Procedural Content Generation using Neuroevolution and
Novelty Search for Diverse Video Game Levels

Michael Beukman
University of the Witwatersrand
School of Computer Science and

Applied Mathematics

Johannesburg, South Africa
michael.beukmanl@students.wits.ac.za

ABSTRACT

Procedurally generated video game content has the potential to
drastically reduce the content creation budget of game developers
and large studios. However, adoption is hindered by limitations
such as slow generation, as well as low quality and diversity of
content. We introduce an evolutionary search-based approach for
evolving level generators using novelty search to procedurally gen-
erate diverse levels in real time, without requiring training data or
detailed domain-specific knowledge. We test our method on two
domains, and our results show an order of magnitude speedup in
generation time compared to existing methods while obtaining
comparable metric scores. We further demonstrate the ability to
generalise to arbitrary-sized levels without retraining.

CCS CONCEPTS

- Computing methodologies — Genetic algorithms.

KEYWORDS

Neuroevolution, Novelty Search, Procedural Content Generation

ACM Reference Format:

Michael Beukman, Christopher W Cleghorn, and Steven James. 2022. Pro-
cedural Content Generation using Neuroevolution and Novelty Search for
Diverse Video Game Levels. In Genetic and Evolutionary Computation Con-
ference (GECCO °22), July 9-13, 2022, Boston, MA, USA. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3512290.3528701

1 INTRODUCTION

Video games are a massive industry, with 227 million reported
video game players in the United States as of 2021 [9]. Some of the
main goals of video games are to keep players entertained, engaged,
and challenged [38]. This can be achieved by populating the game
with a large amount of unique and interesting content. Nonetheless,
most commercial video games still rely on human designers and
developers to create this content [17]. However, this is costly, and
due to tight deadlines there is always a finite amount of content
that players can quickly exhaust. This concern can be addressed
through procedural content generation (PCG), where game content
is algorithmically created [60].

GECCO °22, July 9-13, 2022, Boston, MA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Genetic and
Evolutionary Computation Conference (GECCO °22), July 9-13, 2022, Boston, MA, USA,
https://doi.org/10.1145/3512290.3528701.

Christopher W Cleghorn
University of the Witwatersrand
School of Computer Science and

Applied Mathematics
Johannesburg, South Africa
christopher.cleghorn@wits.ac.za

Steven James
University of the Witwatersrand
School of Computer Science and

Applied Mathematics
Johannesburg, South Africa
steven.james@wits.ac.za

There are many notable games in which content and levels are
procedurally generated, such as Rogue, where the player controls
a character that traverses dungeons while fighting enemies. Such
an approach can be used to generate a near-infinite number of
levels—designers need only specify the mechanics of the game and
the generation method. This enables game developers to create
engaging and fun games at a fraction of the cost compared to
traditional, manual development [17].

Outside of game development, PCG can also be leveraged to
train machine learning agents.

For example, Justesen et al. [21] train reinforcement learning
(RL) agents on procedurally generated levels to improve general-
isation to unseen human generated levels, while Cobbe et al. [5]
demonstrate that RL agents can overfit on surprisingly large train-
ing sets, and use a large number of procedurally generated levels
to overcome this.

There are many different approaches to developing PCG algo-
rithms. These include ad hoc algorithms (used in Rogue), formal
languages [34], evolutionary search-based methods [57, 60], exhaus-
tive search [52], and more recent machine learning approaches [30,
45, 53]. Different methods also have different goals, such as provid-
ing a consistent quality of levels, or quickly generating playable
[23], diverse [29] or configurable levels [10].

Despite the variety of approaches, there are gaps in the current
literature. For example, some approaches generate diverse, playable
levels, but the generation process is slow [29, 40]. Some methods
can generate levels relatively quickly, but they require existing
training data [41, 61] or game-specific reward engineering [23],
while others are limited by the lack of diverse content [14, 53].
The main limitation is that no one method can quickly generate
diverse levels without the need for training data and game-specific
knowledge.

We address this gap by training a neural network that can quickly
be queried to generate levels. We avoid the need for training data by
using NeuroEvolution of Augmenting Topologies [50] to evolve this
network. To obtain diverse levels, we explicitly reward diversity in
the evolutionary process by using novelty search [25]. This method
assigns fitnesses based on how far an individual is from its closest
neighbours, which incentivises exploration and obtains diverse
behaviours. Further, we only use widely applicable general fitness
functions based on novelty and solvability to evolve these networks.

We test our methods on a simple Maze game as well as Super
Mario Bros. Our results indicate that our method generates levels
significantly faster than both a direct search-based method and an
RL-based approach, without the need for game-specific knowledge.

https://orcid.org/0000-0002-5468-284X
https://doi.org/10.1145/3512290.3528701
https://doi.org/10.1145/3512290.3528701

GECCO ’22, July 9-13, 2022, Boston, MA, USA

We also show that our method generalises to different sized levels
than those trained on, while still mostly generating solvable levels.!

2 BACKGROUND

Below we outline two separate approaches that have been previ-
ously used to construct PCG systems.

2.1 Evolutionary Search

Genetic algorithms consist of a population of individuals, each pos-
sessing a genotype, which can be thought of as the individual’s
genes. This genotype impacts the phenotype—the manifestation of
the genotype in the problem domain. For example, when generat-
ing platformer levels, the genotype can be a single integer vector
representing the height of platforms across the x-axis [10]. The
phenotype, then, is the actual level that has been generated using
this specific genotype [11].

High performing individuals are combined using crossover, which
is the process of combining two parents to form new individuals for
the next generation. This new generation is also randomly mutated
to facilitate exploration and prevent stagnation. In general, “high
performing” is quantified by the fitness function. For example, when
maximising a function f(x), the fitness could simply be the function
value itself.

2.1.1 NeuroEvolution of Augmenting Topologies (NEAT) . NEAT is
a method where a genetic algorithm optimises the structure and
weights of a neural network [50].

The genetic encoding in NEAT is a linear collection of either
node genes, specifying the existence and type (input, hidden or
output) of a node, or connection genes, which indicate a connection
of a certain weight between two nodes. Mutation can affect both
the weights and the structure of the network, either by adding
a connection between two nodes, inserting a node between two
existing connected nodes, or perturbing a weight’s value.

NEAT keeps track of the historic origin of a gene by using the
innovation number. This enables efficient crossover between differ-
ent sized parents by first lining up genes with the same history in
both parents. Matching genes are then inherited randomly from
each parent, whereas genes that occur in only one are inherited
from the parent with higher fitness.

NEAT can enable complexity to gradually increase as the search
process develops, leading to later generations being more complex
than previous ones. Finally, different variations of NEAT exist, most
notably HyperNEAT [49], which evolves compositional pattern-
producing networks [48]—a type of artificial neural network where
each node can use a different activation function—that themselves
generate the final network structure. This can lead to larger and
more symmetric networks and smaller genomes, although Hyper-
NEAT does not always outperform NEAT [32].

2.1.2 Novelty Search. Novelty search [25] is a different approach to
designing the fitness function of a genetic algorithm. Instead of pur-
suing a higher objective function value, novelty search only judges
individuals based on how different or novel they are compared to
the current generation and an archive of previously novel individu-
als. Novelty is defined as the average distance between an individual

1Source code is publicly released at https://github.com/Michael-Beukman/PCGNN.

Michael Beukman, Christopher W Cleghorn, and Steven James

and its k closest neighbours in behaviour space. Distance can be
defined in a domain-agnostic manner, e.g. using a vector norm like
absolute difference or Euclidean distance. Domain-specific distance
functions can also be used when a more appropriate measure of dis-
tance exists. Novelty search encourages agents to pursue novel and
diverse behaviours, thereby thoroughly exploring the behaviour
space and resulting in diverse individuals [13, 26]. Even though
there is no explicit incentive to actually achieve the goal, novelty
search can still achieve competitive results, especially in deceptive
fitness landscapes when using a traditional objective can result in
convergence to local minima [25].

2.2 Reinforcement Learning

An alternate approach to PCG is to use reinforcement learning
(RL) to learn a policy that generates new levels [23]. Here the
problem is formulated as a Markov decision process (S, A, p,r)
where S is the set of states, A is the set of available actions, p is
the transition dynamics that specify how the environment changes
under a given action, and r is the reward function. The aim is to
learn a policy 7 : S — A such that the expected sum of future
rewards is maximised [54].

In the context of PCG, Khalifa et al. [23] uses RL to generate
levels for 2D tilemap-based games, experimenting with different
state and action spaces. For example, in the “turtle” representation,
the state is the current level and the coordinate of the current tile
under consideration, while A consists of changing the current tile
to any other one or moving the agent in one of the four cardinal
directions. The “wide” representation, on the other hand, also uses
the current level as the state, but actions consist of a coordinate of a
tile and a value to change it to. In both cases, the agent is rewarded
based on the change that its action causes to the level.

2.3 Related Work

Most procedural level generation approaches can be classified into
one of two categories. The first is to directly search in level space.
This means that each time the method is run, a new search is
carried out for only one level. The genome encoding here is usually
direct. Examples of this include the work by Ferreira et al. [10] who
search over integer vectors of the same length as the level, Liapis
et al. [28, 29] who search over a 2D tilemap representation of the
levels, and Cardamone et al. [4] who generate racing game tracks by
using a set of control points for Bezier curves as the representation.
The second is to search in generator space. This involves search-
ing for or learning a generator of levels. This generator can be
queried to generate a large number of levels by varying its input
parameters. The representation used is usually more abstract—for
example, the policy of a reinforcement learning agent [23] or the
weights of a neural network. Kerssemakers et al. [22] use a ge-
netic algorithm to search for parameter vectors that determine the
behaviour of a non-deterministic (and thus reusable) generator.

3 GENERATING DIVERSE LEVELS QUICKLY

Our aim is to develop a method capable of automatic content gener-
ation with the following desiderata: the approach must a) be capable
of generating levels quickly so that it can be used in real-time games;
b) not require any training data, since that would require effort on

https://github.com/Michael-Beukman/PCGNN

Procedural Content Generation using Neuroevolution and Novelty Search for Diverse Video Game Levels

the part of designers to create in the first place; c) use as little game
specific information as possible, resulting in a general system; and
d) should generate diverse and playable levels.

This section describes our method, Procedural Content Gener-
ation using NEAT and novelty search (PCGNN), which satisfies
the above requirements, i.e. generating diverse levels in real time
without any existing training data or game-specific learning signals.

As previously mentioned, we use NEAT [50] to evolve a neu-
ral network that generates levels. This is divided into two parts,
training (evolution) and inference (generating levels).

3.1 Generation Process

Given a neural network, we generate a level as follows. We first
generate a random 2D array of tiles, and then for each tile (e.g. the
question mark in Figure 1) we input the surrounding tiles (those
highlighted in Figure 1) into the network using either integer tile
values or one-hot encoding. The output is used to predict what tile
type should be placed at the original location. To predict boundary
tiles, we pad the level with a row or column of —1 on all sides. This
method, which is similar to applying a convolution, is used instead
of generating the entire level in one step, because the model is then
able to generate levels of arbitrary size [41, 45, 61], and make locally
consistent choices [18, 53]. We input random noise into the network
and perturb all of the inputs to enable the generation of multiple
levels, rather than a single deterministic one. This facilitates reuse,
allowing the same generator to be used multiple times. This adding
of randomness is similar to inputting random noise into a GAN to
generate new data [8]. This process is performed sequentially, so
the previous predictions become part of the level, and are used by
the network as inputs when predicting adjacent tiles.

Figure 1: An illustration of the level generation process on
Mario. The “?” is the current tile to be predicted, whereas
the highlighted area is the context that the algorithm uses
to predict the center tile.

3.2 Training Process

We use the standard NEAT algorithm [50], and evolve the popula-
tion using fitness functions that are described in the next section.
After evolving the population for a set number of generations, we
use the individual with the highest fitness as our final level genera-
tor. This can then be used to rapidly produce many new levels, as
generation only requires the network to be queried—no learning or
searching is performed at inference time.

GECCO ’22, July 9-13, 2022, Boston, MA, USA

3.3 Fitness Functions

To evaluate a network, we first generate N levels and use these to
compute the fitnesses, which we then average. We use different
fitness functions for different purposes, all of which are scaled
between 0 and 1 unless otherwise stated. When using multiple
fitness functions, we set the final objective as a weighted sum of
these fitnesses. This follows work by Gomes et al. [12], who found
that this method performs comparably to using multi-objective
optimisation techniques, specifically when using the novelty metric.

3.3.1 Solvability. This fitness function determines if the level is
solvable, using a search algorithm such as A* [16]. The fitness value
is 1 if the level is solvable and 0 otherwise.

3.3.2 Novelty. We also use the novelty metric [25] to evaluate the
diversity of level generators. As described above, we do this by
generating N levels for each generator. Let G; denote generator i
and L;, denote level n from generator i. Then we define the distance
function between two generators as

N
1
D(G;,Gj) = N Z dj(Lin, Ljn),
n=1

where dj(Lin, Ljn) is the distance between two levels. This can
be computed using different methods such as Visual Diversity [29],
which measures the fraction of non-matching tiles (i.e. the nor-
malised Hamming distance) or perceptual image hashing [15, 36],
which gives a low value for images that look similar and a large
value for those that look different. The exact function used can have
a large effect on the diversity characteristics of the generated lev-
els [40], which we illustrate in the Appendix. Using the above, the
novelty score of a generator, with respect to the current population
and the novelty archive, is:

K
Novelty(Gy) = % D(Gi,Gy),

k=1
where k iterates over the K closest neighbours of G;, from either
the population or the archive. Our archive of previous individuals
is formed by randomly adding A individuals to it at every genera-
tion [12] instead of adding only individuals that obtained a high
novelty, as in the original work [25]. This is generally preferable,
as it leads to more robust parameters and uniform exploration [12].

3.3.3 Intra-Generator Novelty. The above novelty metric rewards
novelty between different generators, but the final generator that we
use is a single neural network. Thus it is useful to reward generators
that can generate multiple diverse levels. To this end, we also use
the intra-generator novelty metric, which is similar to the above,
but it simply measures the novelty between the N levels generated
by one generator, and sets the intra-novelty of this generator to
be the average novelty of its N levels. We do not use an archive of
previous individuals when computing this value.

3.3.4 Other. Additional fitness functions can be used to generate
levels with specific properties (e.g. longer paths or more connected
regions [23]), and other feasibility criteria that do not affect solv-
ability, such as not placing enemies in mid-air. These could be used
to inject some expert knowledge into the generation or to enforce
constraints, but we do not use these in our experiments.

GECCO ’22, July 9-13, 2022, Boston, MA, USA

3.4 Summary

Our method uses a learned level generator in the form of a neu-
ral network to be able to quickly generate levels after a one-time,
offline training period. We evolve this network using NEAT so as
to not require any training data, and use general fitness functions,
namely solvability and novelty, to provide game-independent learn-
ing signals that also incentivise exploration. Algorithm 1 shows
pseudocode for the training procedure.

Algorithm 1 PCGNN Training Procedure

Require: G > 1// Number of generations
Require: N > 1// Number of levels to generate per network
Require: K > 1// Number of neighbours for novelty
Require: wg, wy > 0// Weighting for standard fitness and novelty
Pop « random initial population of networks
for all generations g € {1,...,G} do

Generate Levels + Calculate Simple Fitnesses

for all net; € Pop do
Generate N levels, Lj1, ..., Liny from network net;
// Fitness is e.g. Solvability and/or Intra-Novelty
Fitness(net;) < mean(Fitness(L;j)),Vj
end for
Set Distance(i, i) = oo, Vi
for all net; € Pop do
for all net; € Pop, j > i do
// dj could be e.g. Visual Diversity
Distance(i, j) < ﬁ Zil d;(Lin, Ljn)
Distance(j, i) < Distance(i, j)
end for
end for

Calculate Novelty Fitness

for all net; € Pop do
Sort Distance(i, -) ascendingly
Novelty «— % 2115:1 Distance(i, k)
// Linear combination of different fitnesses
Fitness(net;) < wy - Fitness(net;) + wp - Novelty
end for
Update population using calculated fitnesses.
end for
Return best individual network.

4 EXPERIMENTS

Here we detail our experimental setup, the baselines we compare
against, and the metrics we use to evaluate the levels.

We consider two 2D tilemap games: firstly, a Maze game consist-
ing of “wall” and “empty” tiles, where the objective is to find a path
between the top left and bottom right and, secondly, a simplified
Super Mario Bros., without powerups and only Goombas as enemies.

4.1 Baselines

We compare PCGNN to several baselines. The first is a genetic
algorithm-based approach due to Ferreira et al. [10], which was

Michael Beukman, Christopher W Cleghorn, and Steven James

originally developed for Mario. In this method, there is a population
for each tile type in the level (e.g. ground, enemies, etc.), and each
of these is evolved independently using a genetic algorithm with
an entropy [43] or sparseness-based fitness function [7]. For the
Maze, we simply use the 2D grid directly as the genotype, using
partial solvability and entropy as the fitness functions.

Partial solvability is a less sparse version of the solvability fitness
function described previously, directly applicable for the Maze, and
it returns %(“smrt + Tend + Veonnected)> Wwhere 1y = 1if x is true;
0 otherwise, start, end mean that the starting and ending tiles are
empty, and connected is true when the starting and ending tiles are
connected by a path of empty tiles. This is to give potentially more
guidance to the algorithm than the sparse solvability described
above, and was found to perform better for the direct genetic algo-
rithm specifically. Entropy is a fitness function where we split the
levels into non-overlapping chunks, calculate the entropy [43] of
each chunk, and return the average. The fitness of an individual is
then calculated as the distance to the “desired entropy”, which is
specified by the user [10]. Calculating the entropy of a chunk works
as follows: for each tile type t (e.g. wall and empty for the Maze
game), we count the number of tiles that have that value. From
here we can construct a probability distribution and calculate the
entropy. For example, let m be the number of tiles in each chunk,
then P; = COUTnt(t) is the probability of tile ¢, and the entropy for
that chunk is defined as

H(P) = =) log,(P)P:,
t=1

where n is the number of unique tile types. We normalise the above
by dividing by log,(n) when n > 2.

We also compare how this method performs with the novelty
metric as a fitness function, similar to Liapis et al. [29], but without
using the two population approach. This method is henceforth
referred to as DirectGA.

Our second baseline is Procedural Content Generation via Re-
inforcement Learning (PCGRL) [23], where the level generation
process is modelled as a reinforcement learning problem. For the
Maze we use reward functions that incentivise solvable levels with
path lengths in a certain range, and for Mario we reward solvability
of the level, feasibly placed enemies as well as having the number
of enemies in a certain range. We use the original implementation,?
and only consider the “turtle” and “wide” representations, as these
performed the best in the original work.

The first baseline was chosen to compare against an evolutionary
approach that directly searches for levels, as opposed to our method
searching in generator space. PCGRL was chosen to specifically
compare against another method that learns a level generator and
should have a fast generation time.

We do not consider CPPN2GAN [41] or the approach by Volz
et al. [61] as baselines, since these methods require existing levels
as training data. Similarly, EDRL [45] uses a GAN-based chunk
generator trained on existing Mario levels, though in principle any
parameterised generator could work.

Zhttps://github.com/amidos2006/gym-pcgrl

https://github.com/amidos2006/gym-pcgrl

Procedural Content Generation using Neuroevolution and Novelty Search for Diverse Video Game Levels

4.2 Metrics

To determine the characteristics of the levels that we generate, we
use different metrics described below.

4.2.1 Solvability. Solvability is a relatively simple metric: we de-
termine if the level is solvable using a breadth-first search or A*
agent to traverse the level from the starting state to the goal state.

4.2.2 Generation Time. Since one of our goals is to generate levels
in real time, we also measure the time it takes each method to
generate one level, after (possibly) performing offline training.

4.2.3 Difficulty. We use the leniency [42, 46], and A* difficulty [2]
metrics to evaluate the levels based on difficulty. The A* metric
measures the number of nodes unnecessarily expanded by the A*
algorithm, while leniency calculates how forgiving each obstacle is
to a player’s mistakes, and averages this across the entire level. For
the Maze, this measures the fraction of dead ends in the level [2].

4.2.4 Diversity. We use the compression distance [27, 42] metric,
particularly the Normal variant as described by Beukman et al. [2],
which measures diversity by how much space is saved when com-
pressing two strings (levels) together versus separately. We also
use the A* diversity metric [2], which compares the trajectories of
an A” agent on pairs of levels—levels that are solved in different
ways are marked as diverse

4.3 Implementation details

We use a standard implementation [35] of NEAT to perform the
evolutionary process. For a game with n tiles, the network outputs
a single tile type at each step. This is effectively an n-class classifi-
cation problem. For the Maze, since there are only two tiles, we use
one neuron and a threshold: if the neuron’s activation is larger than
this threshold, it is a wall, otherwise an empty space. For Mario,
the network has n output neurons, and the one with the largest
activation is chosen as the tile. Each tile is represented as either
a binary number (for the Maze) or a one-hot encoded vector for
Mario.

4.3.1 Agents. For Mario, we use the updated Mario-AlI framework>
to import our generated levels and use the A* agent by Robin Baum-
garten? [58, 59] to evaluate them.

Since a level might be solvable in multiple different ways, and
the A" agent sometimes performs differently on the same level of
Mario (due to the relative complexity of the simulation), we run
the diversity and difficulty metrics 5 times on each level (for both
games) and average the results. For the solvability metric, we also
run the agent five times, and if it solved the level in any of these
five runs, we label it as solvable. The solvability fitness function
uses a less complex but much faster simulation,” and we only use
the full fidelity simulation when evaluating the levels after training
and generation. Conversely, the Maze game is simpler, and so we
use a standard implementation of A*.

Shttps://github.com/amidos2006/Mario- Al- Framework
“https://github.com/amidos2006/Mario- Al-Framework/tree/master/src/agents/
robinBaumgarten
Shttps://github.com/amidos2006/gym-pcgrl/blob/master/gym_pcgrl/envs/probs/
smb/engine.py

GECCO ’22, July 9-13, 2022, Boston, MA, USA

4.4 Experimental Setup

We compare our method of level generation against the aforemen-
tioned baselines using the metrics discussed above. For all genera-
tion methods, we perform a hyperparameter search and in all cases
report the best result obtained.

All level generation experiments are run over five different ran-
dom seeds with the average and standard deviation reported. Each
of these five runs consist of generating 100 different levels, and the
metrics of the 100 levels are averaged to obtain a single value for
each seed. Since the diversity metrics calculate scores for each pair
of levels, we follow Horn et al. [19] and measure the diversity be-
tween a group of N levels by calculating the average of the w
pairwise diversity scores.

When reporting metrics, we only use the solvable levels and
average over their values to minimise the effect that unsolvable
levels have on the metrics. Since the fraction of solvable levels
is mostly high, we still average over many levels. We also use a
random baseline but this rarely generates solvable levels. Thus, we
consider all levels only for this baseline.

In the next sections, we use the following names to refer to the
specific baselines. See the Appendix for detailed hyperparameters.

PCGNN This is our NEAT and novelty search method.

DirectGA Only applicable to Mario, this is the genetic algo-
rithm with the same parameters as in the original work [10].

DirectGA+ The DirectGA method (for both Maze and Mario),
where we perform a hyperparameter search to obtain levels
with high solvability, breaking ties based on other metrics,
like compression distance.

DirectGA (Novelty) This uses the DirectGA method, but adds
in novelty as a fitness function, with uniform weights to all
fitness components. For Mario, we only consider population
sizes and numbers of generations larger than 50, to ensure
that the novelty search actually takes effect.

PCGRL (Wide/Turtle) Using PCGRL with the “wide” or “tur-
tle” representations respectively [23].

Random Tiles are selected uniformly at random.

For PCGRL, we attempt to train the method for the same 100 million
timesteps as stated by Khalifa et al. [23], but the Mario training
process was slower than the Maze (possibly due to the much larger
level sizes), and we only managed to perform about 12 million
steps for “wide” and 8 million for “turtle” in 3 days, which are the
models we use to report results here. When performing inference
for Mario, we limit the maximum number of steps per level to 10
000, as without this the PCGRL model sometimes becomes stuck in
a loop.

Finally, for both DirectGA approaches, each level is generated
from a separate evolution process, starting from a unique initial pop-
ulation. The individual with the highest fitness after G generations
is selected as the level. This is repeated 100 times per seed.

4.4.1 Statistical Approach. For the following sections, we use the
notation up, (M) to refer to the mean of metric M when using method
b, and oy, (M) denotes the standard deviation. All results in the
following tables are of the form p (o).

https://github.com/amidos2006/Mario-AI-Framework
https://github.com/amidos2006/Mario-AI-Framework/tree/master/src/agents/robinBaumgarten
https://github.com/amidos2006/Mario-AI-Framework/tree/master/src/agents/robinBaumgarten
https://github.com/amidos2006/gym-pcgrl/blob/master/gym_pcgrl/envs/probs/smb/engine.py
https://github.com/amidos2006/gym-pcgrl/blob/master/gym_pcgrl/envs/probs/smb/engine.py

GECCO ’22, July 9-13, 2022, Boston, MA, USA

Table 1: Train and generation times. Lower is better.

Maze Time (s) Mario Time (s)

Generation Train Generation Train
PCGNN (Ours) 2.4x1073(0) 1100.46 (46.41) 0.08 (0.01) 11593 (347)
DirectGA - - 1.78 0.02)' 0.0 (0)f
DirectGA+ 7.45 (0.18) 0.0 (0)" 0.56 (0.01)7 0.0 (0)"

DirectGA (Novelty) 4.85 (0.05)" 0.0 (0)" 27.04 (0.49)° 0.0 (0)"

PCGRL (Wide) 1.62 (2.10)7 245775 (6246)7 0.98 (1.10)" 259200 (0)"
PCGRL (Turtle) 6.00 (5.49)" 40838 (496)" 7.35(@.11)" 259200 (0)'
Random 0.0 (0) 0.0 (0)f 0.0 (0) 0.0 (0)"

Our statistical analysis procedure is as follows. We first per-
formed the Kruskal-Wallis test [24] to determine whether a statisti-
cal significant difference exists at all. Then, we performed pairwise
Mann-Whitney U tests [33] between PCGNN and each baseline’s
result. This was done because for most of the metrics tested, at least
one method failed a Shapiro-Wilk normality test [44] with p < 0.05.
Finally, since using multiple pairwise tests increases the risk of
making a type I error [20, 39], we subsequently perform Bonfer-
roni Error correction [3]. If we find a statistically significant result,
Hpcgnn (M)t (M) -,

Opegnn(M)
measure how large this difference is. In the tables shown in the

next section, we use bold to denote a statistically significant result
(p < 0.05) and ¥ to denote a large effect size (|d| > 0.8).

All results where we report time were run on similar hardware
(details in Appendix), with minimal other processes running to
enable a fair comparison.

we also calculate the Cohen’s d value [6],d =

5 RESULTS

We compare PCGNN against the baselines on generation time in
Section 5.1 and on solvability, diversity and difficulty in Sections 5.2,
5.3 and 5.4, respectively. We finally consider generalisability in
Section 5.5. Example levels and PCGNN’s fitness curves are shown
in the Appendix.

5.1 Generation Time

Since one of our goals is to generate levels in a fast, real-time fashion,
we compare the generation time of our method to our baselines
under the null hypothesis

Hp : Ilpcgnn(t) > pp(t)

i.e. that our method is comparable or slower at generating levels
than the baselines.

Since PCGNN has a two stage process of evolving the generator
and then using the generator to generate levels, we split the total
time taken for this into training and testing. Training is the time
required to evolve the generator, which happens once. Generation
then refers to querying this generator. The DirectGA approaches
generate levels as needed, and so have 0 training time.

We use a one-sided Mann-Whitney U test for generation time
and a two-sided test for training time. Table 1 presents the results.

We thus reject the null hypothesis that our method’s generation
time is comparable or slower than our baselines (except for the
Random method, which does not perform any computation). We see
alarge effect size, and at least an order of magnitude improvement in
generation speed. For training time, we find a statistically significant

Michael Beukman, Christopher W Cleghorn, and Steven James

difference compared to all other methods (using a two-sided test).
This is to be expected, since the DirectGA method requires no
training time and PCGRL requires substantially more.

PCGRL has quite a large variance in generation times, and we
hypothesise that this is because it generates a level until a specified
reward threshold is met, instead of iterating for a fixed number of
iterations like PCGNN and DirectGA.

We do not parallelise the fitness function calculations for either
DirectGA or PCGNN, although doing so could improve perfor-
mance, notably generation time for DirectGA. This would largely
depend on the number of cores the generating machine has, and
many cores are often not a given on a user’s machine [51]. Similarly,
we only take the top individual after performing the evolution—it
would be more efficient to take more individuals from the final
generation, but they might lack in diversity or feasibility [14].

5.2 Solvability

Since we can generate levels quickly, we next investigate the quality
of these levels, starting with solvability. Here we compare solvabil-
ity scores between our method and the baselines, with the null
hypothesis that our method has the same mean solvability as the
other methods. Table 2 shows these results.

Table 2: Solvability. Higher is better.

Maze Solvability Mario Solvability

PCGNN (Ours) 1.0 (0) 0.98 (0.02)
DirectGA - 1.0 (0)

DirectGA+ 1.0 (0) 0.99 (0.01)
DirectGA (Novelty) 0.92 (0.04)" 1.0 (0)

PCGRL (Wide) 1.0 (0) 0.74 (0.03)
PCGRL (Turtle) 0.95 (0.08) 0.70 (0.02)
Random 2.0x1073(0)' 0.08(0.03)

We find no statistically significant difference between our solv-
ability, the solvability of PCGRL and that of DirectGA+ for the Maze.
For Mario, we find no statistically significant difference between
PCGNN's solvability and that of the baselines.

PCGRL’s solvability on Mario is much lower than on Maze, possi-
bly due to training for fewer timesteps, and increasing the training
budget could improve this. Our solvability is thus perfect for Maze,
and still very high on Mario. The above result, coupled with our fast
generation times, indicates that we can generate a larger number
of solvable levels than the other methods in the same amount of
time.

5.3 Diversity

We now compare the diversity of the generated levels using the
compression distance and A* diversity metrics. The null hypothesis
is that the diversity of PCGNN is comparable to the baselines.

Results are shown in Table 3, where we see that PCGNN’s A* di-
versity is comparable to DirectGA+ for Mario, but rather different
from both PCGRL representations and quite different to all methods
for Maze. Because of the high variance in PCGNN’s compression

Procedural Content Generation using Neuroevolution and Novelty Search for Diverse Video Game Levels

Table 3: Diversity metrics. Higher is better.

Maze Mario
Compression A* Diversity Compression A* Diversity
Distance Distance

PCGNN (Ours) 0.488 (0.002) 0.13(0.17) 0.45 (0.10) 0.38 (0.11)
DirectGA - - 0.46 (0) 0.10 (0.01)"
DirectGA+ 0.493 (0.002) 0.41(0.01) 0.55(0) 0.33 (0)
DirectGA (Novelty) 0.494 (0.002) 0.40 (0.01) 0.44 (0.01) 0.20 (0.01)
PCGRL (Wide) 0.525 (0.021)" 043 (0.01) 0.56 (0) 0.55 (0)'
PCGRL (Turtle) 0.513 (0.006)7 0.43(0.01) 0.56 (0) 0.55 (0)'
Random 0.494 (0.001)" 0.00 (0.01) 0.47 (0) 0.72 (0.02)"

distance for Mario, we find no statistically significant difference
between our method and the baselines.

The A” diversity metric evaluates DirectGA’s Mario levels (which
are relatively flat without jumps or platforms) as quite similar, since
the same rough trajectory solves most levels. PCGRL’s levels, on the
other hand, require substantially different trajectories in general,
indicating that the levels cannot all be solved using the same path.
PCGNN is somewhere in between, indicating that different trajec-
tories and strategies are required, but the difference, on average, is
not as large as PCGRL.

We also note that using novelty for the DirectGA does not im-
prove the diversity metrics (compared to DirectGA+), potentially
indicating a mismatch between what novelty rewards and what the
metrics measure.

5.4 Difficulty

Next we investigate the difficulty of our levels, as measured by the
leniency [42, 46] and A* difficulty [2] metrics. These metrics both
attempt to measure the abstract notion of “difficulty”, but they do so
in different ways. Further, levels with higher leniency correspond
to levels with lower A* difficulty and vice versa. We again use the
null hypothesis that our method has the same mean difficulty as
our baselines.

Results in Table 4 show that for the Maze, our method generates
quite lenient levels, and this is confirmed by the lower value of the
A* difficulty metric. For Mario, our levels have quite low leniency,
but this varies drastically. We therefore only find a statistically
significant difference between PCGNN and the DirectGA, which
generates very flat levels and thus has relatively high leniency.

5.5 Generalisability

This experiment asks the question: “after we have learnt enough
to generate one level of size Y, how long does it take to generate
a level of size X # Y?” We hypothesise that PCGNN will be able
to generate levels of arbitrary size quickly, without any retraining,
as we use a size-agnostic generation method. We test this claim
by taking an evolved generator (that was trained only to generate
levels of size 14 X 14), and using it to generate levels of different
sizes. We compare this against the DirectGA method in Figure 2.
We find that PCGNN’s generation speed is still substantially
higher than the DirectGA’s (for both Mario and Maze), even as we
increase the level size. PCGNN generates Maze levels that have
20007 tiles faster than DirectGA generates levels with 1007 tiles.
In the Maze domain, our method achieves perfect solvability for

GECCO ’22, July 9-13, 2022, Boston, MA, USA

Table 4: Difficulty. The optimal value usually depends on the
player’s skill and designer’s intentions.°

Maze Mario
Leniency A* Difficulty Leniency A” Difficulty

PCGNN (Ours) 0.70 (0.08) 0.06 (0.08) 0.17 (0.23) 0.24 (0.06)
DirectGA - - 100" 027(0)

DirectGA+ 0.60 (0.01)" 0.16(0.02) 0.31(0.01) 0.14 (0.01)"
DirectGA (Novelty) 0.59 (0.01)" 0.16 (0.01) 0.78 (0.04) 0.24 (0.01)
PCGRL (Wide) 0.64 (0.04) 0.21(0.01) 0.47(0.01) 0.29 (0.01)
PCGRL (Turtle) 0.71 (0.02) 0.18(0.03) 0.47(0.01) 0.28 (0.01)
Random 23x1073(0) 052(0.02) 0.14(0) 0.88(0.02)

all tested sizes, whereas the direct genetic algorithm’s solvabil-
ity decreases drastically as the level size increases. One potential
explanation is that we keep the population size and number of
generations constant as the level size increases; prior work has
shown that standard genetic algorithms do not always perform
very well with high dimensional problems [31, 62]. For Mario, we
see a slight downward trend in solvability as the level size increases,
whereas DirectGA remains constant. This DirectGA consistency
is because the initial level, instead of being random as in the Maze
game, is already solvable without any extra input from the genetic
algorithm. Again, even with some loss of solvability as the level
width increases, our fast generation time can ameliorate this issue.

Since PCGRL relies on a specific input size (as it uses a neural net-
work that can only process a fixed size input), it cannot generalise
to different sized levels without an expensive retraining.

The above results indicate that PCGNN is well-suited to general-
ising to larger levels without the need for retraining. Thus, even
when the fitness function used is expensive, or we require many
generations or a large population size, all of this computation can
be performed offline without negatively impacting the generation
time. On the other hand, DirectGA’s generation time is directly af-
fected by these factors, making it increasingly unsuited for real-time
generation, as shown in Figure 3.

6 DISCUSSION AND FUTURE WORK

The method introduced here follows a recent trend focusing on
level generators, which can be applied in real time after an offline
training period [23, 45] instead of searching for the levels directly.
We demonstrate several advantages over these works, namely an
even faster generation time, no need for training data or game-
specific reward functions, and the ability to generalise to different
sized levels without retraining.

Limitations of the proposed method include generation time still
scaling linearly with the level size, possibly leading to infeasible
generation times for massive levels, although this performed well
for the tested sizes. Although we demonstrated comparable metric
scores to the baselines, the sequential level generation process could
still limit the characteristics of the levels by not taking into account
global information. Further, while we do not require hand-specified

®The difference between the leniency of the Random baseline and PCGNN is not
statistically significant. The reason for this is that there were ties in the leniency values
(multiple seeds had 0 leniency), leading to the asymptotic Mann-Whitney U calculation
being used over the exact version [33]. The normal approximation, while decent, is not
perfect for a small sample size of 5 [1]. This, combined with the Bonferonni correction,
leads to a p value of 0.055, slightly above our threshold of 0.05.

GECCO ’22, July 9-13, 2022, Boston, MA, USA

Comparing Generation Time (s) vs Level Size. Lower is better.

£ —— PCGNN (Ours)

104 DirectGA+
n x PCGRL (Turtle)
@
£ 107
'_
C
©
=
o 10°
9]
C
9]
&)

1072

0 250 500 750 1000 1250 1500 1750 2000
Level Width = Height
(a) A comparison of generation times on the Maze domain (lower
is better) on a log scale.
Comparing Generation Time (s) vs Level Size - Mario. Lower is better.
105 — PCGNN (Ours) s S
DirectGA+

& 10* —— DirectGA
; x PCGRL
£ 103
=
c 102
kel
S
© 10!
(]
S oo T e et RN MR N R §
& 10

107 ///——

1072

25 50 75 100 125 150 175 200 225
Level Width

(c) A comparison of generation times on Mario (lower is better)
on a log scale.

Michael Beukman, Christopher W Cleghorn, and Steven James

Comparing Solvability vs Level Size. Higher is better.

=
o

Solvability
o o
o ©

<
i

e
[N)

—— PCGNN (Ours)
0.0 DirectGA+
0 250 500 750 1000 1250 1500 1750 2000
Level Width = Height

(b) A comparison of solvability with an increase in Maze sizes
(higher is better).

Comparing Solvability vs Level Size - Mario. Higher is better.

1.00

0.98
0.96

0.94

—— PCGNN (Ours)
DirectGA+
—— DirectGA

Fraction of Solvable Levels

25 50 75 100 125 150 175 200 225
Level Width

(d) A comparison of solvability with an increase in Mario sizes
(higher is better). Note that the y-axis ranges from 0.88 to 1.

Figure 2: Metrics for Maze (top row) and Mario (bottom row) levels of different sizes. Standard deviation is indicated by the
shaded regions. For (a) and (c) we only plot two PCGRL points, since training for larger levels was prohibitively expensive.

Number of generations vs generation time - Maze. Lower is better.

10!
R
o 10
£
c —— PCGNN (Ours)
210! DirectGA+
©
o]
o
()
O 10-2

0 50 100 150 200 250 300

Number of generations (i.e. training time)

Figure 3: Comparing the effect of increasing the number of
generations on generation time in the Maze domain with
standard deviation shaded.

fitness functions, the generated levels without these elements might
not be desired in some cases. The Mario levels are also not very
similar to the original game, but this was not our goal. More specific
domain-knowledge can be incorporated, though, by changing the
fitness function.

Future work could include analysing the effects of the different
hyperparameters of our method (e.g. context or prediction sizes), or
attempting to make the method more configurable during runtime.
This would allow users to specify desired characteristics, similar to
specifying the level size dynamically as we do here. Additional work
could also investigate different novelty search distance functions
(with a potential focus on simulation-based ones such as the A* di-
versity [2]), or attempt to apply multi-objective optimisation [56] or
illumination algorithms [37] instead of naively optimising the sum
of the different fitnesses. Another option is exploring the generation
of endless levels, where the next parts of the level are generated as
the player proceeds (possibly using the player’s behaviour as input
to the network to generate adaptive levels) [45].

Procedural Content Generation using Neuroevolution and Novelty Search for Diverse Video Game Levels

7 CONCLUSION

We introduced PCGNN, a NEAT and novelty search-based level
generation approach that (1) does not require any training data;
(2) requires minimal game-specific knowledge; (3) can be generally
applied; and (4) generate levels of arbitrary size rapidly after an
offline training period. We compare this method against a direct
genetic algorithm and a reinforcement learning-based approach
that learns a policy instead of directly searching for a level. Our
method performs comparably to the baselines in terms of solvability,
difficulty and diversity, while generating levels significantly faster.
Most importantly, our method requires no hand-engineered rewards
or knowledge of game mechanics such as enemies. We believe this
generality is an important step towards the widespread adoption
of procedural content generation in a variety of contexts.

ACKNOWLEDGMENTS

This work is based on the research supported wholly by the National
Research Foundation of South Africa (Grant UID 133358).
Computations were performed using High Performance Comput-
ing infrastructure provided by the Mathematical Sciences Support
unit at the University of the Witwatersrand.
We thank the reviewers for their helpful and insightful com-
ments, which helped to strengthen the final version of this paper.

REFERENCES

[1] Carine A Bellera, Marilyse Julien, and James A Hanley. 2010. Normal approx-
imations to the distributions of the Wilcoxon statistics: accurate to what N?
Graphical insights. Journal of Statistics Education 18, 2 (2010).

[2] Michael Beukman, Steven James, and Christopher W. Cleghorn. 2022. To-
wards Objective Metrics for Procedurally Generated Video Game Levels. CoRR
abs/2201.10334 (2022). arXiv:2201.10334 https://arxiv.org/abs/2201.10334

[3] Carlo Bonferroni. 1936. Teoria statistica delle classi e calcolo delle probabilita.

Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di

Firenze 8 (1936), 3-62.

Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. 2011. Interactive Evo-

lution for the Procedural Generation of Tracks in a High-End Racing Game. In

Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computa-

tion (Dublin, Ireland) (GECCO ’11). Association for Computing Machinery, New

York, NY, USA, 395-402. https://doi.org/10.1145/2001576.2001631

Karl Cobbe, Oleg Klimov, Christopher Hesse, Tachoon Kim, and John Schulman.

2019. Quantifying Generalization in Reinforcement Learning. In Proceedings

of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June

2019, Long Beach, California, USA (Proceedings of Machine Learning Research,

Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 1282-1289.

http://proceedings.mlr.press/v97/cobbe19a.html
[6] Jacob Cohen. 2013. Statistical power analysis for the behavioral sciences. Academic
press.
[7] Michael Cook and Simon Colton. 2011. Multi-faceted evolution of simple arcade
games. In 2011 IEEE Conference on Computational Intelligence and Games, CIG
2011, Seoul, South Korea, August 31 - September 3, 2011, Sung-Bae Cho, Simon M.
Lucas, and Philip Hingston (Eds.). IEEE, 289-296. https://doi.org/10.1109/CIG.
2011.6032019
[8] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sen-
gupta, and Anil A Bharath. 2018. Generative adversarial networks: An overview.
IEEE Signal Processing Magazine 35, 1 (2018), 53-65.
[9] ESA.2021. 2021 Essential Facts about the video game industry. https://www.
theesa.com/resource/2021-essential-facts/
[10] Lucas Ferreira, Leonardo Pereira, and Claudio Toledo. 2014. A Multi-Population
Genetic Algorithm for Procedural Generation of Levels for Platform Games.
In Proceedings of the Companion Publication of the 2014 Annual Conference on
Genetic and Evolutionary Computation (Vancouver, BC, Canada) (GECCO Comp
’14). Association for Computing Machinery, New York, NY, USA, 45-46. https:
//doi.org/10.1145/2598394.2598489

[11] David E Goldberg. 1989. Genetic algorithms in search. Addison Wesley Publishing
Co. Inc., Chapter 1.

[12] Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen. 2015. Devising
effective novelty search algorithms: A comprehensive empirical study. In Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation.

[4

=

(5

=

GECCO ’22, July 9-13, 2022, Boston, MA, USA

943-950. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.717.6684&
rep=repl&type=pdf
[13] Jorge Gomes, Paulo Urbano, and Anders Lyhne Christensen. 2013. Evolution
of swarm robotics systems with novelty search. Swarm Intelligence 7, 2 (2013),
115-144.
[14] Daniele Gravina, Ahmed Khalifa, Antonios Liapis, Julian Togelius, and Georgios N.
Yannakakis. 2019. Procedural Content Generation through Quality Diversity. In
IEEE Conference on Games, CoG 2019, London, United Kingdom, August 20-23, 2019.
IEEE, 1-8. https://doi.org/10.1109/CIG.2019.8848053
Azhar Hadmi, William Puech, Brahim Ait Es Said, and Abdellah Ait Ouahman.
2012. Perceptual image hashing. In Watermarking-Volume 2. IntechOpen.
Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics 4, 2 (1968), 100-107. https://doi.org/10.1109/TSSC.1968.
300136
[17] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup.
2013. Procedural content generation for games: A survey. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM) 9, 1 (2013),
1-22.
[18] Amy K Hoover, Julian Togelius, and Georgios N Yannakis. 2015. Composing
video game levels with music metaphors through functional scaffolding. In First
computational creativity and games workshop. ACC.
Britton Horn, Steve Dahlskog, Noor Shaker, Gillian Smith, and Julian Togelius.
2014. A comparative evaluation of procedural level generators in the Mario Al
framework. In Foundations of Digital Games 2014, Ft. Lauderdale, Florida, USA
(2014). Society for the Advancement of the Science of Digital Games, 1-8.
Mohieddin Jafari and Naser Ansari-Pour. 2019. Why, when and how to adjust
your P values? Cell Journal (Yakhteh) 20, 4 (2019), 604.
Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Ju-
lian Togelius, and Sebastian Risi. 2018. Illuminating generalization in deep
reinforcement learning through procedural level generation. arXiv preprint
arXiv:1806.10729 (2018).
Manuel Kerssemakers, Jeppe Tuxen, Julian Togelius, and Georgios Yannakakis.
2012. A procedural procedural level generator generator. In 2012 IEEE Conference
on Computational Intelligence and Games, CIG 2012. 335-341. https://doi.org/10.
1109/CIG.2012.6374174
Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. 2020. PCGRL:
Procedural content generation via reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
Vol. 16. 95-101.
William H Kruskal and W Allen Wallis. 1952. Use of ranks in one-criterion
variance analysis. Journal of the American statistical Association 47, 260 (1952),
583-621.
Joel Lehman and Kenneth Stanley. 2011. Abandoning Objectives: Evolution
Through the Search for Novelty Alone. Evolutionary computation 19 (06 2011),
189-223. https://doi.org/10.1162/EVCO_a_00025
[26] Joel Lehman and Kenneth O Stanley. 2011. Evolving a diversity of virtual creatures
through novelty search and local competition. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation. 211-218.
Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul MB Vitanyi. 2004. The similarity
metric. IEEE Transactions on Information Theory 50, 12 (2004), 3250-3264.
Antonios Liapis, Georgios Yannakakis, and Julian Togelius. 2013. Enhancements
to constrained novelty search: two-population novelty search for generating
game content. In GECCO 2013 - Proceedings of the 2013 Genetic and Evolutionary
Computation Conference. 343-350. https://doi.org/10.1145/2463372.2463416
Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2015. Constrained
Novelty Search: A Study on Game Content Generation. Evolutionary computation
23, 1 (March 2015), 101-129. https://doi.org/10.1162/EVCO_a_00123
Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N Yannakakis,
and Julian Togelius. 2020. Deep learning for procedural content generation.
Neural Computing and Applications (2020), 1-19.
[31] Yong Liu, Xin Yao, Qiangfu Zhao, and Tetsuya Higuchi. 2001. Scaling up fast
evolutionary programming with cooperative coevolution. In Proceedings of the
2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), Vol. 2. leee,
1101-1108.
Jessica Lowell, Sergey Grabkovsky, and Kir Birger. 2011. Comparison of NEAT
and HyperNEAT Performance on a Strategic Decision-Making Problem. In Fifth
International Conference on Genetic and Evolutionary Computing, ICGEC 2011,
Kinmen, Taiwan / Xiamen, China, August 29 - September 1, 2011, Junzo Watada,
Pau-Choo Chung, Jim-Min Lin, Chin-Shiuh Shieh, and Jeng-Shyang Pan (Eds.).
IEEE Computer Society, 102-105. https://doi.org/10.1109/ICGEC.2011.33
[33] H.B.Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics 18, 1 (1947), 50 — 60. https://doi.org/10.1214/aoms/1177730491
David Maung and Roger Crawfis. 2015. Applying formal picture languages to
procedural content generation. In 2015 Computer Games: Al, Animation, Mobile,
Multimedia, Educational and Serious Games (CGAMES). IEEE, 58-64.

[15

=
&

[19

™
=

[21

[22

[23

S
=)

[25

[27

[28

[29

[30

[32

[34

https://arxiv.org/abs/2201.10334
https://arxiv.org/abs/2201.10334
https://doi.org/10.1145/2001576.2001631
http://proceedings.mlr.press/v97/cobbe19a.html
https://doi.org/10.1109/CIG.2011.6032019
https://doi.org/10.1109/CIG.2011.6032019
https://www.theesa.com/resource/2021-essential-facts/
https://www.theesa.com/resource/2021-essential-facts/
https://doi.org/10.1145/2598394.2598489
https://doi.org/10.1145/2598394.2598489
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.717.6684&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.717.6684&rep=rep1&type=pdf
https://doi.org/10.1109/CIG.2019.8848053
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/CIG.2012.6374174
https://doi.org/10.1109/CIG.2012.6374174
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1145/2463372.2463416
https://doi.org/10.1162/EVCO_a_00123
https://doi.org/10.1109/ICGEC.2011.33
https://doi.org/10.1214/aoms/1177730491

GECCO ’22, July 9-13, 2022, Boston, MA, USA

[35

[36]

[37]

[38

[39]

[40]

[41]

[42]

[43]
[44]

[45

[46

[47]

S
&

[49]

[50

[51]

[52

[53]

[54]

[55

[56]

[57]

[58]

Alan McIntyre, Matt Kallada, Cesar G. Miguel, and Carolina Feher de Silva. [n. d.].
neat-python. https://github.com/CodeReclaimers/neat-python

Vishal Monga and Brian L Evans. 2006. Perceptual image hashing via feature
points: performance evaluation and tradeoffs. IEEE transactions on Image Pro-
cessing 15, 11 (2006), 3452-3465.

Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. CoRR abs/1504.04909 (2015). arXiv:1504.04909 http://arxiv.org/abs/1504.
04909

David Pinelle, Nelson Wong, and Tadeusz Stach. 2008. Heuristic evaluation for
games: usability principles for video game design. In Proceedings of the SIGCHI
conference on human factors in computing systems. 1453-1462.

Arnu Pretorius, Elan Van Biljon, Benjamin van Niekerk, Ryan Eloff, Matthew
Reynard, Steven D. James, Benjamin Rosman, Herman Kamper, and Steve Kroon.
2019. If dropout limits trainable depth, does critical initialisation still matter? A
large-scale statistical analysis on ReLU networks. CoRR abs/1910.05725 (2019).
arXiv:1910.05725 http://arxiv.org/abs/1910.05725

Mike Preuss, Antonios Liapis, and Julian Togelius. 2014. Searching for good
and diverse game levels. In 2014 IEEE Conference on Computational Intelligence
and Games, CIG 2014, Dortmund, Germany, August 26-29, 2014. IEEE, 1-8. https:
//doi.org/10.1109/CIG.2014.6932908

Jacob Schrum, Vanessa Volz, and Sebastian Risi. 2020. CPPN2GAN: Combining
Compositional Pattern Producing Networks and GANs for Large-Scale Pattern
Generation. In Proceedings of the 2020 Genetic and Evolutionary Computation
Conference (Cancun, Mexico) (GECCO °20). Association for Computing Machinery,
New York, NY, USA, 139-147. https://doi.org/10.1145/3377930.3389822

Noor Shaker, Miguel Nicolau, Georgios N Yannakakis, Julian Togelius, and
Michael O’neill. 2012. Evolving levels for super mario bros using grammati-
cal evolution. In 2012 IEEE Conference on Computational Intelligence and Games
(CIG). IEEE, 304-311.

Claude E Shannon. 1948. A mathematical theory of communication. The Bell
system technical journal 27, 3 (1948), 379-423.

S Shaphiro and M Wilk. 1965. An analysis of variance test for normality.
Biometrika 52, 3 (1965), 591-611.

Tianye Shu, Jialin Liu, and Georgios N. Yannakakis. 2021. Experience-Driven PCG
via Reinforcement Learning: A Super Mario Bros Study. In 2021 IEEE Conference
on Games (CoG). IEEE.

Gillian Smith, Jim Whitehead, Michael Mateas, Mike Treanor, Jameka March, and
Mee Cha. 2010. Launchpad: A rhythm-based level generator for 2-d platformers.
IEEE Transactions on computational intelligence and Al in games 3, 1 (2010), 1-16.
William M Spears et al. 1995. Adapting crossover in evolutionary algorithms.. In
Evolutionary programming. 367-384.

Kenneth O. Stanley. 2007. Compositional Pattern Producing Networks: A Novel
Abstraction of Development. Genetic Programming and Evolvable Machines 8, 2
(June 2007), 131-162. https://doi.org/10.1007/s10710-007-9028-8

Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. 2009. A Hypercube-
Based Encoding for Evolving Large-Scale Neural Networks. Artif. Life 15, 2 (2009),
185-212. https://doi.org/10.1162/artl.2009.15.2.15202

Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
through Augmenting Topologies. Evolutionary Computation 10, 2 (June 2002),
99-127. https://doi.org/10.1162/106365602320169811

Steam. 2021. Steam Hardware & Software Survey: September 2021. https://store.
steampowered.com/hwsurvey/. [Online; accessed 25-October-2021].

Nathan Sturtevant and Matheus Ota. 2018. Exhaustive and semi-exhaustive
procedural content generation. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, Vol. 14.

Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgéard,
Amy K Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. 2018. Proce-
dural Content Generation via Machine Learning (PCGML). IEEE Transactions on
Games 10, 3 (2018), 257-270. https://doi.org/10.1109/TG.2018.2846639

Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (second ed.). The MIT Press. http://incompleteideas.net/book/the-book-
2nd.html

Gilbert Syswerda. 1993. Simulated crossover in genetic algorithms. In Foundations
of genetic algorithms. Vol. 2. Elsevier, 239-255.

Hisashi Tamaki, Hajime Kita, and Shigenobu Kobayashi. 1996. Multi-Objective
Optimization by Genetic Algorithms: A Review. In Proceedings of 1996 IEEE
International Conference on Evolutionary Computation, Nayoya University, Japan,
May 20-22, 1996, Toshio Fukuda and Takeshi Furuhashi (Eds.). IEEE, Japan, 517—
522. https://doi.org/10.1109/ICEC.1996.542653

Julian Togelius, Alex J. Champandard, Pier Luca Lanzi, Michael Mateas, Ana Paiva,
Mike Preuss, and Kenneth O. Stanley. 2013. Procedural Content Generation: Goals,
Challenges and Actionable Steps. In Artificial and Computational Intelligence in
Games, Simon M. Lucas, Michael Mateas, Mike Preuss, Pieter Spronck, and Julian
Togelius (Eds.). Dagstuhl Follow-Ups, Vol. 6. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 61-75. https://doi.org/10.4230/DFU.Vo0l6.12191.61

Julian Togelius, Sergey Karakovskiy, and Robin Baumgarten. 2010. The 2009
mario ai competition. In IEEE Congress on Evolutionary Computation. IEEE, 1-8.

Michael Beukman, Christopher W Cleghorn, and Steven James

[59] Julian Togelius, Noor Shaker, Sergey Karakovskiy, and Georgios N Yannakakis.

2013. The mario ai championship 2009-2012. AI Magazine 34, 3 (2013), 89-92.

[60] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne.

2011. Search-based procedural content generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and Al in Games 3, 3 (2011), 172-186.
Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M Lucas, Adam Smith, and Sebas-
tian Risi. 2018. Evolving mario levels in the latent space of a deep convolutional
generative adversarial network. In Proceedings of the Genetic and Evolutionary
Computation Conference. 221-228.

[62] Xin Yao and Yong Liu. 1998. Scaling up evolutionary programming algorithms.

In International Conference on Evolutionary Programming. Springer, 103-112.

https://github.com/CodeReclaimers/neat-python
https://arxiv.org/abs/1504.04909
http://arxiv.org/abs/1504.04909
http://arxiv.org/abs/1504.04909
https://arxiv.org/abs/1910.05725
http://arxiv.org/abs/1910.05725
https://doi.org/10.1109/CIG.2014.6932908
https://doi.org/10.1109/CIG.2014.6932908
https://doi.org/10.1145/3377930.3389822
https://doi.org/10.1007/s10710-007-9028-8
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/106365602320169811
https://store.steampowered.com/hwsurvey/
https://store.steampowered.com/hwsurvey/
https://doi.org/10.1109/TG.2018.2846639
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1109/ICEC.1996.542653
https://doi.org/10.4230/DFU.Vol6.12191.61

Procedural Content Generation using Neuroevolution and Novelty Search for Diverse Video Game Levels

APPENDIX

Here we list the detailed hyperparameters that were used in the
above experiments. Implementation details can be found in our
source code located at https://github.com/Michael-Beukman/PCGNN.

Hardware Details

We ran the experiments on Intel i9-10940X CPUs, and PCGRL’s
training and inference was performed on NVIDIA RTX3090 GPUs.

Hyperparameter Search

We performed a small grid search over all variables for each method
with between 2 and 4 values per variable. The hyperparameter set
was chosen to maximise solvability, with compression distance used
as a tie-breaker. Tables 5 and 6 contain the values we tested.

For PCGRL, we only searched over one variable for Mario; namely,
how much to weigh how far the agent progressed in the level. We

GECCO ’22, July 9-13, 2022, Boston, MA, USA

specifically searched over the values [0, 2,5, 8, 10] and found that
the default value of 5 performed the best.

The following sections contain some more descriptions of the
baselines, as well as the actual hyperparameters.

DirectGA

For the DirectGA, we used 2 point crossover, flattening the 2D array
in the Maze case, and 1 point crossover for Mario with roulette
selection and a mutation probability of 20%. We used these, as
they were unspecified by Ferreira et al. [10], simple to implement,
relatively standard [11] and the crossover operations were shown
to perform relatively well [47, 55].

We also make the fitness function simply the inverse of the
absolute difference between the actual and desired levels of entropy,
ensuring that values do not become larger than 10. This is the fitness
we then maximise.

Table 5: The hyperparameters we searched over for PCGNN. [0, 1] means the search was performed over the interval.

Maze Mario
Context Size 1 1
Predict Size 1 1,2,3
Number of Random Variables 4 4
Random Perturb Size [0, 1] 0
Number of Generations 10, 50, 100, 200 10, 20, 50, 150, 300
Population Size 20, 50, 100 20, 50, 100
Number of Levels 15, 24 3,5,6,15
A 0,1,2,3,4,5,6 0,1
One Hot Inputs False False, True

Novelty Distance Function

Hashing (Average), Hashing (Perceptual Simple), Visual Diversity
Hashing (Perceptual), Hashing (Wavelet), Visual
Diversity, Visual Diversity Reachable

Intra-Novelty Weight [0, 1]
Novelty Weight [0, 1]
Solvability Weight [0, 1]
Use Entropy Fitness False, True
Use Intra-Novelty Fitness False, True
Use Solvability Fitness False, True

1

1
1,2,3,4,6,10
False

True

True

Table 6: The hyperparameters we searched over for DirectGA

Mario Maze

Population Size 10, 50, 100 10, 50, 100
Number of Generations 10, 50, 100 10, 50, 100
Desired Entropy 0,0.5, 1.0 0,0.5,1
Desired Sparseness Enemies (Desired Entropy) -

Desired Sparseness Coins (Desired Entropy) -

Desired Sparseness Blocks (Desired Entropy) -

Entropy Block Size 20,114 -

Enemies Block Size 20 -

Coin Block Size 10 -

Blocks Block Size 10, 40 -

Ground Maximum Height 2,5 -

Coin Maximum Height (Ground Maximum Height) -

Use Novelty Fitness True False, True
Use Solvability Fitness False False, True

https://github.com/Michael-Beukman/PCGNN

GECCO ’22, July 9-13, 2022, Boston, MA, USA

The specific hyperparameters used are shown in Tables 7 and 8.
For these tables, DE is Desired Entropy and PSolvability is Partial
Solvability.

Table 7: Maze hyperparameters for DirectGA

DirectGA+ DirectGA Novelty
Population Size 100 50
Number of Genera- 100 100
tions
Fitness Entropy(DE=1) X 0.5 Entropy(DE=0) x 0.33

PSolvability() x 0.5 PSolvability() x 0.33

For the DirectGA with novelty on Maze, we additionally use
Visual Diversity, A = 1 and 15 neighbours, with a weight of 0.33.

Table 8: Mario hyperparameters for DirectGA. Explanations
of these parameters are provided by Ferreira et al. [10].

DirectGA+ DirectGA DirectGA
Novelty

Population Size 10 100 20
Number of Generations 50 100 100
Desired Entropy 0.5 0.0 0.0
Desired Sparseness Ene- 0.5 0.0 0.0
mies
Desired Sparseness Coins 0.5 1.0 1.0
Desired Sparseness Blocks 0.5 0.5 0.5
Entropy Block Size 20 114 114
Enemies Block Size 20 20 20
Coin Block Size 10 10 10
Blocks Block Size 40 10 10
Ground Maximum Height 2 2 2
Coin Maximum Height 2 2 2

For the DirectGA with novelty on Mario, we additionally use
Visual Diversity, 6 neighbours in the novelty calculation and A = 1.
This was done for each individual element (ground, enemies, coins,
etc.) and novelty had the same weight as the normal fitness function.

PCGRL

For PCGRL, as previously mentioned, we trained for 100 million
timesteps for Maze, and 8 million and 12 million for Mario Turtle
and Wide respectively.

The reward function used for the Maze was similar to the one
used by Khalifa et al. [23] in that we reward having only one region,
but we differ in that we reward paths only between the start and
goal tiles, with lengths between 20 and 80. We weight these different
effects with a ratio of 5:2.

For Mario, the exact reward function we use can be found in the
PCGRL Github repository,” and this rewards levels that have the
following characteristics:

o Enemies are directly above solid tiles and are not floating in
the air.
e Tubes are not disjoint.

https://github.com/amidos2006/gym-pcgrl/blob/master/gym_pcgrl/envs/probs/
smb_prob.py

Michael Beukman, Christopher W Cleghorn, and Steven James

There are between 10 and 30 enemies per level.

At least 60% of the level is empty.

The level has minimal noise, i.e. tiles of the same type are
usually grouped together.

The level requires at least 20 jumps to solve.

The distance required to jump is low.

The level is solvable.

PCGNN
The hyperparameters for PCGNN are shown in Table 9.

Examples

Example levels from the tested methods are shown in Figures 4
and 5.

Additional Experiments

Here we show some additional results.

Novelty Distance Functions. Firstly, there are many different dis-
tance functions we can use for the novelty fitness calculation. Some
of the ones we tried are listed below. All image hashing methods
used the ImageHash library.?

Euclidean The Euclidean distance between levels with n unique
tiles, where each tile is an integer from 0 to n — 1.

Hashing (Perceptual Simple) Simple Perceptual Image Hash-
ing.

Hashing (Average) Average Image Hashing.

Visual Diversity Hamming distance, i.e. fraction of tiles that
are different.

Hashing (Perceptual) Perceptual Image Hashing.

Hashing (Wavelet) Wavelet Image Hashing.

Some distance functions are only applicable for the Maze, as some
aspects (like pathfinding) were much faster on this domain, making
these functions feasible.

Visual Diversity Reachable Visual Diversity, but all tiles that
are not reachable from the starting tile are set to a wall.

JS This takes the coordinates of each reachable tile, and creates
a probability distribution for each level. The final distance
is then the Jensen-Shannon divergence between these two
distributions.

Path Comparing the shortest paths from start to end in each
level. The paths are compared using the average Manhattan
distance between corresponding steps in the trajectories.

Window This considers all reachable tiles in the level, and
sets the distance to the average visual diversity of 3x3 blocks
centred at each location.

Window (V2) This is similar to the above, but instead of tak-
ing the reachable tiles, uses only the shortest path as a tra-
jectory.

Results when using different distance functions for Maze and
Mario are shown in Tables 10 and 11 respectively. Example levels
for each of these functions are also shown in Figures 6 and 7.

PCGNN Fitness Plots. Figure 8 shows the different fitness functions
and their value over the evolution process for PCGNN.

8https://github.com/JohannesBuchner/imagehash

https://github.com/amidos2006/gym-pcgrl/blob/master/gym_pcgrl/envs/probs/smb_prob.py
https://github.com/amidos2006/gym-pcgrl/blob/master/gym_pcgrl/envs/probs/smb_prob.py
https://github.com/JohannesBuchner/imagehash

Procedural Content Generation using Neuroevolution and Novelty Search for Diverse Video Game Levels GECCO ’22, July 9-13, 2022, Boston, MA, USA

EE

(a) PCGNN (Ours) (b) DirectGA+ (c) PCGRL (Turtle) (d) PCGRL (Wide) (e) Random

Figure 4: Maze: Example levels.

(] °

B _ 8 e (] s o (] R
e) o el o [} 3)
Iy Lalaf) oS

(b) DirectGA+

(d) PCGRL (Turtle)
)y ¥ y

(f) Random

Figure 5: Mario: Example levels.

GECCO ’22, July 9-13, 2022, Boston, MA, USA Michael Beukman, Christopher W Cleghorn, and Steven James

Table 9: Hyperparameters for PCGNN

Maze Mario

Context Size 1 1

Predict Size 1 1

Number of Random Variables 4 4

Padding -1 -1

Random Perturb Size 0.1565 0.0

Number of Generations 200 150

Population Size 50 100

Number of Levels 24 6

Number of Neighbours for Novelty Calcu- 15 15

lation

A 0 0

Novelty Distance Function Visual Diversity, only on reachable tiles Visual Diversity
Novelty() X 0.399 Novelty() x 0.25

Fitness Solvability() x 0.202 Solvability()x 0.50
Intra-Novelty(neighbours=10) x 0.399 Intra-Novelty(neighbours=2) x 0.25

Table 10: Maze: Comparing a collection of different distance functions for the novelty and intra-novelty fitness functions. Blue
denotes the maximum and green denotes the minimum per column. This table shows p(c). The generation time is also not
dependent on the distance function — so even if the fitness takes a long time to compute, generation is still fast.

Generation Time (s) Train Time (s) Solvability Compression Distance A* Diversity Leniency A” Difficulty
Distance Function

Path 0.002 (0.0) 14528 (384) 1.0 (0) 0.460 (0.004) 0.001(0.0) 0.86 (0.03) 0.0 (0.0)
Window (V2) 0.002 (0.0) 14331 (357) 0.95(0.09) 0.466 (0.014) 0.10 (0.20) 0.79 (0.11) 0.04 (0.08)
Js 0.003 (0.0) 3441 (50) 1.0 (0) 0.490 (0.007) 0.0 (0) 0.62 (0.04) 0.0 (0)
Visual Diversity Reachable 0.003 (0.0) 1107 (46) 1.0 (0) 0.488 (0.002) 0.13(0.17) 0.70(0.08) 0.06 (0.08)
Hashing (Wavelet) 0.002 (0.0) 8156 (54) 1.0 (0) 0.498 (0.017) 0.24 (0.19) 0.75(0.11) 0.06 (0.05)
Euclidean 0.002 (0.0) 794 (40) 1.0 (0) 0.495 (0.001) 0.0 (0) 0.62 (0.01) 0.0 (0)
Hashing (Perceptual) 0.003 (0.0) 3373 (62) 0.99 (0.02) 0.390 (0.087) 0.06 (0.08) 0.98 (0.02) 0.02 (0.02)
Window 0.002 (0.0) 11546 (172) 0.99 (0.01) 0.481 (0.008) 0.17 (0.18) 0.71(0.03) 0.07 (0.07)
Visual Diversity 0.002 (0.0) 739 (24) 1.0 (0) 0.493 (0.002) 0.07 (0.14) 0.66(0.07) 0.02 (0.04)
Hashing (Average) 0.002 (0.0) 1860 (24) 1.0 (0) 0.495 (0.001) 0.0 (0) 0.62 (0.01) 0.0 (0)
Hashing (Perceptual Simple) 0.003 (0.0) 2392 (55) 1.0 (0) 0.489 (0.014) 0.0 (0) 0.68 (0.10) 0.0 (0)

Table 11: Mario: Comparing a collection of different distance functions for the novelty and intra-novelty fitness functions.
Blue denotes the maximum and green denotes the minimum per column. This table shows ;i(c). The generation time is also
not dependent on the distance function - so even if the fitness takes a long time to compute, generation is still fast. The A*
diversity metric value for Visual Diversity is slightly different from that shown in the main text due to some stochasticity in
the behaviour of the A* agent.

Generation Time (s) Train Time (s) Solvability Compression Distance A* Diversity Leniency A* Difficulty
Distance Function

Hashing (Perceptual) 0.07 (0.01) 12929 (80) 0.92 (0.07) 0.35(0.23) 0.46 (0.07) 0.14(0.22) 0.20 (0.02)
Visual Diversity 0.08 (0.01) 11508 (279) 0.98 (0.02) 0.45 (0.10) 039(0.11) 0.17(0.23) 0.24 (0.06)
Hashing (Average) 0.07 (0.01) 12273 (325) 0.75 (0.18) 0.50 (0.06) 0.58 (0.10) 0.23(0.22) 0.33 (0.08)
Hashing (Wavelet) 0.07 (0.01) 15898 (305) 0.74 (0.21) 0.44 (0.14) 0.56 (0.11) 0.41(0.37) 0.39 (0.24)
Hashing (Perceptual Simple) 0.08 (0.01) 12753 (190) 0.81(0.23) 0.28(0.18) 0.48(0.13) 0.08(0.08) 0.36 (0.27)
Euclidean 0.07 (0.01) 11689 (648) 0.84 (0.28) 0.21 (0.18) 0.46 (0.08) 0.001(0.0) 0.39 (0.36)

Procedural Content Generation using Neuroevolution and Novelty Search for Diverse Video Game Levels GECCO ’22, July 9-13, 2022, Boston, MA, USA

Path

Euclidean

Hashing (Average) Hashing (Perceptual)

'_:I-I:l .

Hashing (Perceptual Simple)

Window

Window (V2) Visual Diversity Visual Diversity Reachable

- Bt .
-
"1 -
[L

Figure 6: Showcasing sample Maze levels for different novelty distance functions.

Michael Beukman, Christopher W Cleghorn, and Steven James

GECCO ’22, July 9-13, 2022, Boston, MA, USA

Euclidean

o
o)
©
© s
2
<
o
£
<
n
als
T

Hashing (Perceptual)

o}
=1
£
n
©
3
2
Q
]
2
o}
a
o
£
<
w
©
T

Hashing (Wavelet)

Visual Diversity

io.

Showcasing sample levels for different novelty distance functions for Mar

Figure 7

Procedural Content Generation using Neuroevolution and Novelty Search for Diverse Video Game Levels GECCO ’22, July 9-13, 2022, Boston, MA, USA

Total Fitness Novelty Solvability Intra-Novelty
o7 0.7 1.0 0.20 MMWW‘“"/VM“’/\’“—N\./M,\/
0.6
0.6 0.8
g 0.5 0.5 0.15
§ 0.4 0.4 0.6
g 010 W
:15) 0.3 0.3 0.4
Z
0.2 min 0.2 0.05
0.2
0.1 —— maXx 0.1
00 —— mean 0.0 0.0 0.00 e e e = e e e
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Generation Number Generation Number Generation Number Generation Number
(a) Mario
Total Fitness Novelty Solvability Intra-Novelty
o4 0s 1.0 0.10
W) . oo WMM/WMW
03 MWWWW
03 0.6 0.06

Fitness Value
o
o

04
02 004 WWMV\MW‘W/WMM'M
—— min '
01 002
v (e
A sk 0.0

AR AW MR A AARNA A AN ASNMAN
0.0 —— mean 000 W

e
=
o
~

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Generation Number Generation Number Generation Number Generation Number

(b) Maze

Figure 8: Fitness as the training (evolution) process progresses. Standard deviation over five seeds is shaded. For each plot we
show the fitness of the best individual (orange), the worst individual (blue), and the average over the entire population (green).
Note that the novelty fitness function is relative to the population, and that the intra-novelty fitness is similarly relative to
each individual. So, the same novelty fitness at two different generations may not be equivalent, as the populations differ
between these generations.

	Abstract
	1 Introduction
	2 Background
	2.1 Evolutionary Search
	2.2 Reinforcement Learning
	2.3 Related Work

	3 Generating Diverse Levels Quickly
	3.1 Generation Process
	3.2 Training Process
	3.3 Fitness Functions
	3.4 Summary

	4 Experiments
	4.1 Baselines
	4.2 Metrics
	4.3 Implementation details
	4.4 Experimental Setup

	5 Results
	5.1 Generation Time
	5.2 Solvability
	5.3 Diversity
	5.4 Difficulty
	5.5 Generalisability

	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References

