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Abstract

This paper investigates the application of supervised learn-
ing for the purpose of match outcome prediction from Dota
2 in game chat logs. We analyze a dataset of 50,000 ranked
matches, evaluating the predictive power of communication
data alone and in combination with game events. Using
LSTM and DistilBERT architectures, alongside a logistic re-
gression baseline, we demonstrate that chat logs alone en-
able accurate prediction (up to 81.4% accuracy), while in-
corporating game events substantially improves performance
(up to 98.4% accuracy). Our temporal analysis reveals that
prediction reliability increases significantly during the mid-
game phase (15-30 minutes), with models exhibiting differ-
ent strengths - LSTM achieves higher accuracy while Distil-
BERT demonstrates greater prediction confidence. This study
contributes to esports analytics by establishing chat logs as a
viable predictive data source.

Introduction
Esports popularity (Candela and Jakee 2018) has driven in-
creased demand for sophisticated analytics tools that can
empower audiences, teams and coaches with data-driven in-
sights (Gilles 2023; Smerdov et al. 2023). In Dota 21, a
highly competitive multiplayer game, match outcome pre-
diction models are particularly valuable for deriving strate-
gic insights (Du et al. 2021). However, current approaches
that rely on in-game statistics face a significant challenge:
frequent game updates (Zhong and Xu 2022) can quickly
render these models obsolete as game mechanics and meta-
strategies evolve. We propose a novel approach focusing
on in-game chat logs, which offer a more robust predic-
tion basis as communication patterns remain relatively sta-
ble across game updates. These logs provide unique insights
into team dynamics, strategic decision-making, and coor-
dination patterns that may indicate match outcomes. Addi-
tionally, they capture real-time reactions to game events and
team sentiments, offering a window into the psychological
aspects of play.

Existing research has explored various avenues for match
prediction, including hero draft analysis (Summerville,
Cook, and Steenhuisen 2016), player statistics (Aryanata,
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1https://www.dota2.com/home

Rahadi, and Sudarmojo 2017), and live game state predic-
tion (Hodge et al. 2021). While some studies have incorpo-
rated chat data, they primarily focus on toxicity analysis (Fe-
salbon et al. 2024) or treat match prediction as a secondary
objective (Jumabayev 2022).

Our work specifically investigates chat logs as the pri-
mary predictor of match outcomes, complemented by ob-
jective game events to enhance prediction accuracy. This pa-
per demonstrates that chat logs alone can effectively predict
match outcomes, achieving accuracy comparable to tradi-
tional in-game statistics-based approaches while being more
resilient to game updates. We further show how combining
chat analysis with key game events can significantly enhance
prediction accuracy. For reproducibility the code and dataset
is freely available 2.

Background
Dota 2 is a highly competitive esports title characterized by
a blend of complex strategy, coordinated teamwork, and in-
dividual player skill (Berner et al. 2019). Matches unfold
on a geographically balanced map divided into two distinct
territories (radiant3 side and dire4 side), each serving as the
home base for a team of five heroes. The ultimate objective
for each team is the complete destruction of the opposing
team’s Ancient5, a central structure representing their final
line of defense. This heavily fortified building is safeguarded
by a series of defensive structures called turrets. Players as-
sume the role of powerful heroes with unique skill sets, en-
gaging in team fights, securing critical map objectives such
as Roshan6 and runes7 that provide power-ups.

One of the unique features of Dota 2 is the in-game chat
system, which allows players to communicate with their
teammates and opponents during a match. This chat system
serves as a viable source of data for match prediction, as it
provides insights into player and team sentiments. Further-
more, Dota 2 records complimentary in-game event logs that

2Code available at: https://github.com/Crossofglory/Dota-2-
Match-Outcomes

3https://dota2.fandom.com/wiki/Radiant
4https://dota2.fandom.com/wiki/Dire
5https://dota2.fandom.com/wiki/Ancient (Building)
6https://liquipedia.net/dota2/Roshan
7https://liquipedia.net/dota2/Runes



Figure 1: Dota 2 match screenshot showing the Dire team taking down Roshan, a powerful neutral monster that grants significant
rewards upon defeat. The in-game chat log displays various messages from players. Additionally, the objective log on the left
can be seen.

detail key events like champion kills, turret destructions, and
Roshan kills. This data can be leveraged to enrich the chat
logs.

Word2Vec and Continuous Bag of Words (CBOW)
Word2Vec is a group of models used for generating word
embeddings, which are dense vector representations of
words in a continuous vector space. The CBOW architec-
ture, one of the main models within the Word2Vec frame-
work, predicts a target word based on its surrounding con-
text words. By training on large text corpora, CBOW learns
to represent words as dense vectors, with semantically simi-
lar words mapped to geometrically close vectors in the em-
bedding space.

The input layer consists of one-hot encoded vectors rep-
resenting the context words {x1, x2, ..., xV }, where V is
the vocabulary size. These inputs are projected into an N -
dimensional hidden layer through a weight matrix W (V ×
N) = {wki}, where wki is the embedding of the corre-
sponding input word.

Given an input context word xk = 1 and all other xk′ = 0
for k′ ̸= k, the hidden layer activations h are calculated as:

h = WTx = WT
(k,:) = vTwI

For the output, a new weight matrix W ′ = {w′
ij} of size

N × V is used to compute a score uj for each word:

uj = v′wj

T
h

These scores are then passed through a softmax function
to obtain the posterior probability distribution over words:

p(wj |wI) = yj =
exp(uj)∑
j′ exp(uj′)

Figure 2: Schematic diagram of the Long Short-Term Mem-
ory (LSTM) architecture, which consists of input, output,
and forget gates that regulate the flow of information into
and out of the cell state. With the cell state serving as the
memory of the LSTM cell(Zhou 2022).

While effective for learning word embeddings that cap-
ture semantic similarities, CBOW’s bag-of-words approach
may struggle for long sequential text analysis like chat logs,
where word order is crucial for understanding context and
meaning.

LSTMs
LSTMs, proposed by Hochreiter and Schmidhuber (1997),
are a particular type of RNNs designed to facilitate gra-
dient flow. As shown in Figure 2, an LSTM has a gat-



ing mechanism and an internal cell state (ct) that acts like
a conveyor belt, transmitting relevant information through
the entire sequence. At each time step t, the forget gate
(ft) determines what information from the previous cell
state (ct−1) should be retained or forgotten, using: ft =
σ(Wf [at−1, xt] + bf ). The input gate (it) and the tanh layer
decide what new information from the current input (xt) and
previous hidden state (at−1) are added, using the equations:
it = σ(Wi[at−1, xt]+bi) and ct̃ = tanh(Wc[at−1, xt]+bc).
The new state (ct) is given by: ct = ft⊙ct−1+it⊙ct̃. Lastly,
gate (ot) controls what parts of the current cell state (ct)
should flow into the output hidden state (at), via the equa-
tions: ot = σ(Wo[at−1, xt] + bo) and at = ot ⊙ tanh(ct).

This gating mechanism enables LSTMs to selectively re-
tain crucial details over long sequences, making them well-
suited for analyzing contextual data like conversations in
chat logs, where understanding the order and context of mes-
sages is essential.

Transformer-based Models
The Transformer model introduced a novel architecture
that relies entirely on attention mechanisms to draw global
dependencies between the input and output sequences
(Vaswani et al. 2017). The core attention function is given
by:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

Where Q, V , and K are the queries, values, and keys de-
rived from the input sequence. As seen in Figure 3, the
model’s major components are an encoder and a decoder,
each containing a multi-head self-attention mechanism fol-
lowed by a position-wise connected feed-forward network.
The multi-head attention mechanism enables the model to
jointly attend to information from different representational
subspaces.

BERT (Bidirectional Encoder Representations from
Transformers) (Devlin et al. 2019) is a pre-trained language
model that makes use of the transformer architecture and can
be fine-tuned on specific tasks by adding a task-specific out-
put layer and fine-tuning the model on labelled data. For our
analysis, DistilBERT (Sanh et al. 2020), a distilled version
of BERT, will be used. These models can effectively capture
the context and meaning of chat messages, even when the
relevant information is spread across different parts of the
sequence, making them a promising choice for match out-
come prediction based on chat logs.

Related Work
Previous research on predicting match outcomes in Dota
2 has employed various machine learning techniques and
in-game data sources. Uddin et al. (2022) used a Bidirec-
tional LSTM neural network with match statistics to predict
winning teams, achieving an accuracy of 91.9% and an F1
score of 0.914. Sándor and Wan (2023) developed a hybrid
deep learning and NLP model for match outcome predic-
tion during the hero drafting phase, combining a CBOW
model for hero embeddings with an improved LSTM ar-
chitecture, achieving a prediction accuracy of 73%. Zhang

Figure 3: The Transformer architecture consists of an en-
coder and decoder, each composed of multiple layers of
multi-head attention and feed-forward neural networks. Po-
sitional encodings are added to the input and output em-
beddings to incorporate position information (Vaswani et al.
2017).

et al. (2020) proposed an improved Bi-LSTM model for rec-
ommending the 5th hero in a Dota 2 line-up, incorporating
CBOW-generated hero embeddings and achieving an aver-
age line-up accuracy rate of 52%. Traas (2017) examined
the impact of toxic behaviour on match outcomes, finding
that teams displaying toxic behaviour had reduced chances
of winning. Lastly, Bello, Ng, and Leung (2023) proposed
a framework combining the BERT language model with
deep learning classifiers for sentiment analysis of short texts,
achieving state-of-the-art performance with accuracy scores
greater than 92% and F1-scores higher than 0.94.

Separate literature analyzes textual communication in on-
line games, largely to detect toxicity or understand coordi-
nation. In League of Legends, Blackburn and Kwak (2014)
trained classifiers over millions of reports and chat snippets
to predict Tribunal decisions, establishing that chat-derived
features carry strong signal about negative behavior. Sub-
sequent work has pushed toward real-time moderation with
contextual models (e.g., Ubisoft’s ToxBuster), showing that
chat history and speaker segmentation materially improve



detection latency and accuracy (Yang, Grenan-Godbout, and
Rabbany 2023; Yang et al. 2023). For Dota 2 specifically,
Lim, Vungthong, and Trakulkasemsuk (2024) provides an
analysis of all chat data, highlighting its heavy contextu-
alization and the prevalence of trash talk vs toxicity. Lim,
Vungthong, and Trakulkasemsuk (2024) explicitly calls for
future multimodal analyses that pair utterances with in-game
events—precisely the junction exploited by live prediction
tasks.

Although player chat has seen limited use in outcome
modeling, several works show that spectator chat streams
align temporally with in-game events and momentum in es-
ports broadcasts (The International8 for Dota 2; LPL9 for
LoL), implying that text dynamics can be tightly coupled to
game state (Bulygin et al. 2018; Jiang et al. 2024). These
findings motivate treating chat as a time series co-evolving
with gameplay.

Research Design
Our research employs a systematic approach to investigate
the predictive power of Dota 2 in-game communications.
The methodology, illustrated in Figure 4, consists of three
main phases. First, we process a dataset of 50,000 ranked
matches, where chat logs undergo cleaning and standardiza-
tion to remove noise and ensure consistency. Messages are
chronologically ordered and attributed to teams, while non-
English content and irrelevant information are filtered out.
In the second phase, these processed logs are transformed
into tokens or embeddings. We then evaluate three distinct
architectures: logistic regression as a baseline, LSTM net-
work, and DistilBERT. To assess the potential benefits of
additional game state information, we concatenate our ini-
tial chat-based analysis with objective event data, including
tower destructions, hero kills, and other key game events.
This dual-dataset approach allows us to perform a system-
atic comparison of prediction capabilities with and with-
out game state context, while maintaining consistent eval-
uation metrics and models configurations. In our dataset, in-
game events are logged in textual form (for example, entries
such as “Dire tower has been destroyed”, “Radiant picks up
Aegis”). Because these events are represented as structured
text, we process them with the same embedding pipeline as
chat messages. This allows us to learn a shared semantic
space where event-related signals and chat-based commu-
nication can be jointly modelled.

Data Preprocessing Pipeline
The dataset spans 50,000 Dota 2 ranked ladder matches ini-
tially obtained through the OpenDota API 10. Each match
record contains several key attributes including match iden-
tifiers, player accounts, team-specific chat logs, and match
outcomes (represented by the ‘radiant win’ boolean flag).
To address our research questions, we developed two distinct
datasets: a chat-only dataset to evaluate the predictive power

8https://liquipedia.net/dota2/The International
9https://liquipedia.net/leagueoflegends/LoL Pro League

10https://docs.opendota.com/

of communication alone, and a combined dataset incorporat-
ing both chat and objective events. Both datasets underwent
preprocessing to ensure data quality and consistency.

Chat Log Processing The chat log preprocessing
pipeline, fundamental to both datasets, includes:

• Team Attribution: Messages were tagged with team af-
filiations (Radiant/Dire) based on player slots, with slots
0-4 corresponding to Radiant and 5-9 to Dire.

• Message Standardization: Chat entries were reformat-
ted to a consistent structure: “Team: message content”.

• Data Cleaning: Null entries and messages containing
URLs were removed to ensure data quality. Non-textual
content and special characters were standardized or re-
moved as appropriate. The dataset did not contain emo-
jis or graphical emoticons. Non-standard textual expres-
sions commonly used by players, such as “5555” or
“322,” were retained during preprocessing, as these can
carry contextual meaning within gameplay communica-
tion. However, purely numeric strings of this form oc-
curred infrequently and thus were not a dominant feature
of the dataset.

• Temporal Ordering: Messages were chronologically ar-
ranged within each match to preserve the sequential na-
ture of in-game communication.

The models used (e.g., Word2Vec, LSTM, DistilBERT)
are all pretrained and fine-tuned within the English lan-
guage context. Retaining multilingual data without appro-
priate multilingual embeddings or preprocessing would have
introduced inconsistencies in both tokenization and seman-
tic interpretation, potentially degrading model performance
and interpretability. The final dataset comprises a large num-
ber of matches (50,000), and our preprocessing does not
favour one team over another based on language use. While
non-English content was excluded, this exclusion was ap-
plied uniformly across both Radiant and Dire teams. Thus,
communication asymmetry (e.g., only one team being si-
lenced) is unlikely to be a dominant effect in our current
results.

Objectives Data Processing For our second dataset, we
processed game objectives data to complement the chat logs:

• Event Standardization: Objective events were format-
ted with a consistent structure: “[EVENT] Team Event-
Type [END EVENT]”

• Event Selection: Key events including tower destruc-
tions, Roshan kills, Aegis pickups, and first blood were
identified and extracted.

• Temporal Alignment: Events were temporally aligned
with chat messages to maintain chronological consis-
tency within each match.

Final Dataset Structures
Our preprocessing pipeline produced two distinct datasets
for analysis:
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Figure 4: Methodology overview showing the complete pipeline: Input data consists of Dota 2 player chat logs and optional
game event logs (also natural language) which undergo preprocessing to standardize format and clean text. The processed text
is transformed into embeddings. These embeddings are then fed into three different model architectures - Logistic Regression,
LSTM, and DistilBERT - each producing win/loss predictions. The dotted line from event logs indicates this data source is used
only for the combined dataset experiments.

Chat-Only Dataset The first dataset contains only pro-
cessed chat logs ,focusing exclusively on the relationship be-
tween team communication and match outcomes, including:

• Match identifier
• Chronologically ordered team-attributed chat messages
• Match outcome (radiant win)

Combined Chat and Objectives Dataset The second
dataset integrates both chat logs and objective events, con-
taining:

• Match identifier
• Formatted messages and events
• Timestamp
• Entry type (chat/event)
• Match outcome (radiant win)

Models and Training
This section details the three model architectures employed
in our study: Logistic Regression as a baseline approach,
Long Short-Term Memory (LSTM) networks for sequence
modelling, and DistilBERT for contextual language under-
standing. Each model was trained and evaluated twice: first
using only chat data to assess the predictive power of com-
munication alone, and then using the combined chat-and-
objectives dataset to evaluate potential improvements from
incorporating game events.

Logistic Regression
Our baseline model employs logistic regression with
Word2Vec embeddings for text representation. The
Word2Vec model was pre-trained on the Google News

dataset and subsequently fine-tuned on our Dota 2 dataset
to better capture domain-specific language patterns. We
process each match’s chat log by converting messages into
fixed-length vectors using these embeddings, then averaging
them to create a single feature vector per match. The model
uses L2 regularization (C=0.01) and is optimized using the
LBFGS solver with a maximum of 250 iterations.

LSTM Architecture
To capture the sequential nature of in-game communication,
we implemented an LSTM-based architecture. The model
begins with an embedding layer of dimension 100, fol-
lowed by an LSTM layer with 64 hidden units and recurrent
dropout of 0.2. The LSTM’s output passes through a global
max pooling layer to create a fixed-size representation. This
is followed by two dense layers (32 and 16 units respec-
tively) with ReLU activation and L2 regularization, sepa-
rated by dropout layers (0.5 and 0.3) to prevent over-fitting.
The final layer uses sigmoid activation for binary classifi-
cation. The network was trained using the Adam optimizer
with a learning rate of 0.0005 and binary cross-entropy loss.
We implemented early stopping with a patience of 30 epochs
and learning rate reduction on plateau to prevent over-fitting.
Input sequences were padded or truncated to a maximum
length of 512 tokens, with a vocabulary size of 10,000 most
frequent words.

DistilBERT Model
We leveraged the DistilBERT architecture, a distilled ver-
sion of BERT that maintains most of its performance while
being lighter and faster. The model was initialized with pre-
trained weights from ‘DistilBERT-base-uncased’ and fine-
tuned for our binary classification task. We maintained the



Model Dataset Accuracy F1-Score ROC-AUC

DistilBERT Chat-only 0.814 0.815 0.899
Combined 0.971 0.971 0.997

LSTM Chat-only 0.799 0.804 0.881
Combined 0.984 0.984 0.999

LogReg Chat-only 0.564 0.606 0.599
Combined 0.818 0.827 0.907

Table 1: Model Performance Comparison

model’s original architecture while adding a task-specific
classification head. The training process used a batch size
of 16 and a learning rate of 2e−5 with the Adam opti-
mizer. Weight decay was set to 0.01 to prevent over-fitting.
The maximum sequence length was set to 512 tokens, with
longer sequences truncated and shorter ones padded. Train-
ing continued for 30 epochs with early stopping based on
validation loss. DistilBERT uses subword tokenization via
WordPiece, which may split a single word into multiple to-
kens, and adds special tokens such as [CLS] and [SEP] dur-
ing preprocessing. As a result, the 512-token limit in BERT
is not directly comparable to the LSTM’s 512-word limit
in terms of raw text length. DistilBERT was selected over
BERT primarily for two reasons. First, we aim to evaluate a
transformer-based architecture alongside our recurrent mod-
els in order to explore the benefits of contextual language
modelling for in-game chat. Second, practical considera-
tions influenced our choice: the full BERT model is compu-
tationally intensive, requiring substantial memory and train-
ing time, whereas DistilBERT provides a more lightweight
alternative while retaining most of BERT’s representational
capacity.

Evaluation Framework
Model performance was evaluated using a consistent set of
metrics across all architectures. We employ accuracy as our
primary metric, supplemented by F1-score to account for
class imbalance and ROC-AUC to assess discrimination ca-
pability. We also track precision and recall to understand the
models’ trade-offs between false positives and false nega-
tives. The dataset was split into training (80%), validation
(10%), and test (10%) sets, being careful to maintain chrono-
logical order to prevent data leakage.

Results and Analysis
In this section, we present and analyze the performance of
our three models, evaluating their effectiveness in predicting
match outcomes using chat data alone versus the combined
chat-and-objectives dataset. We explore both overall perfor-
mance metrics and model-specific behaviours.

Overall Model Performance
Table 1 presents the comprehensive performance metrics for
each model across both datasets. The most striking obser-
vation is the substantial improvement in prediction accuracy
when combining chat logs with in-game events across all
three models.

Impact of Objective Events
The incorporation of objective events significantly enhanced
the predictive capabilities of all three models. The Distil-
BERT model showed a remarkable improvement of 15.7
percentage points in accuracy (from 81.4% to 97.1%), while
the LSTM model demonstrated an even more substantial in-
crease of 18.5 percentage points (from 79.9% to 98.4%). The
logistic regression model showed the most improvement,
with accuracy increasing by 25.4 percentage points (from
56.4% to 81.8%) when incorporating objective events.

Model-Specific Analysis
This light-weight DistilBERT model demonstrated strong
performance across both datasets. On chat data alone, it
achieved 81.4% accuracy with balanced precision (0.818)
and recall (0.812). When incorporating objective events, its
performance improved dramatically to 97.1% accuracy with
near-perfect balance between precision (0.968) and recall
(0.974). The high ROC-AUC score (0.997) on the combined
dataset indicates excellent discrimination capability.

The LSTM model showed similar patterns to DistilBERT
but achieved the highest overall performance on the com-
bined dataset with 98.4% accuracy. Its balanced perfor-
mance across precision (0.983) and recall (0.985) suggests
consistent prediction capability across both positive and neg-
ative cases. The model maintained strong performance even
on chat-only data (79.9% accuracy), though notably lower
than with the combined dataset.

The logistic regression model serving as a baseline
showed the most pronounced benefit from incorporating ob-
jective events. While it struggled with chat-only data (56.4%
accuracy), its performance improved substantially with the
combined dataset (81.8% accuracy). This improvement sug-
gests that the addition of structured game state information
provides crucial features that can be effectively leveraged
even by a linear model.

Error Analysis
Given that the models trained on a combination of the chat
data and event data showed similar, relatively balanced er-
rors, we exam the chat-only models which reveal more in-
teresting variations in error patterns. Additionally the chat-
only models still show robust predictive power (DistilBERT
at 81.4% accuracy), suggesting that the filtered dataset re-
tains meaningful signals.

The logistic regression model (Figure 5) shows significant
difficulty in learning from chat data alone, with 1308 false
positives and 877 false negatives out of 4976 predictions, in-
dicating poor discrimination ability and a slight bias toward
predicting Radiant victories. The LSTM architecture (Figure
6) on the other hand demonstrates better balanced predic-
tions with 464 false positives and 536 false negatives, sug-
gesting more robust feature extraction from sequential chat
data. The DistilBERT model (Figure 7) achieves slightly
better performance with 453 false positives and 473 false
negatives, indicating balanced and slightly more accurate
predictions than its LSTM counterpart.



Figure 5: Confusion matrix for Logistic Regression chat-
only model showing poor discrimination ability and bias to-
ward Radiant victories

Figure 6: Confusion matrix for LSTM chat-only model
demonstrating balanced predictions and robust feature ex-
traction

Figure 7: Confusion matrix for DistilBERT chat-only model
showing balanced predictions with accuracy comparable to
LSTM

Metric Chat-Only Models Combined Models
Overall Accuracy (%)
LSTM 65.46 74.81
DistilBERT 61.53 70.48
Phase Accuracy (%)
Early Game (0-15min)
LSTM 53.73 61.44
DistilBERT 51.77 57.94
Mid Game (15-30min)
LSTM 63.88 81.47
DistilBERT 58.71 72.75
Late Game (30-60min)
LSTM 77.95 96.46
DistilBERT 71.84 90.04
Confidence Metrics
LSTM Avg Confidence (%) 51.19 52.70
DistilBERT Avg Confidence (%) 62.53 76.37

Table 2: Comprehensive Model Performance Comparison

Temporal Analysis
An important real-world application of our models would
involve looking at how prediction accuracy and confidence
evolves throughout the duration of a match. Our analysis ex-
amines this temporal progression, focusing on the LSTM
and DistilBERT architectures, as they outperform and ex-
hibit similar performance compared to the logistic regres-
sion baseline. We will evaluate these architectures across
both chat-only and combined (chat logs combined with in-
game events) datasets. For clarity, we will refer to models
using the chat-only dataset as “chat” and those using the
combined chat logs and in-game objective events as “com-
bined.” The results of this experimental protocol is presented
in Table 2.

Accuracy Progression
Figure 8 illustrates the temporal evolution of prediction
accuracy across all models. Both architectures begin with
near-random performance (∼ 51-54%) during the pre-game
phase, but their trajectories diverge upwards as matches
progress with the LSTM models coming our ahead. Look-
ing at the addition of objective events it is clear from Table
2, that they substantially enhance prediction accuracy across
all phases of the game. The LSTM architecture with com-
bined data achieves the highest overall accuracy (74.81%),
outperforming its DistilBERT counterpart (70.48%) consis-
tently across all game phases. The most striking improve-
ments occur during the transition from early to mid-game
(15-30 minutes). In this period, the LSTM combined model
demonstrates a remarkable jump from 61.44% to 81.47%
accuracy, while the DistilBERT combined model shows a
similar but less pronounced improvement from 57.94% to
72.75%. This pattern suggests that the accumulation of game
events during this phase provides particularly valuable pre-
dictive information.

Importantly, we note that even in the absence of an event-
only model, the strong performance of the chat-only models
(up to 77.95% accuracy) indicates that team communication
on its own contains significant predictive signal. The gains



Figure 8: Model accuracy progression across game phases. The graph shows the evolution of prediction accuracy over time for
both LSTM and DistilBERT architectures, comparing chat-only and combined data approaches. Shaded regions indicate game
phases: pre-game (gray), early game (green), mid game (yellow), and late game (orange).

Figure 9: Disagreement rates between chat-only and combined models over game time. Lower values indicate higher agreement
between model predictions using different data sources.

observed in the combined condition (up to 96.4%) highlight
the complementarity of the two modalities rather than sug-
gesting redundancy.

Model Agreement Analysis
The disagreement analysis (Figure 9) provides insights
into prediction consistency between chat-only and com-
bined models. Early game phases show the highest dis-
agreement rates (40-55%), gradually decreasing as matches
progress. Notably, LSTM models maintain lower average
disagreement rates (31.33%) compared to DistilBERT mod-
els (38.26%), indicating more consistent predictions across
data sources.

When models disagree in their predictions, both architec-
tures show substantially better performance with combined
data, as illustrated in Figure 11. The LSTM combined model
achieves 15,692 correct predictions compared to 5,044 for
its chat-only version, a ratio of 3.11. Similarly, the Distil-
BERT combined model makes 13,478 correct predictions

versus 5,609 for chat-only, a ratio of 2.40. This stark dif-
ference in performance highlights the value of incorporating
game events for resolving prediction uncertainties.

Confidence Analysis
Model confidence represents the probability assigned to a
predicted outcome, ranging from 0 to 1 (0% to 100%). For
LSTM models, confidence is derived from the sigmoid func-
tion output, while DistilBERT models use softmax probabil-
ities across prediction classes. The average confidence for
correct predictions (Cavg) is calculated as:

Cavg =
1

N

N∑
i=1

pi · (ŷi = yi) (1)

where pi is the confidence score for prediction i, ŷi and yi
are the predicted and actual labels respectively, and N is
the total number of correct predictions. The indicator func-
tion (ŷi = yi) equals 1 for correct predictions and 0 other-



Figure 10: Model confidence when making correct predictions across game phases. The plot shows how prediction confidence
evolves over time for correct predictions, comparing both architectures and data approaches.

Figure 11: Comparison of correct predictions when chat-
only and combined models disagree.

wise. The confidence patterns (Figure 10) reveal an interest-
ing trade-off between accuracy and prediction confidence.
While the LSTM model achieves higher accuracy, particu-
larly with combined data (98.33% vs 94.40%), it demon-
strates notably lower confidence in its correct predictions
(52.70% vs 76.37%). This disparity between performance
and confidence is particularly relevant for real-world appli-
cations, where how confident we are in a model’s predictions
matters. The DistilBERT model’s higher confidence scores
suggest it might be more suitable for applications where pre-
diction certainty is prioritized, despite its slightly lower ac-
curacy.

Limitations and Future Work
Our study faces two primary limitations. First, the exclu-
sion of professional matches due to their reliance on voice
chat means our models may not capture the unique strate-
gic dynamics of high-level competitive play. Second, filter-

ing non-English messages introduces a significant language
bias, potentially excluding valuable insights from Dota 2’s
global player base where English is not the primary language
of communication. Future work could focus on addressing
these limitations by developing multilingual models, and ex-
ploring methods to incorporate voice chat analysis for pro-
fessional matches. Additionally, future work could explore
interpretable models to better understand the relationship be-
tween communication patterns and match outcomes.

While our current study focused on evaluating the pre-
dictive power of raw chat content using end-to-end learn-
ing models (LSTM and DistilBERT), we acknowledge that
an explicit feature attribution or sentiment-level importance
analysis could further enrich our findings. Performing such
analysis would allow us to disentangle which aspects of
communication such as positive, negative, or toxic senti-
ment—have the most influence on prediction outcomes.

Conclusion
Our study demonstrates the viability of using in-game chat
logs for predicting Dota 2 match outcomes, with chat-
only models achieving accuracy up to 81.4% and com-
bined models reaching 98.4%. The temporal analysis re-
veals that prediction reliability increases significantly dur-
ing the mid-game phase (15-30 minutes), with different ar-
chitectures showing distinct strengths - LSTM achieving
higher accuracy while DistilBERT demonstrates greater pre-
diction confidence. Unlike traditional statistics-based ap-
proaches that can become obsolete with game updates, our
communication-based method offers a more robust foun-
dation for prediction, as patterns of team coordination and
strategic discussion remain relatively stable across patches.
This study thus establishes chat logs as a viable, update-
resistant predictive data source for esports analytics.
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