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Abstract—In most countries throughout the world, heavy 

vehicle use on public roads are governed by prescriptive rules, 

typically by imposing stringent mass and dimension limits in an 

attempt to control vehicle safety. A recent alternative framework 

is a performance-based standards approach which specifies on-

road vehicle performance measures. One such standard is the 

low-speed swept path, which is a measure of road width required 

by a vehicle to complete a prescribed turning manoeuvre. This is 

typically determined by physical testing or detailed vehicle 

simulations, both of which are costly and time consuming 

processes. This paper presents a data driven, detailed model to 

predict the low-speed performance of an articulated vehicle, 

given only the vehicle geometry. The development of a 

lightweight tool to predict the swept path of an articulated heavy 

vehicle, without the need for detailed simulation or testing, is 

discussed. 

Keywords— Performance-based standards; Vehicle safety; 

Heavy vehicle performance; Regression; Support vector machines 

I.  INTRODUCTION 

In most countries throughout the world, heavy vehicle use 
on public roads is governed by prescriptive rules. In South 
Africa, the National Road Traffic Act (NRTA) specifies legal 
mass and dimension limits for all vehicles that operate on 
public roads. Two of the main constraints placed on heavy 
vehicles are overall length and mass limits, specified as a 
maximum of 22 m and 56 000 kg, respectively. These 
prescriptive limits are both easy to understand as well as 
enforce, however they do not inherently regulate vehicle safety 
as factors that influence the actual on-road performance of the 
vehicle are largely not governed. 

A recent alternative framework is the performance-based 
standards (PBS) approach which specifies actual on-road 
vehicle performance measures, as opposed to merely limiting 
what the vehicle looks like. The South African PBS pilot 
project has been operational since 2007 (CSIR Built 
Envoronment, July 2015) and currently boasts 160 so-called 
Smart Trucks operating on designated routes across the 
country. A typical 9-axle, 73 tonne, 26 m Smart Truck, known 
as a B-double (due to the roll-coupled trailers, the towing 
mechanism and the two trailers in addition to the tuck tractor) 
is shown in Figure 1. 

For a PBS Smart Truck to be granted a permit to operate on 
the road, a detailed vehicle safety assessment of the vehicle is 
required, considering all aspects of the vehicle: engine, 

suspension, springs, dampers, tyres, vehicle mass properties 
and payload mass properties. These safety assessments require 
input from the truck tractor original equipment manufacturer 
(OEM), the trailer OEM, as well as the vehicle operator, 
resulting in the PBS assessment being a costly and time 
consuming process due to many hours of costly physical and 
software testing. The vehicle safety assessment process is also 
highly iterative, with the OEMs creating a vehicle layout 
design, the assessment is then conducted and the results 
forwarded to the OEM to update the design if necessary. There 
are currently no simple, standalone tools available for the 
OEMs to calculate or predict the vehicle performance without 
conducting a formal assessment.  Therefore, a simple model 
that is able to predict vehicle performance given simple 
geometric vehicle properties will provide great insight for the 
OEMs as well as reduce the time and financial costs of the 
formal vehicle safety assessment. 

To date, vehicle safety assessments have been conducted 
using multi-body dynamic analysis software simulation 
packages, requiring a detailed and comprehensive 
understanding of the physics and dynamics of the entire vehicle 
system as well as its subsystems such as suspension and tyres. 
This paper presents a data driven approach to predict the low-
speed performance of articulated heavy vehicles, requiring only 
simple geometric vehicle properties and no knowledge of the 
mechanics of the system. The model presented in this paper 
utilises commonly used supervised machine learning methods.  

The remainder of this paper is structured as follows. In 
Section II we provide a detailed discussion of the performance 
standards against which these vehicles are measured. In 
Section III, a brief background to the learning techniques is 
given. The overall structure of the system is presented in 
Section IV, with Section V and Section VI covering the system 
performance and other related work respectively. Finally, we 
present a discussion of the data driven model and the 
conclusions of the research. 

 

Fig. 1. Representation of a PBS B-Double 



II. THE PERFORMANCE STANDARDS 

There are two main components of a PBS vehicle safety 

assessment, namely low-speed directional standards and high-

speed stability standards. Each standard is given a 

performance level, either pass/fail or level 1 to level 4, with 

level 1 having the most stringent performance criteria. This 

paper focuses on the five low-speed standards, which, for a 

specific vehicle, are measured from a prescribed 12.5 m 

radius, 90° degree turn. The five low-speed standards are 

defined as (NTC, 2008): 

 
Low-Speed Swept Path (LSSP) is the amount of road 

width required by the vehicle when executing the prescribed 
low-speed 90° turn, as the trailing units track inside of the path 
followed by the hauling unit. LSSP is given a performance 
rating of level 1, level 2, level 3, level 4 or fail. 

Frontal Swing (FS) is the amount that the front outside 
corner of the hauling unit swings beyond of the exit tangent of 
the widest section of the vehicle at the completion of the low-
speed 90° turn. FS has a pass/fail performance level. 

Difference of Maxima (DoM) and Maximum of 
Difference (MoD) pertain to the amount by which the front 
outside corner of a semitrailer swings out beyond that of the 
path of the hauling unit or preceding semitrailer. DoM and 
MoD both have pass/fail performance levels.  

Tail Swing (TS) is the amount which the rear outside 
corner of a vehicle unit swings out at the commencement of the 
prescribed low-speed 90° turn. This may cause collisions with 
objects in adjacent lanes or on the roadside. TS is given a 
performance rating of level 1, level 2, level 4 or fail. 

Figure 2 shows the critical points of a vehicle during the 
prescribed turn for a) LSSP and b) MoD and DoM. 

III. BACKGROUND TO LEARNING TECHNIQUES 

The model presented in this paper uses commonly 
implemented machine learning techniques and methods to 
predict the low-speed performance of heavy vehicles.  

Due to the availability of vehicle geometrical data as well 
as ground truth outputs, supervised learning techniques utilised 
for this study. The requirement for an appropriate technique 
was to accurately map the vehicle geometric parameters to 
low-speed performance.  

The first supervised machine earning technique used in the 
model is a multilayer perceptron (MLP). MLP networks have 
been in use for many years, but have made a recent resurgence 
in deep learning, as evidenced by (Raiko, Valpola, & LeCun., 
2012). They note that this rise has followed the invention of 
unsupervised pretraining, however there has also been a 
modern trend to utilise tradational back-propagation as this 
method is abable of giving sufficent accuracy.    

The second supervised machine learning technique used in 
the prediction model is support-vector machines (SVM). SVMs 
have been used for a wide variety of learning problem for 
classification, regression as well as other learning tasks. The 
LIBSVM library has been used extensively and is widely cited 
in the literature (Chang & Lin, 2011). SVMs represent a 
powerful technique for general non-linear classification (Meyer 
& Wien, 2014), and are used for such in this study. 

IV. SYSTEM ARCHITECTURE  

The mechanics of articulated vehicles executing turning 
manoeuvres are such that the geometric input parameters for 
the low-speed model are not uncoupled, and cannot be 
considered to be independent  (Winkler & Aurell, 1998). 
Winkler and Aurell also show that the mechanics of articulated 
vehicle turning are non-linear and non-elementary. 

In the next section, a model comparing the geometric inputs 
directly to the overall vehicle level is presented, however this 
overly naïve model is not able to capture any of the 
dependencies of these variables, nor is it able to give any 
insight into the relative performance of the vehicle in each 
standard. In order to capture the input parameter dependencies, 
as well as the system non-linearity, a complex data driven 
model was created to predict the level of each low-speed 
standard. 

In practice, the exact LSSP value of an articulated vehicle 
directly affects its ability to navigate a given intersection. The 
magnitude of the LSSP provides the OEM with a greater 
insight into the vehicle performance than that of the LSSP 
level, and as such, a regression model was selected for this 
standard. The output of the numeric regression is fed through a 
thresholding operation to give the LSSP level.  

The remainder of the standards relate more to overall 
vehicle safety whilst the vehicle navigates the turn than they do 
to its ability to navigate the turn. Thus, for these standards, the 
level is of greater interest than the magnitude of the output, and 
as such, classification models were implemented to directly 
output the level. The model for each standard is presented as a 
system with the output from each sub-system combined in a 
final layer due to prior knowledge of the definition of each 

 

 
Fig. 2.   a) LSSP, b) FS, MoD and DoM 
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standard, as such, it would be redundant to learn these. This 
represented schematically in Figure 3.  

A diagram showing the detailed system architecture, 
illustrating the relationship of all the low-speed standard 
models to the overall output level, O, is given in Figure 4. 

In addition to capturing the nuances of each standard, the 
system presented here provides greater transparency with the 
level of each standard, which will aid the justification to the 
external legislative bodies for implementing such a system. 
This system will also provide additional benefits to the OEMs 
during the design of articulated vehicles, as mentioned above. 

A simplified system model was also created, relating the 22 
input parameters directly to the overall low-speed level.  This 
simple model gives insight into the overall performance of the 
vehicle combination, but is not able to give any insight into the 
relative performance across each standard. This simple model 
will provide a useful check to OEMs to confirm whether or not 
their design meets the required level. The detailed model 
however, will be a more valuable tool, as it can be integrated 
into the design process to not only confirm a design’s 
performance, but also to optimise vehicle designs. 

The complex system presented here will also form the basis 
of a model that also includes the high-speed standards. This 
modular model easily allows for the addition of individual 
standards, ensuring that the detailed insights into the 
performance for each standard are retained, without the need to 
recreate the entire model. 

V. DATA ANALYSIS 

A set of 10 000 simulations, with randomly selected vehicle 
geometrical parameters for a B-double were run to obtain the 
ground truth values for all five low-speed standards. In total, 22 
parameters were selected as inputs, seven for each of the first 
two units and eight for last unit. These data were then used to 
create a regression model for LSSP and classification models 
for each remaining of the four standards. These models were 
then combined into a single system, given above, to predict the 
level for each standard, as well as the overall low-speed level 
for the combination. The regression and classification models 
were created in Weka 3.6, using default parameters, unless 
otherwise stated.  

The MLP’s used in this study all utilised sigmoid activation 
functions. The number of hidden units and nodes were selected 
according to the combination that yielded the greatest accuracy, 
starting with a single hidden layer and the number of nodes 
equal to half the sum of the number of inputs and outputs.  

The regression model for LSSP utilised a MLP comprising 
two hidden layers, with six and three nodes respectively. The 
hierarchical structure of the simple MLP was capable of 
capturing the complexity of the LSSP mechanics without being 
overly complex itself. The number of basis functions was 
selected in advance, ensuring the simplicity of the model, as 
well as ensuring a compact model that is able to quickly 
process new data (Bishop, 2006). The classification models for 
FS, DoM and MoD also utilised MLP for the same reasons. It 
was found that for these standards, the MLPs were able to 
achieve good accuracy for classification, whilst limiting the 
number of false positives, which are highly undesirable. 

 The MLP classification of the FS standard comprised three 
hidden layers with twelve, ten and five nodes, respectively. The 
MLP for DoM contained only a single hidden layer with three 
nodes, while that of the MoD standard comprised four hidden 
layers with 21, fifteen, ten and five nodes respectively. 

The classification model for TS utilised SVM for the four 
class classification. Multiclass SVM models have undergone a 
number of development iterations to improve their capability of 
fundamentally being a two-class classifier (Bishop, 2006). The 
LibSVM library in Weka, with a radial basis function (RBF) 
kernel, was selected to capture any non-linearity in the TS data  
(Witten & Frank, 2005). A cross-validation and grid-search, 
was conducted to select the two RBF kernel parameters, (C, γ). 
The parameters which gave the greatest accuracy were a 
gamma of 0.017 and a cost of 48. 

The accuracy and performance of all the low-speed models 
are given in Table 1, with the confusion matrices for the four 
classification models given in Table 2 to Table 5. 

 

Fig. 4.   System Diagram 

Fig. 2.  

Fig. 3.   System Block Diagram 



 

 

 
 

 

 
 

The performance of the simple overall model relating inputs to 

overall vehicle level is given in Table 6. 

 

VI. RELATED WORK 

The majority of simplified models for predicting PBS 
performance of heavy vehicles comprise simplified models of 
the system mechanics and physics, notably the static rollover 
threshold (SRT) calculator, that has been written into 
legislation in New Zealand  (de Pont, Baas, Hutchinson, & 
Kalasih, 2002). This tool takes simplified overall vehicle 
parameters as inputs and calculates SRT from first principles. 

A similar first principle approach is the complex vehicle 
model for turning that uses the physics and mechanics of the 
vehicle to calculate the trajectory of a vehicle in a turn  
(Winkler & Aurell, 1998). This model utilises a comprehensive 
system of equations to model the physics of the vehicle and the 
manoeuvre. It gives highly accurate results, yet requires a full 
understanding of the physics of the system in order to use and 
successfully implement.  

Dessein et al. presented a simplified, third order 
polynomial, regression model to estimate LSSP  (Dessein, 
Kienhofer, & Nordengen, 2012). This model gives good 
accuracy for a generic articulated vehicle, but is unable to give 
any insight into the other four low-speed PBS standards.  

De Pont presented a pro-active approach to ensure LSSP 
compliance through a so called pro-forma approach  (De Pont, 
2010). The pro-forma design specifies limits on the geometric 
properties of an articulated heavy vehicle such that the required 
LSSP level is met. Benade et al. expanded on this approach 
with a pro-forma design to additionally include the FS and TS 
standards  (Benade, Berman, Kienhofer, & Mordengen, 2015). 
This adapted pro-forma design is limited by the allowed range 
for each input parameter and thus is only applicable to a narrow 
spectrum of vehicles. 

VII. DISCUSSION AND CONCLUSION  

The existing tools that are used to calculate the low-speed 
performance of articulated heavy vehicle have been shown to 
give good accuracy, however require a detailed understanding 
of vehicle dynamics to successfully implement. The 
development of pro-forma designs has sought to introduce a 
data driven approach to vehicle design, but to date have been 
only partially successful, and have been limited to stringent 
constraints for a specific vehicle combination. 

The data driven model presented in this paper provides an 
accurate tool that is naïve towards the physics of the system, 
yet is able to capture the nuances of the physics. The system 
gives insights into the individual low-speed standards as well 
as overall vehicle performance based on basic geometric 
vehicle properties.  

This model is not limited by vehicle layout and is able to 
generalise to any B-double combination. Current work includes 
an extension of the low-speed prediction model to include a 
wider variety of vehicle configurations, with differencing 
numbers of trailers to improve the applicability of this model to 
heavy vehicle industry in South Africa. Future work will 
include further expanding the data driven model to predict 
vehicle performance in the high-speed stability standards.  

 

TABLE II.  TS CONFUSION MATRIX 

Level 1 Level 2 Level 4 Fail 

 
9043 26 41 1 Level 1 

65 6 45 6 Level 2 

56 22 158 22 Level 4 

3 3 47 3 Fail 

 

TABLE III.  FS CONFUSION MATRIX 

Level 1 Fail 

 
5968 173 Level 1 

198 2330 Fail 

 

Table ??: FS Confusion Matrix 

 
TABLE IV.  DOM CONFUSION MATRIX 

Level 1 Fail 

 
1366 259 Level 1 

257 3944 Fail 

 

Table ??: DoM Confusion Matrix 

 TABLE V.  MOD CONFUSION MATRIX 

Level 1 Fail 

 
2125 80 Level 1 

48 5651 Fail 

 

Table ??: MoD Confusion Matrix 

 

TABLE I.  PERFORMANCE OF LOW-SPEED PREDICTION MODELS 

Std Alg 
Corr. 

Coeff. 

Relative 

Absolute 

Error 

(%) 

Relative 

Squared 

Error 

(%) 

Classified 

Correctly     

(%) 

False 

Positive     

(%) 

LSSP MLPr 0.9995 2.8615 3.0176     

TS SVMc       96.31   

FS MLPc       95.72 7.83 

DoM MLPc       91.14 6.12 

MoD MLPc       98.3 0.84 

Combined     95.36 3.29 

Direct MLPc    94.67 1.76 

*r – regression, c – classification  

 

Table flim flam: Performance of low-speed prediction models 

TABLE VI.  SIMPLE OVERALL LEVEL CONFUSION MATRIX 

Level 1 Level 2 Level 3 Level 4 Fail 

 
1055 6 0 0 184 Level 1 

11 463 6 1 76 Level 2 

0 5 341 0 34 Level 3 

17 0 2 5 55 Level 4 

87 33 16 0 7603 Fail 
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