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Abstract
Parameterised actions in reinforcement learning
are composed of discrete actions with continuous
action-parameters. This provides a framework for
solving complex domains that require combining
high-level actions with flexible control. The re-
cent P-DQN algorithm extends deep Q-networks
to learn over such action spaces. However, it
treats all action-parameters as a single joint input
to the Q-network, invalidating its theoretical foun-
dations. We analyse the issues with this approach
and propose a novel method—multi-pass deep Q-
networks, or MP-DQN—to address them. We em-
pirically demonstrate that MP-DQN significantly
outperforms P-DQN and other previous algorithms
in terms of data efficiency and converged policy
performance on the Platform, Robot Soccer Goal,
and Half Field Offense domains.

1 Introduction
Reinforcement learning (RL) and deep RL in particular have
demonstrated remarkable success in solving tasks that require
either discrete actions, such as Atari [Mnih et al., 2015], or
continuous actions, such as robot control [Schulman et al.,
2015; Lillicrap et al., 2016]. Reinforcement learning with
parameterised actions [Masson et al., 2016] that combine dis-
crete actions with continuous action-parameters has recently
emerged as an additional setting of interest, allowing agents
to learn flexible behavior in tasks such as 2D robot soccer
[Hausknecht and Stone, 2016a; Hussein et al., 2018], sim-
ulated human-robot interaction [Khamassi et al., 2017], and
terrain-adaptive bipedal and quadrupedal locomotion [Peng
et al., 2016].

There are two main approaches to learning with param-
eterised actions: alternate between optimising the discrete
actions and continuous action-parameters separately [Mas-
son et al., 2016; Khamassi et al., 2017], or collapse the pa-
rameterised action space into a continuous one [Hausknecht
and Stone, 2016a]. Both of these approaches fail to fully
exploit the structure present in parameterised action prob-
lems. The former does not share information between the
action and action-parameter policies, while the latter does
not take into account which action-parameter is associated

with which action, or even which discrete action is executed
by the agent. More recently, Xiong et al. [2018] introduced
P-DQN, a method for learning behaviours directly in the pa-
rameterised action space. This leverages the distinct nature of
the action space and is the current state-of-the-art algorithm
on 2D robot soccer and King of Glory, a multiplayer online
battle arena game. However, the formulation of the approach
is flawed due to the dependence of the discrete action val-
ues on all action-parameters, not only those associated with
each action. In this paper, we show how the above issue leads
to suboptimal decision-making. We then introduce a novel
multi-pass method to separate action-parameters, and demon-
strate that the resulting algorithm—MP-DQN—outperforms
existing methods on the Platform, Robot Soccer Goal, and
Half Field Offense domains.

2 Background
Parameterised action spaces [Masson et al., 2016] consist of
a set of discrete actions,Ad = [K] = {k1, k2, ..., kK}, where
each k has a corresponding continuous action-parameter
xk ∈ Xk ⊆ Rmk with dimensionality mk. This can be writ-
ten as

A =
⋃
k∈[K]

{ak = (k, xk)|xk ∈ Xk}. (1)

We consider environments modelled as a Parameterised Ac-
tion Markov Decision Process (PAMDP) [Masson et al.,
2016]. For a PAMDP M = (S,A, P,R, γ): S is the
set of all states, A is the parameterised action space,
P (s′|s, k, xk) is the Markov state transition probability func-
tion, R(s, k, xk, s′) is the reward function, and γ ∈ [0, 1) is
the future reward discount factor. An action policy π : S →
A maps states to actions, typically with the aim of maximis-
ing Q-values Q(s, a), which give the expected discounted re-
turn of executing action a in state s and following the current
policy thereafter.

The Q-PAMDP algorithm [Masson et al., 2016] alternates
between learning a discrete action policy with fixed action-
parameters using Sarsa(λ) [Sutton and Barto, 1998] with the
Fourier basis [Konidaris et al., 2011] and optimising the con-
tinuous action-parameters using episodic Natural Actor Critic
(eNAC) [Peters and Schaal, 2008] while the discrete action
policy is kept fixed. Hausknecht and Stone [2016a] apply
artificial neural networks and the Deep Deterministic Policy
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Figure 1: The P-DQN network architecture [Xiong et al., 2018].
Note that the joint action-parameter vector x is fed into the Q-
network.

Gradients (DDPG) algorithm [Lillicrap et al., 2016] to pa-
rameterised action spaces by treating both the discrete actions
and their action-parameters as a joint continuous action vec-
tor. This can be seen as relaxing the parameterised action
space (Equation 1) into a continuous one:

A = {(f1:K , x1:K)|fk ∈ R, xk ∈ Xk∀k ∈ [K]}, (2)

where f1, f2, . . . , fK are continuous values in [−1, 1]. An
ε-greedy or softmax policy is then used to select discrete ac-
tions. However, not only does this fail to exploit the disjoint
nature of different parameterised actions, but optimising over
the joint action and action-parameter space can result in pre-
mature convergence to suboptimal policies, as occurred in ex-
periments by Masson et al. [2016]. We henceforth refer to the
algorithm used by Hausknecht and Stone as PA-DDPG.

2.1 Parameterised Deep Q-Networks
Unlike previous approaches, Xiong et al. [2018] introduce
a method that operates in the parameterised action space
directly by combining DQN and DDPG. Their P-DQN al-
gorithm achieves state-of-the-art performance using a Q-
network to approximate Q-values used for discrete action se-
lection, in addition to providing critic gradients for an actor
network that determines the continuous action-parameter val-
ues for all actions. By framing the problem as a PAMDP
directly, rather than alternating between discrete and contin-
uous action MDPs as with Q-PAMDP, or using a joint con-
tinuous action MDP as with PA-DDPG, P-DQN necessitates
a change to the Bellman equation to incorporate continuous
action-parameters:

Q(s, k, xk) = E
r,s′

[
r+γmax

k′
sup

xk′∈Xk′

Q(s′, k′, xk′)
∣∣∣s, k, xk].

(3)
To avoid the computationally intractable calculation of the
supremum over Xk, Xiong et al. [2018] state that when the Q
function is fixed, one can view argsupxk∈Xk

Q(s, k, xk) as a
function xQk : S → Xk for any state s ∈ S and k ∈ [K]. This

allows the Bellman equation to be rewritten as:

Q(s, k, xk) = E
r,s′

[
r + γmax

k′
Q(s′, k′, xQk′(s

′))
∣∣∣s, k, xk] .

(4)
P-DQN uses a deep neural network with parameters θQ to
represent Q(s, k, xk; θQ), and a second deterministic actor
network with parameters θx to represent the action-parameter
policy xk(s; θx) : S → Xk, an approximation of xQk (s).
With this formulation it is easy to apply the standard DQN
approach of minimising the mean-squared Bellman error to
update the Q-network using minibatches sampled from replay
memory D [Mnih et al., 2015], replacing a with (k, xk):

LQ(θQ) = E
(s,k,xk,r,s′)∼D

[1
2

(
y −Q(s, k, xk; θQ)

)2]
, (5)

where y = r + γmaxk′∈[K]Q(s′, k′, xk′(s
′; θx); θQ) is the

update target derived from Equation (4). Then, the loss for
the actor network in P-DQN is given by the negative sum of
Q-values:

Lx(θx) = E
s∼D

[
−

K∑
k=1

Q
(
s, k, xk(s; θx); θQ

)]
. (6)

Although this choice of loss function was not motivated by
Xiong et al. [2018], it resembles the deterministic policy
gradient loss used by PA-DDPG where a scalar critic value
is used over all action-parameters [Hausknecht and Stone,
2016a]. During updates, the estimated Q-values are back-
propagated through the critic to the actor, producing gradi-
ents indicating how the action-parameters should be updated
to increase the Q-values.

3 Problems with Joint Action-Parameters
The P-DQN architecture inputs the joint action-parameter
vector over all actions to the Q-network, as illustrated in Fig-
ure 1. This was pointed out by Xiong et al. [2018] but they
did not discuss it further. While this may seem like an in-
consequential implementation detail, it changes the formula-
tion of the Bellman equation used for parameterised actions
(Equation 4) since each Q-value is a function of the joint
action-parameter vector x = (x1, . . . , xK), rather than only
the action-parameter xk corresponding to the associated ac-
tion:

Q(s, k,x) = E
r,s′

[
r + γmax

k′
Q(s′, k′,xQ(s′))

∣∣∣s, k,x]. (7)

This in turn affects both the updates to the Q-values and
the action-parameters. Firstly, we consider the effect on
the action-parameter loss, specifically that each Q-value pro-
duces gradients for all action-parameters. Consider for
demonstration purposes the action-parameter loss (Equa-
tion 6) over a single sample with state s:

Lx(θx) = −
K∑
k=1

Q
(
s, k,x(s; θx); θQ

)
. (8)

The policy gradient is then given by:

∇θxx(s; θx) = −
K∑
k=1

∇xQ
(
s, k,x(s; θx); θQ

)
∇θxx(s; θx).

(9)
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(b) Predicted Q-values versus leap action-parameter. Vertical lines indicate the leap value
actually chosen. Ideally, the run and hop Q-values should remain constant since their action-
parameters are fixed.

Figure 2: Example of dependence on unrelated action-parameters affecting discrete action selection on the Platform domain. Three param-
eterised actions are available: run, hop, and leap. In a particular state (a), the optimal action is to run forward to be able to traverse a gap,
while choosing to leap would cause the agent to fall and die. The Q-value of the leap action should change with its action-parameter, but (b)
shows that varying the leap action-parameter while the others are kept fixed changes the Q-values predicted by P-DQN for all actions. Near
the start of training, this can alter the discrete policy such that a suboptimal action is chosen. After 80 000 episodes, P-DQN correctly learns
to choose the optimal action regardless of the unrelated leap action-parameter, although the other Q-values still vary.

Expanding the gradients with respect to the action-parameters
gives

∇xQ =
(
∂Q1

∂x1
+ ∂Q2

∂x1
+ · · ·+ ∂QK

∂x1
, · · · , ∂Q1

∂xK
+ · · ·+ ∂QK

∂xK

)
,

(10)
where Qk = Q(s, k,x(s; θx); θQ). Theoretically, if each Q-
value were a function of just xk as the P-DQN formulation in-
tended, then ∂Qk/∂xj = 0 ∀k, j ∈ [K], j 6= k and ∇xQ sim-
plifies to:

∇xQ =
(
∂Q1

∂x1
, ∂Q2

∂x2
, · · · , ∂QK

∂xK

)
. (11)

However this is not the case in P-DQN, so the gradients
with respect to other action-parameters ∂Qk/∂xj are not zero
in general. This is a problem because each Q-value is up-
dated only when its corresponding action is sampled, as per
Equation 5, and thus has no information on what effect other
action-parameters xj , j 6= k have on transitions or how they
should be updated to maximise the expected return. They
therefore produce what we term false gradients. This effect
may be mitigated by the summation over all Q-values in the
action-parameter loss, since the gradients from each Q-value
are summed and averaged over a minibatch.

The dependence of Q-values on all action-parameters also
negatively affects the discrete action policy. Specifically, up-
dating the continuous action-parameter policy of any action
perturbs the Q-values of all actions, not just the one associ-
ated with that action-parameter. This can lead to the relative
ordering of Q-values changing, which in turn can result in
suboptimal greedy action selection. We demonstrate a situa-
tion where this occurs on the Platform domain in Figure 2.

4 Multi-Pass Q-Networks
The naı̈ve solution to the problem of joint action-parameter
inputs in P-DQN would be to split the Q-network into sep-
arate networks for each discrete action. Then, one can input
only the state and relevant action-parameter xk to the network
corresponding to Qk. However, this drastically increases the

computational and space complexity of the algorithm due to
the duplication of network parameters for each action. Fur-
thermore, the loss of the shared feature representation be-
tween Q-values may be detrimental.

We therefore consider an alternative approach that does
not involve architectural changes to the network structure of
P-DQN. While separating the action-parameters in a single
forward pass of a single Q-network with fully connected lay-
ers is impossible, we can do so with multiple passes. We
perform a forward pass once per action k with the state
s and action-parameter vector xek as input, where ek is
the standard basis vector for dimension k. Thus xek =
(0, . . . , 0, xk, 0, . . . , 0) is the joint action-parameter vector
where each xj , j 6= k is set to zero. This causes all false
gradients to be zero, ∂Qk/∂xj = 0, and completely negates
the impact of the network weights for unassociated action-
parameters xj from the input layer, making Qk only depend
on xk. That is,

Q (s, k,xek) u Q (s, k, xk) . (12)
Both problems are therefore addressed without introducing
any additional neural network parameters. We refer to this as
the multi-pass Q-network method, or MP-DQN.

A total of K forward passes are required to predict all Q-
values instead of one. However, we can make use of the par-
allel minibatch processing capabilities of artificial neural net-
works, provided by libraries such as PyTorch and Tensorflow,
to perform this in a single parallel pass, or multi-pass. A
multi-pass with K actions is processed in the same manner
as a minibatch of size K:Q (s, · ,xe1; θQ)

...
Q (s, · ,xeK ; θQ)

 =

Q11 Q12 · · · Q1K

...
...

. . .
...

QK1 QK2 · · · QKK

 ,

(13)
where Qij is the Q-value for action j generated on the ith
pass where xi is non-zero. Only the diagonal elements Qii
are valid and used in the final output Qi ← Qii. This process
is illustrated in Figure 3.



Figure 3: Illustration of the multi-pass Q-network architecture.

Compared to separate Q-networks, our multi-pass tech-
nique introduces a relatively minor amount of overhead dur-
ing forward passes. Although minibatches for updates are
similarly duplicatedK times, backward passes to accumulate
gradients are not duplicated since only the diagonal elements
Qii are used in the loss function. The computational com-
plexity of this overhead scales linearly with the number of
actions and minibatch size during updates. Unlike separate
Q-networks (and even when a larger Q-network with more
hidden layers and neurons is used) if the number of actions
does not change, then the overhead of multi-passes would be
the same as with a smaller Q-network, provided the minibatch
is of a reasonable size and can be processed in parallel.

5 Experiments
We compare the original P-DQN algorithm with a sin-
gle Q-network against our proposed multi-pass Q-network
(MP-DQN), as well as against separate Q-networks
(SP-DQN). We also compare against Q-PAMDP and
PA-DDPG, the former state-of-the-art approaches on their re-
spective domains. We are unable to use King of Glory as a
benchmark domain as it is closed-source and proprietary.

Similar to Mnih et al. [2015] and Hausknecht and
Stone [2016a], we add target networks to P-DQN to compute
the update targets y for stability. Soft updates (Polyak aver-
aging) are used for the target networks. Adam [Kingma and
Ba, 2014] with β1 = 0.9, β2 = 0.999 is used to optimise
the neural network parameters for P-DQN and PA-DDPG.
Layer weights are initialised following the strategy of He et
al. [2015] with rectified linear unit (ReLU) activation func-
tions. We employ the inverting gradients approach to bound
action-parameters for both algorithms, as Hausknecht and
Stone [2016a] claim PA-DDPG is unable to learn without
it on Half Field Offense. Action-parameters are scaled to

[−1, 1], as we found this increased performance for all al-
gorithms.

We perform a hyperparameter grid search for Platform and
Robot Soccer Goal over: the network learning rates αQ, αx ∈
{10−1, 10−2, 10−3, 10−4, 10−5} s.t. αx ≤ αQ; Polyak av-
eraging factors τQ, τx ∈ {0.1, 0.01, 0.001} s.t. τx ≤ τQ;
minibatch size B ∈ {32, 64, 128}; and number of hidden
layers and neurons in {(256, 128), (128, 64), (256), (128)}.
The hidden layers are kept symmetric between the actor and
critic networks as in previous works. Each combination is
tested over 5 random runs for P-DQN and PA-DDPG sepa-
rately on each domain. The same hyperparameters are used
for P-DQN, SP-DQN and MP-DQN.

To keep the comparison with PA-DDPG fair, we do not
use dueling networks [Wang et al., 2016] nor asynchronous
parallel workers as Xiong et al. [2018] used for P-DQN. For
each algorithm and domain, we train 30 agents with unique
random seeds and evaluate them without exploration for an-
other 1000 episodes. Our experiments are implemented in
Python using PyTorch [Paszke et al., 2017] and OpenAI Gym
[Brockman et al., 2016], and run on the following hardware:
Intel Core i7-7700, 16GB DRAM, NVidia GTX 1060 GPU.
Complete source code is available online.1

5.1 Platform
The Platform domain [Masson et al., 2016] has three
actions—run, hop, and leap—each with a continuous action-
parameter to control horizontal displacement. The agent has
to hop over enemies and leap across gaps between platforms
to reach the goal state. The agent dies if it touches an enemy
or falls into a gap. A 9-dimensional state space gives the po-
sition and velocity of the agent and local enemy along with
features of the current platform such as length.

We train agents on this domain for 80 000 episodes, us-
ing the same hyperparameters for Q-PAMDP as Masson et
al. [2016], except we reduce the learning rate for eNAC
(αeNAC) to 0.1, and exploration noise variance (σ) to 0.0001,
to account for the scaled action-parameters. For P-DQN,
shallow networks with one hidden layer (128) were found
to perform best with αQ = 10−3, αx = 10−4, τQ = 0.1,
τx = 0.001, and B = 128. PA-DDPG uses two hidden lay-
ers (256, 128) with αQ = 10−3, αµ = 10−4, τQ = 0.01,
τµ = 0.01, and B = 32. A replay memory size of 10 000
samples is used for both algorithms, update gradients are
clipped at 10, and γ = 0.9.

We introduce a passthrough layer to the actor networks
of P-DQN and PA-DDPG to initialise their action-parameter
policies to the same linear combination of state variables that
Masson et al. [2016] use to initialise the Q-PAMDP pol-
icy. The weights of the passthrough layer are kept fixed to
avoid instability; this does not reduce the range of action-
parameters available as the output of the actor network com-
pensates before inverting gradients are applied. We use
an ε-greedy discrete action policy with additive Ornstein-
Uhlenbeck noise for action-parameter exploration, similar to
Lillicrap et al. [2016], which we found gives slightly better
performance than Gaussian noise.

1https://github.com/cycraig/MP-DQN

https://github.com/cycraig/MP-DQN


5.2 Robot Soccer Goal
The Robot Soccer Goal domain [Masson et al., 2016] is a
simplification of RoboCup 2D [Kitano et al., 1997] in which
an agent has to score a goal past a keeper that tries to in-
tercept the ball. The three parameterised actions—kick-to,
shoot-goal-left, and shoot-goal-right—are all related to kick-
ing the ball, which the agent automatically approaches be-
tween actions until close enough to kick again. The state
space consists of 14 continuous features describing the po-
sition, velocity, and orientation of the agent and keeper, and
the ball’s position and distance to the keeper and goal.

Training consisted of 100 000 episodes, using the same hy-
perparameters for Q-PAMDP as Masson et al. [2016] except
we set αeNAC = 0.06 and σ = 0.0001. P-DQN uses a single
hidden layer (256), with αQ = 10−3, αx = 10−5, τQ = 0.1,
τx = 0.001, and B = 128. Two hidden layers (128, 64)
are used for PA-DDPG, with αQ = 10−4, αµ = 10−5,
τQ = 0.01, τµ = 0.01, and B = 64. Both algorithms use
a replay memory size of 20 000, γ = 0.95, gradients clip-
ping at 1, and the same action-parameter policy initialisation
as Q-PAMDP with additive Ornstein-Uhlenbeck noise.

5.3 Half Field Offense
The third and final domain, Half Field Offense (HFO)
[Hausknecht and Stone, 2016a], is also the most complex.
It has 58 state features and three parameterised actions avail-
able: dash, turn, and kick. Unlike Robot Soccer Goal, the
agent must first learn to approach the ball and then kick it
into the goals, although there is no keeper in this task.

We use 30 000 episodes for training on HFO. This is
more than the 20 000 episodes (or roughly 3 million transi-
tions) used by Hausknecht and Stone [2016a] and Xiong et
al. [2018] so that ample opportunity is given for the algo-
rithms to converge in order to fairly evaluate the final pol-
icy performance. We use the same network structure as pre-
vious works with hidden layers of (256, 128, 64) neurons
for P-DQN and (1024, 512, 256, 128) neurons for PA-DDPG.
The leaky ReLU activation function with negative slope 0.01
is used on HFO because of these deeper networks. Xiong
et al. [2018] use 24 asynchronous parallel workers for n-
step returns on HFO. For fair comparison and due to the
lack of sufficient hardware, we instead use mixed n-step re-
turn targets [Hausknecht and Stone, 2016b] with a mixing
ratio of β = 0.25 for both P-DQN and PA-DDPG, as this
technique does not require multiple workers. The β value
was selected after a search over β ∈ {0, 0.25, 0.5, 0.75, 1}.
We otherwise use the same hyperparameters as Hausknecht
and Stone [2016b] apart from the network learning rates:
αQ = 10−3, αx = 10−5 for P-DQN and αQ = 10−3,
αµ = 10−3 for PA-DDPG. In the absence of an initial action-
parameter policy, we use the same ε-greedy with uniform ran-
dom action-parameter exploration strategy as the original au-
thors. In general we kept as many factors consistent between
the two algorithms as possible for a fair comparison.

We select 10 of the most relevant state features for
Q-PAMDP to avoid intractable Fourier basis calculations.
These features include: player orientation, stamina, proxim-
ity to ball, ball angle, ball-kickable, goal centre position, and
goal centre proximity. Even with this reduced selection, we
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Figure 4: Learning curves on Platform (a), Robot Soccer Goal (b),
and Half Field Offense (c). The running average scores—episodic
return for Platform and HFO, and goal scoring probability for Robot
Soccer Goal—are smoothed over 5000 episodes and include random
exploration, higher is better. Shaded areas represent standard error
of the running averages over the different agents. The oscillating
behaviour of Q-PAMDP on Platform is a result of re-exploration be-
tween the alternating optimisation steps. MP-DQN clearly performs
best overall.



Platform Robot Soccer Goal Half Field Offense
Return P(Goal) P(Goal) Avg. Steps to Goal

Q-PAMDP 0.789± 0.188 0.452± 0.093 0± 0 n/a
PA-DDPG 0.284± 0.061 0.006± 0.020 0.875± 0.182 95± 7
P-DQN 0.964± 0.068 0.701± 0.078 0.883± 0.085 111± 11
SP-DQN 0.941± 0.164 0.752± 0.131 0.718± 0.131 99± 7
MP-DQN 0.987± 0.039 0.789± 0.070 0.913± 0.070 99± 12

PA-DDPG2 - - 0.923± 0.073 112± 5
Async. P-DQN3 - - 0.989± 0.006 81± 3

Table 1: Mean evaluation scores over 30 random runs for each algorithm, averaged over 1000 episodes after training with no random
exploration. We include previously published results from Hausknecht and Stone [2016a] and Xiong et al. [2018] on HFO, although they
are not directly comparable with ours as we use a longer training period and have a much larger sample size of agents—30 versus 7 and 9
respectively—and asynchronous P-DQN uses 24 parallel workers to implement n-step returns rather than the mixing strategy we use.

found at most a Fourier basis of order 2 could be used. We use
an adaptive step-size [Dabney and Barto, 2012] for Sarsa(λ)
with an eNAC learning rate of 0.2. The Q-PAMDP agent ini-
tially learns with Sarsa(λ) for a period of 1000 episodes be-
fore alternating between κ = 50 eNAC updates of 25 rollouts
each, and 1000 episodes of discrete action re-exploration.

6 Results
The resulting learning curves of MP-DQN, SP-DQN,
P-DQN, PA-DDPG, and Q-PAMDP on the three parame-
terised action benchmark domains are shown in Figure 4, with
mean evaluation scores detailed in Table 1.

Our results show that MP-DQN learns significantly faster
than baseline P-DQN with joint action-parameter inputs and
achieves the highest mean evaluation scores across all three
domains. SP-DQN similarly shows better performance than
P-DQN on Platform and Robot Soccer Goal but to a slightly
lesser extent than MP-DQN. Notably, SP-DQN exhibits fast
initial learning on HFO but plateaus at a lower performance
level than P-DQN. This is likely due to the aforementioned
lack of a shared feature representation between the separate
Q-networks and the duplicate network parameters which re-
quire more updates to optimise.

In general, we observe that P-DQN and its variants outper-
form Q-PAMDP on Platform and Robot Soccer Goal, while
PA-DDPG consistently converges prematurely to suboptimal
policies. Wei et al. [2018] observe similar behaviour for
PA-DDPG on Platform. This highlights the problem with
updating the action and action-parameter policies simultane-
ously and was also observed when using eNAC for direct
policy search on Platform [Masson et al., 2016]. On HFO,
Q-PAMDP fails to learn to score any goals—likely due to
its reduced feature space and use of linear function approxi-
mation rather than neural networks. Unexpectedly, baseline
P-DQN appears to learn slower than PA-DDPG on HFO. This
suggests that the dueling networks and asynchronous parallel
workers used by Xiong et al. [2018] were major factors im-
proving P-DQN in their comparisons.

2Average over 7 runs [Hausknecht and Stone, 2016a].
3Average over 9 runs with 24 workers [Xiong et al., 2018].

7 Related Work

Many recent deep RL approaches follow the strategy of col-
lapsing the parameterised action space into a continuous
one. Hussein et al. [2018] present a deep imitation learning
approach for scoring goals on HFO using long-short-term-
memory networks with a joint action and action-parameter
policy. Agarwal [2018] introduces skills for multi-goal pa-
rameterised action space environments to achieve multiple
related goals; they demonstrate success on robotic manipula-
tion tasks by combining PA-DDPG with hindsight experience
replay and their skill library.

One can alternatively view parameterised actions as a 2-
level hierarchy: Klimek et al. [2017] use this approach to
learn a reach-and-grip task using a single network to rep-
resent a distribution over macro (discrete) actions and their
lower-level action-parameters. The work most relevant to this
paper is by Wei et al. [2018], who introduce a parameterised
action version of TRPO (PATRPO). They also take a hier-
archical approach but instead condition the action-parameter
policy on the discrete action chosen to avoid predicting all
action-parameters at once. While their preliminary results
show the method achieves good performance on Platform, we
omit comparison with PATRPO as it fails to learn to score
goals on HFO.

8 Conclusion

We identified a significant problem with the P-DQN algo-
rithm for parametrised action spaces: the dependence of its
Q-values on all action-parameters causes false gradients and
can lead to suboptimal action selection. We introduced a new
algorithm, MP-DQN, with separate action-parameter inputs
which demonstrated superior performance over P-DQN and
former state-of-the-art techniques Q-PAMDP and PA-DDPG.
We also found that PA-DDPG was unstable and converged
to suboptimal policies on some domains. Our results sug-
gest that future approaches should leverage the disjoint nature
of parameterised action spaces and avoid simultaneous opti-
misation of the policies for discrete actions and continuous
action-parameters.
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