subsection III-A using all of the parameters and techniques
from section III. Thereafter we dropped both fully connected
layers and added the layers mentioned in subsection III-B. We
train the new model in the same manner as the base model.

The first three convolutional layers that are transferred from
the base model are frozen as this will provide us with a means
of comparing fully connected and deconvolutional layers.

A. Dataset

We used the dataset proposed by [6] called the Mas-
sachusetts Roads dataset. The dataset consists of 1171 image-
mask pairs and are separated into 1108 training images, 14
validation images and 49 test images. Each image has a
resolution of 1500x1500 with a scale of 1 m2/px. We reshaped
the images to a resolution of 1440x1440 for convenience as
seen in figure 4.

B. Results and Discussion

We test both our fully convolutional network and convNet
on the dataset mentioned in subsection IV-A. This dataset
is large enough that overfitting is not a concern when using
randomly sampled patches [6] as there are simply too many
possible patches.

Evaluation

We report using a common segmentation evaluation metric
[4], that is pixel accuracy given by:

ΣiΣj(pi,j = gi,j)

||g||
where p represents the predicted pixel value and g represents
the ground truth value. The first terms value will only in-
crement if both the prediction and ground truth match. The
denominator is simply the number of pixels in the ground
truth image.

We provide further analysis by comparing road pixel clas-
sification histograms and confusion matrices for each model.

Classification distributions

The plots in figure 3 provide us with the classification value
of each pixel in both our fully convolutional network and
convNet. Comparing the two models we can see from the right
histogram that the convNet implementation is fairly definite in
its evaluation of road pixels as most predictions lie well above
the median of predicted intensities. Observing the results from
the left histogram we can see that there is no definite value
that me may use as a threshold in the valid range [0,255]
where by we may segregate road and background pixels. But
in the case of our convNet implementation we find that most
road classifications have an output of greater than 128, thus
the convNet implementation we may threshold our outputs and
any value greater than 128 are classified as road pixels. We
explore this further in subsection IV-B.
The reason that the fully convolutional network implemen-
tation has no specific value in which we can threshold our
classifier outputs is attributed to the fact that our dataset is
fairly large with regards to the manner in which it is used for
training. We can also attribute this to the fact that deconvolu-
tion in simple terms can be considered a learning of multiple
parameters from multiple outputs as a means of obtaining
the original image after convolution remove spatial context.



Fig. 3. The above figures represent the histogram of classification output bins for all road pixels in our testing dataset. The figure on the left represents the
output bins for our fully convolutional network model, and the figure on the right corresponds to the adapted convNet model output. A potential problem is
that the road predictions are much harder to visually identify in the fully convolutional network model.

Fig. 4. Original Image Fig. 5. Ground Truth

Fig. 6. CNN Prediction Fig. 7. FCN Prediction

The problem with this is that there are many orientations in
which roads can follow, as such the parameters learned in the
deconvolutional layers are very slow to converge as we need
to upsample from data which has lost all spatial context and
since we randomly sample with augmentation instead of train
on an entire image, the features detected from one epoch may
not occur in the next.

Time taken for inference

The time taken per model for inference over a single
image in our test set can be considered as a distinguishing
point of the fully convolutional network implementation. In
order to perform inference on the convNet implementation we

CNN FCN
0.201322s 0.00406776s

TABLE I
INFERENCE TIME PER IMAGE

passed 64x64 patches from the top left corner of the image
with strides of 16 as our network yielded the center 16x16
segmented patch of an input image, thereafter we combined the
predicted images into a final segmented image as seen in figure
6. The our fully convolutional network model can take in an
image of any size by design [4] thus inference was performed
without any need for pre or post processing, the results can be
seen in figure 7. This timing comparison was implemented
as passing arbitrary sized inputs to a fully convolutional
network classifier it is a distinguishing characteristic compared
to the patch based approach. Table I gives the times taken
for inference per image, observing the time taken for the
fully convolutional network implementation we see that it is
approximately 50 times faster than that of the patch based
convNet approach. This is attributed to the partitioning and
stitching of images so that they may be passed to the convNet
processed and merged to form a prediction on an image of
non-input size. This is the largest limitation to the patch based
approach as the fully connected layers have a fixed size input.

Accuracy Comparisons

In figure 3 we compared how well each model could classify
a road pixel. We found that the fully convolutional network
model had no minimum value at which it would begin to
classify road pixels with any certainty, whereas the patch based
convNet approach yields a neat relationship between the output
bin and the number of road pixels.

If we observe figure 7 the fully convolutional network pre-
diction is comparable to that of the ground truth and has less
noise than that of the convNet patch based prediction in figure
6. Table II gives us the confusion matrix and pixel accuracy



Predicted Background Predicted Road
Background 93.96% 1.35%
Road 1.90% 2.79%
Pixel Accuracy 96%

TABLE II
CONFUSION MATRIX AND ACCURACY ON THE TEST SET (FCN)

Predicted Background Predicted Road
Background 84.78% 10.53%
Road 0.30% 4.39%
Pixel Accuracy 89%

TABLE III
CONFUSION MATRIX AND ACCURACY ON THE TEST SET (CNN)

of our fully convolutional network model over the entire test
set. The fairly accurate prediction of the fully convolutional
network model can be seen when observing the minimal
number of false positive predictions. This can be attributed
to the use of skip connections from each convolutional layer.
While the fully convolutional network model does not provide
a mapping that is as easily identifiable as the convNet model
for roads, it does perform really well at classifying background
as these pixels are only found in a small number of bins.

Figure 6 gives us the prediction for the patch based convNet
implementation. This model has a significant amount of noise
and the road predictions are much thicker than that of the
ground truth figure 5 and the fully convolutional network
prediction figure 7. This was noticed by [7] and on analysis of
this we found that the model predicted roads correctly as seen
by the minimal amount of false negatives in table III, but the
large number of false positives and the thicker roads clearly
demonstrate that the pavements are also predicted as roads.
The correlation between the true positives and the almost
double false positives reinforce this fact.

Precision-Recall curve comparison

Figure 8 shows the precision-recall curves for the two
implemented architectures. Observing Figure 6 we have a
noisy prediction, this characteristic remains regardless of the
threshold used due to the lower precision and the large class
imbalance which leads to a large number of false positives
as demonstrated in Table III. Conversely Figure 7 presents a
cleaner prediction, attributed to the higher precision. But the
FCN implementation does exhibit a more gradual decrease in
precision as the recall increases which is the expected result
when observing the somewhat even distribution of predicted
values for the FCN implementation in Figure 3.

V. CONCLUSION

In this paper we provided a comparison between fully
connected and deconvolutional layers for pixelwise classifi-
cation. We implemented a biased random patch based sam-
pling methodology as a means of mitigating the class im-
balance between road and background pixels. We showed
how fully convolutional networks classification values differ
from that of convNet, finding that while fully convolutional
networks are effective at categorizing background pixels due

Fig. 8. Precision-recall curves for CNN (red) and FCN (Blue)

to the implementation of skip connections but they lack any
deterministic value when classifying foreground pixels. We
compared the inference time for the two implementations
used and found that our fully convolutional network model
performed inference significantly faster than that of the patch
based convNet model. From this we can conclude that while
both types of models have advantages in their own right,
fully convolutional networks are the superior option due to
their faster inference time and low false positive prediction
percentages. We expect that these results will generalize
to other domains if those networks are trained in a patch
based fashion. The code and experiments are available at
https://github.com/Alterith/Satellite Road Segmentation.
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