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Abstract. In interactive digital media, such as video games, bringing
about an adaptive or personalised experience requires a mechanism for
correctly classifying or identifying the player style, before attempting to
modify the experience in some way that improves player interest and
immersion. This work presents a framework for solving this problem of
in-game real time playstyle classification. We propose a hybrid proba-
bilistic supervised learning approach, using Bayesian Inference informed
by a K-Nearest Neighbors based likelihood, that is able to classify players
in real time at every step within a given game level using only the latest
player action or state observation. This improves on current approaches
dependent on previous episodic player action trajectories in order to clas-
sify the player. Furthermore, we highlight the effect that this representa-
tion of the player state-action observation has on the in-game playstyle
classification’s accuracy, prediction stability, and generalisability. We ap-
ply and test our framework using MiniDungeons, a rogue-like dungeon
exploration game, and further evaluate our framework using a natural
dataset containing human player action data from the platforming game
Super Mario Bros. The experimental results obtained from our approach
outperforms existing work in both domains. Furthermore, the evaluation
results highlights the ability of our framework to generalise to unseen
levels, without the need for additional retraining. Additionally, the Su-
per Mario evaluation results illustrates the scalability of our framework
to a more complex game environment with human player data.

Keywords: Game AI · Playstyle Identification · Playstyles · Player
Modeling · Supervised Learning · Bayesian Inference · K-Nearest Neigh-
bour · Rogue-like · Platforming · MiniDungeons · Super Mario Bros.

1 Introduction
In video games there are sometimes several ways or styles in which players can
play a game. Different players find different parts of a game challenging and
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rewarding. Catering for this diversity in player playstyle, preference, and skill is
quite challenging for game creators [3]. Adapting to player preference and skill is
important in achieving higher levels of player engagement and is especially vital
in games used for education [2]. Furthermore, from a game design perspective,
in order for game developers to maximise the number of target players it is
essential to create games which cater for different gameplay experiences or player
playstyles [22].

A player playstyle can be seen as a representation of the player’s strategy
and player profile [1]. In order to understand or react accordingly to a given
playstyle a model approximation of the player is needed. Approaches within the
research area of Player Behaviour Modeling are centered around the creation of
this model approximation of players [24]. In other words, a player model can
be defined as an abstracted representation of a player’s behaviour in a game
environment [1]. Player modelling provides a mechanism which game designers
and researchers can use to gain insight and understanding into how players are
feeling and how players might act [25]. Player modelling in itself is an interest-
ing challenge and problem domain. Player models are additionally useful when
combined with game personalisation or game adaptability (also known as dy-
namic difficulty adjustment [4], adaptive player experience or game balancing
[21]). This application of player models to game personalisation or adaptability
is of increasing importance in video games and is especially necessary when the
purpose of game AI is to improve the experience or enjoyment of the human
player [1].

Before attempting to modify the gameplay experience in some way which
improves player interest and immersion, a mechanism for correctly classifying
or identifying the player preference or player style is required. We present a
framework for solving this problem of in-game real time playstyle classification.
We propose a hybrid probabilistic supervised learning approach, using Bayesian
Inference informed by a K-Nearest Neighbors based likelihood, that is able to
classify players in real time at every step within a given game level using only the
latest player action or state observation. As part of our experiment we compare
our hybrid classifier approach to a comparative approach based on unsuper-
vised clustering of the player action trajectories, using an LSTM-autoencoder
[12]. Furthermore, we highlight the effect that this representation of the player
state-action observation has on the in-game playstyle classification’s accuracy,
prediction stability, and generalisability.

We apply and test our framework using the MiniDungeons game domain.
MiniDungeons is a turn-based top-down tile based dungeon exploration game,
created as a benchmark research domain for modeling and understanding human
playstyles [8][9]. From an implementation perspective we make use of a python,
OpenAI Gym compatible, re-implementation1 [14]. Our framework is further
evaluated using a natural dataset2 containing human player action data from
the platforming game Super Mario Bros [6]. We respectively obtain accuracies

1 https://github.com/ganyariya/gym-md
2 http://guzdial.com/datasets.html
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and prediction stability results which highlight the success of our framework
when compared to existing work. Prediction stability is a necessary feature, not
present in related studies, for real time playstyle classification since frequent
fluctuations in the prediction can adversely affect the game experience. The rest
of the work is organised as follows, Section 2 and 3 describes related work and
background, Section 4 outlines our research methodology, and our experiment
discussion and analysis is presented in Section 5.

2 Related Work
There are a number of closely related areas of work centered around the problem
of creating adaptive or personalised games. Several studies focus on the player
model creation process, in other words, modelling or mimicking human players
[8][9][10][14]. Other works aim to investigate methods for identifying, classifying,
or clustering the player, with the aim of trying to answer the question ‘does the
observed player belong to a known player type or playstyle?’ [5][11][12][16]. There
are several other researchers focused on how the game experience can be changed
or personalised to the identified player [4][13][20][21]. Our work looks to recover
the underlying playstyles present in play logs which could be used to aid all of
these studies.

Normoyle and Jensen [16] investigates a method which uses Bayesian semi-
parametric clustering for creating player clusters. Normoyle and Jensen take
post-match data and cluster based on how the player’s choices affect the end
game result, in contrast to clustering on the outcomes directly. Iwasaki and
Hasebe [14] use a clustering approach, called x-means, to cluster play log data
with the aim of evolving different agent playstyles created using a genetic algo-
rithm, also called C-NEAT [11]. We apply this idea of player personas in order
to generate our set of rule based player proxies. Additionally, we look to further
explore the concept of play logs by analysing the impact different representations
have on performance.

Past work in this field has been largely concerned with identifying playstyles
at the end of the game episode, in order to evolve or create diverse player persona
agents, or to analyse player trace data for analytical or game testing purposes.

The user-study work by Valls-Vargaswork et al. [23] present a player modeling
framework to capture non-stationarity within player strategy by using sequen-
tial machine learning techniques which incorporate predictions from previous
temporal player observations. However, the effect of prediction stability is not
featured as a component of their approach. Our work looks to highlight the
impact the stability score has when predicting playstyles during gameplay. Ad-
ditionally, Valls-Vargaswork et al. [23] relied on a manual annotation process for
providing playstyle labels to the collected player trace data at fixed intervals.
This manual annotation is not only time consuming but may also be infeasi-
ble from a cost perspective. Our framework’s Trajectory Processing step which
utilises player personas and clustering to provide a feasible solution to the lack
of labelled player datasets.

Hernandez-Leal et al. [7] also considered the concept of non-stationary strate-
gies whereby they utilised a Bayesian framework to train an agent which learns
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an optimal policy against an opponent whose strategy switches. In our work we
look to apply Bayesian inference to track the belief over a set of playstyles which
was inspired by their belief tracking of observed policies.

The work by Ingram et al. [12] looked to remedy the issue of requiring la-
belled data by utilising an unsupervised lstm autoencoder clustering approach.
Their autoencoder model works by projecting trajectory information into a lower
dimensional latent representation which could then be clustered using vanilla
clustering approaches like Gaussian Mixture Models. This approach, however,
does not guarantee that the clusters identified correspond semantically to the
playstyles we wish to recover. Additionally the clustering step relies on previous
episodic player action trajectories. In contrast we propose a hybrid probabilistic
supervised learning approach, using Bayesian Inference informed by a K-Nearest
Neighbors based likelihood, that is able to classify players in real time at every
step within a given game level using only the latest player action or state obser-
vation.

Gow et al. [5] also utilised an clustering approach which incorporates multi-
class Linear Discriminant Analysis (LDA) to model players in Snakeotron and
Rogue Trooper. Similar to Valls-Vargaswork et al. [23] they relied on play log
segmentation and summaries. The ability to classify players at every game step
may allow for the game’s adaptability to become more responsive and granular
than these segmentation based approaches. Our model can accommodate this
important capability which is required for assistive companion agents, dynamic
difficulty adjustment made during game play, or for tailoring tutoring based
games.

The classification of players needs to happen in near real time and concur-
rently with other computations, such as graphics rendering, non-player character
behaviour logic, and game physics [1][24]. Therefore techniques used in real time
playstyle identification should strive to be as computationally efficient and inex-
pensive for applications within game AI [1]. For this reason we have chosen to
make use of more computationally efficient algorithms, such as Bayesian Infer-
ence and K-Nearest Neighbors search, in building our framework.

Computationally complex classifiers pose a risk at runtime by interrupting or
halting the game experience. The user study work by Scott and Khosmood [19]
highlights this adverse effect which computationally heavy approaches have on
a game’s playability and player experience. Scott and Khosmood conclude that
approaches which reduces the playability of the game and thus the overall player
experience are unacceptable in a commercial video-game setting. Furthermore,
from a model explainability perspective understanding the playstyle prediction
outcome, identifying which game mechanics or features certain playstyles use,
and gaining insight into how the different player type clusters relate are use-
ful to game designers when deciding on which game mechanics to change, and
which new game features to implement or remove [12][22]. For this reason, we
have chosen explainable machine learning approaches such as Bayesian Inference
and K-Nearest Neighbors. As part of our experiment we analyse the player ac-
tion trajectory data and identify the key generalised behaviours observed. Our
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methodology section outlines how we collect, pre-process, analyse, train, and
evaluate our approach, as well as our definition of the playstyle in-game classi-
fication problem.

3 Background
This section describes the terminology and definitions necessary for defining the
in-game playstyle classification problem.

3.1 Play Log Definition

Game metrics are the recorded numeric data generated, during gameplay, as
a result of the player interacting with the game [22]. Playstyles in games are
identified based on the observed in-game event information [14]. This is a reason
why the use of a play log [11], which captures such event information, is valuable
for identify play styles. Thus our classification approaches uses this concept of
a play log, which is a vector containing the essential game metrics required to
identify or discriminate between playstyles [11] [14].

We define the play log as pl, an n-dimensional vector containing kn game
metrics m: pl = [m1,m2, · · · ,mk]

n where n, k ∈ N and m ∈ R. Let Υ be an
instance of pl, with a specific n, k, and m values. Let Ψ be an instance of pl
containing unseen play log game metric data with the same n, k, and m values
as Υ . It is important to note that the game metrics m1...k are recorded and
updated at every step within a given level of a game.

3.2 Playstyle Set Definition

Our aim is to build playstyle classifiers which make use of play log metric data
to distinguish between different playstyles. During the early stages of game de-
velopment, especially when mechanics of a game are being tested, changed, and
developed it is challenging for game designers to collect game metric data from
human players [14]. Furthermore, playtesting with human players can be time
consuming and a costly exercise. This is why quite a number of studies create
and make use of agents as a proxy for human players [8][10][14]. Hence, we will
also make use of proxy agents, also called personas [9][10], to mimic human
playstyles within the given game and thus generate the play log metric data. We
define a set Γ of proxy agent implemented playstyles, called Γ ⊆ Pg, where Pg is
the global set of all possible playstyles for a given game g.

3.3 Game Levels

It is common for games to have one or more levels. Thus for a given game, we
divide all available levels into three sets: the first called train which is used for
the training of the playstyle classifiers, the second is called seentest which is
used for the seen levels prediction evaluation, and the third called unseentest
which is used for the unseen levels prediction evaluation.

3.4 Playstyle In-game Classification Problem Definition

For a given game g, a player agent α, and a level l from g. We aim to find a
model classifier ΩΥ which is trained on labeled play log data, Υ , obtained using
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the set, Γ ⊆ Pg, of proxy agents on the set of training levels, train, for the game
g which can classify unseen play log entries, Ψ , to a given playstyle in Γ .

ΩΥ : Ψ → Γ , (∀ step ∈ l , ∃ΩΥ ) (1)

In other words, we would like to find a model ΩΥ which can at every step,
within a level l, in the game g classify the unseen play log entries in Ψ , of agent
α, to a playstyle in Γ . The model classifier ΩΥ is evaluated using the respective
level sets seentest and unseentest.

4 Playstyle Classification Method
Our proposed framework provides a method for solving the problem of in-game
real time playstyle classification. As illustrated in Figure 1 our framework in-
volves multiple steps where low-level player action trajectories are processed
to generate corresponding playstyle labels. These steps are broken down into:
Trajectory Processing and Playstyle Classification.

Evaluate
Classifier(s)

Perform in-game
playstyle prediction

Create labelled
playstyle

trajectory data

Variable
length trajectory

pre-processing

Train Classifier(s)


Deploy
Classifier(s)

Define play log

instantiations


Player Action
Trajectory Data

Source


A B C D E

F G H

Fig. 1: Proposed Framework Overview

4.1 Trajectory Processing

Our playstyle identification framework is able to account for two situations re-
lated to the availability of existing player play log data. Our framework begins
with the Player Action Trajectory Data Source step, as illustrated in Figure
1(A). Regarding the source data, two situations could occur, which we respec-
tively refer to as Case I and Case II. Case I arises when there is no existing player
play log data, thus for Case I we make use of rule-based proxy agents to mimic
human player playstyles and generate the source player action trajectory data.
Case II corresponds to when there already exists player action trajectory data.
The next step in our framework is to define the play log instantiations, as shown
in Figure 1(B). As discussed in Subsection 3.1 the play log contains the the es-
sential game metrics required to identify or discriminate between playstyles. For
this reason the construction of the play log is important and several play log
representations should be considered. As part of this work we highlight some of
the key considerations and effects that the play log representation has on the
in-game playstyle prediction.

Once the play log representations has been defined, the next step in our
framework is to respectively in Case I and II obtain labelled playstyle trajectory
data, as shown in Figure 1(C). In Case I, the proxy agents are used to generate
the play log data along with the agent playstyle label. For Case II, traditional



Playstyle Classification Using Hybrid Probabilistic Supervised Learning 7

unsupervised clustering is used to obtain the playstyle label for the respective
play log data. In order to handle the variable length of player action trajectories
across different episodes, we pivot the episode play log such that each entry
within the play log is assigned the play log playstyle label (Figure 1(D)). This
pre-processing step prepares the data for the training and development of our
classifier.

4.2 Playstyle Classification

In this section we present our hybrid probabilistic supervised learning approach,
which uses Bayesian Inference informed by a K-Nearest Neighbors (KNN) based
likelihood, that is able to classify players in real time at every step. At any given
point in a game, there exists a belief over which playstyle the player is currently
using. In other words, there is a probability distribution across the playstyles
which exist in the game. At the start of the game episode the probability be-
lief distribution across the playstyles will be equally likely. As the player takes
actions within the game the playstyle belief probabilities will shift in the di-
rection of which ever playstyle is likely to have taken the observed actions. For
this reason, Bayesian Inference is a suitable solution for modelling and tracking
these changes in player playstyle. A core component of Bayesian Inference is the
likelihood probability function. We train a KNN classifier using the labelled play
log data, from steps A-E in Figure 1, which when given an unseen play log entry
will return a playstyle classification as well as the probability belief of this clas-
sification across the playstyle label classes. This probability belief distribution
of the KNN classification is what we use as the likelihood probability during the
posterior belief update, as shown in Equation 2 which illustrates our Bayesian
Belief Update process:

P (playstyle|observation) = P (observation|playstyle)P (playstyle)

P (observation)
(2)

Where playstyle ∈ Γ , observation ∈ Ψ , and where P (observation|playstyle)
is the likelihood probability distribution, provided by the KNN classification’s
probability distribution trained using the labeled play log data in Υ . The prior
distribution is initialised to equally likely at the start of the Bayesian belief up-
date process, and at every step the highest posterior playstyle belief probability
is returned as the playstyle prediction.

5 Evaluation by Experiments
As part of our experiment we develop two variants of our hybrid supervised
Bayesian classifier based on two different play log instantiations which we have
defined. We make use of MiniDungeons as our Case I domain, and the human
player Super Mario Bros dataset as our Case II domain. Furthermore from an
evaluation perspective we compare our approach to the the comparative unsu-
pervised approach by Ingram et al. [12]. We begin our Case I evaluation of our
framework using the MiniDungeons game domain [8][9]. Subsection 5.1 outlines
the experiment setup and the implementation details related to the application
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of our framework method. The Case II human player experiment setup, imple-
mentation, and evaluation is presented in Subsection 5.3.

5.1 Case I: MiniDungeons Experiment

MiniDungeons is a two-dimensional top-down dungeon exploration game, and is
a common benchmark research domain for modeling and understanding human
playstyles [8][9]. From a play log instantiation perspective we define two types of
play logs, each of which measure the player interaction at different granularities:

– Low level visitation grid (LLVG): is a two-dimensional vector which tracks
the number of visits made to each position in a level (i.e. models at the
player action level [1]). For a given MiniDungeons level the LLVG play log
dimensions will be equal to the level’s row and column count.

– Tactic level information (TLI): is a one-dimensional vector which stores the
number of times a specific action type is taken, as well as the number of
times the player visits each level cell or square type [11]. The TLI play log
aims to track the higher level player tactics [1].

To generate these two respective play log datasets we define a set of six player
proxy agents as described in Figure 2. The playstyles are created based on the

(a) brave treasure
hunter

(b) pure treasure
hunter

(c) monster killer

(d) heal and run (e) safe runner (f) wreckless runner

Fig. 2: Playstyles Heatmap for MiniDungeons (Level 9) [9].
main objectives available in a given level of MiniDungeons, for example: col-
lect treasure, restore hit points (HP) by collecting potions, battling monsters
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for experience points, and reaching the dungeon exit. Furthermore, the choice
of our playstyle proxy agents is informed by the clustering analysis work done
by Iwasaki and Hasebe [14] who evolve multiple human proxy agents without
predefining the desired playstyle or reward function. The core playstyles gener-
ated by their approach are: a runner based playstyle, which prioritises exiting
the dungeon as quick as possible, a completionist player, which aims to inter-
act with treasure, monster, and potion elements within the dungeon, a treasure
centric based playstyle, which focuses on collecting treasure, and a safty-first
playstyle, which focuses on collecting treasure and potions. Respectively for our
work, as illustrated in Figure 2, we have the treasure centric agents called brave
treasure hunter and pure treasure hunter. The pure treasure hunter only col-
lects unguarded treasure, whilst the brave treasure hunter will collect treasure
guarded by monsters and replenish HP if needed. The monster killer playstyle
agent is concerned with battling as many monsters as possible without dying. If
the monster killer agent’s HP is low, potions will be collected to restore health.
The heal and run agent aims to collect all the potions in a given level. The safe
runner and wreckless runner playstyles respectively aim to exit the dungeon as
fast as possible. The safe runner agent takes the shortest available safe path to
the dungeon exit (i.e. a path which does not encounter any monsters), whilst
the wreckless runner agent will take the shortest path to the dungeon exit.

From the training and evaluation level perspective the respective MiniDun-
geons levels3 used are:

– train (md-test-v0, md-hard-v0, md-random_1-v0, md-random_2-v0, md-
gene_1-v0, md-gene_2-v0, md-strand_1-v0)

– seentest (md-strand_2-v0, md-holmgard_0-v0, md-holmgard_3-v0,
md-holmgard_5-v0, md-holmgard_7-v0, md-holmgard_8-v0)

– unseentest: (md-holmgard_1-v0, md-holmgard_2-v0, md-holmgard_4-v0,
md-holmgard_6-v0, md-holmgard_9-v0, md-holmgard_10-v0)

The levels assigned to the train set were selected in order to reserve the Holmgard
levels for the seen and unseen evaluations. Each Holmgard level was randomly
assigned to the respective seentest and unseentest sets. Each level run was
repeated ten times in each respective evaluation case.

Initially two types of classifiers were developed, namely KNN and Bayes,
each of which has a play log variant based on the LLVG and TLI play log in-
stantiations. The classifiers trained on the train levels and evaluated on the
seentest and unseentest levels are respectively called: KNN (LLVG), KNN
(TLI), Bayes (LLVG), and Bayes (TLI). Each level run was repeated ten times
for each playstyle within each respective evaluation case.

For both the KNN (LLVG) and KNN (TLI) classifiers the number of nearest
neighbours used is three (i.e. k=3, determined empirically during experiment).
The KNN (LLVG) model classifies the observed play log entry using the nearest
or most similar log entries in the form of the LLVG play log [18]. Similarly the

3 https://github.com/ganyariya/gym-md/blob/main/README/resources/md_stages_screenshots/README.md
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KNN (TLI) model classifies using the nearest entries in the form of the TLI play
log.

For the Bayesian Inference based classifiers, Bayes (LLVG) and Bayes (TLI),
the initial prior probability belief distribution is equally likely across the playstyles.
The likelihood probability that the in-game player observation belongs to a spe-
cific playstyle is informed by the historic LLVG and TLI play logs respectively.
The posterior probability is then updated using the likelihood probability and the
prior probability distribution. This process of updating the playstyle probability
belief distribution is repeated as the new evidence (i.e. the player observation)
is observed [18].

In our initial evaluations the KNN classifiers outperformed the Bayes clas-
sifiers, and upon careful inspection we attribute the poorer Bayes performance
to the likelihood probability function not having enough historic data to discern
and provide probabilities which can adequately influence the playstyle belief dis-
tribution. The problem with the Bayes classifier was that in unseen situations
the default equally likely probability was being returned by the likelihood func-
tion. Which had little effect on the belief update because the observation was
equally likely. We then improved the likelihood probability function by includ-
ing a cosine similarity lookup for nearest similar observations. Which results in
a more informed probability likelihood being used when compared to the default
equally likely probability. The likelihood probability function used to inform the
playstyle belief update is core to the success of the Bayes classifier. This insight
as well as the KNN and Bayes comparative accuracy and prediction results, pre-
sented in subsection 5.2, suggested that a well balanced approach would be to
combine the two classifier types into a hybrid classifier - which we refer to as
the Hybrid Bayesian Supervised Learning classifier. In our hybrid classifier the
KNN output prediction probability distribution is used as the Bayesian likeli-
hood function. Two variants of our Hybrid classifier, called Hybrid (LLVG) and
Hybrid (TLI), was created based on the LLVG and TLI play log instantiations
and are respectively informed by the KNN (LLVG) and KNN (TLI) likelihood
probability classifiers.

In order to baseline our hybrid approach, two baselines were used. The first
baseline is a simple ‘random’ classifier which will at each step make a random
prediction on the player’s playstyle. The second comparative baseline is an un-
supervised approach which makes use of an LSTM-autoencoder to cluster the
player action trajectories [12]. The Autoencoder is used to project variable length
trajectories in a uniform latent space which is then used for the clustering step.
Although, this approach is unsupervised we used the ground truth labels gener-
ated for both the Mario and the MiniDungeons domain in order to compute the
performance of this model.

5.2 Case I: MiniDungeons Experimental Results

As outlined in the MiniDungeons experiment setup, we have run two kinds of
evaluations on the respective classifiers. The first evaluation is run on levels
which have been seen before by the respective classifiers. The seen case is an ap-
pealing evaluation in situations where a game’s levels are known and defined. For
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example, a game developer would like to adapt non-player character attack pat-
terns, during the encounter with the player, within the game’s existing levels. In
this situation the game developer can train and deploy our classifiers and adapt
the game accordingly. Next let us say that the game has been released success-
fully and our classifiers have been deployed and shipped with the game’s initial
release. In this situation our second evaluation on unseen levels may assist the
game developer. As new levels are added to the game via updates, the classifiers
which can generalise to unseen levels do not need to be re-trained or re-deployed.
The representation of the play log is key to enabling this generalisability across
unseen levels.

The LLVG play log representation is at a lower granularity, than the TLI
representation. The LLVG play log is level specific since the play log’s dimen-
sions and the positional relevance of the player is coupled to the specific level
under consideration. This means that, in this case, the LLVG classifier cannot
be applied to unseen levels. This is why the respective LLVG classifier results
are absent in the unseen evaluations (as shown in Figure 4 and Table 1). Since
the TLI play log is at a higher ‘tactic level’ abstraction the same TLI vector
can generalise across levels. The results shown in Figure 3 confirm that in the

Fig. 3: Seen Evaluation Fig. 4: Unseen Evaluation

seen case that each classifier is able to on average accurately predict the correct
playstyle, well above the random classifier and our comparative case. The KNN
(TLI) and Hybrid (TLI) classifiers marginally performs better than the other
classifiers. The interesting observation is that in all three classifier types the TLI
based representation resulted in better average accuracies when compared to the
LLVG variants. This suggests that the TLI play log representation better cap-
tured the player interaction in comparison to the LLVG representation. Initially,
we expected the LLVG representations to perform better since the play logs are
better fit to each level and are at a lower granularity. However, this is not the
case since the KNN LLVG performed marginally weaker.

Figure 4 summarises the unseen evaluation of the respective TLI based clas-
sifiers. On average our classifiers accurately predict the correct playstyle well
above the random classifier and to our comparative case. The results in Figure
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4 confirm that the higher level TLI play log representation is able to generalise
to unseen levels. The Hybrid (TLI) classifier marginally outperformed the KNN
(TLI) and Bayes (TLI), which we attribute to the difference in stability scores,
which is summarised in Table 1. However, before discussing the stability score
metric, it is important to note that, in both the seen and unseen evaluations,
our classifiers at each step received only the latest play log entry, whilst the
Ingram (TLI) classifier received the latest play log entry as well as the previous
temporal play log entries. Thus highlighting the success of our framework’s vari-
able length pre-processing step in removing the dependency on previous episodic
player action trajectories in order to classify the player. As highlighted in Figure
4 we outperform the comparative case. Although some of the poor performance
associated with the approach by Ingram et al. [12] can be attributed to the
unsupervised nature of the model, our performance is substantially greater and
can be done using only the current play log state rather than requiring the past
temporal play log entries.

As mentioned, Table 1 summarises an important result relating to the average
playstyle prediction stability for each classifier. The stability of the classifier is a
count of how many times, during an episode, the classifier changes its playstyle
type prediction (e.g. transitioning from a Monster Killer prediction to a Brave
Treasure Hunter prediction). The lower the stability score, the more stable the

Table 1: Overall Average Stability Score by Classifier

Classifier Type
Average Stability Score
Seen Levels Unseen Levels
LLVG TLI TLI

KNN 8.317 4.5 2.778
BAYES 0.222 0.111 0.444
Random 51.017 54.105
Hybrid 2.583 1.611 1.556
Ingram et al. (TLI) 1.333 1.167

classifier. Since the random classifier makes a random prediction at every step the
stability score is high. Table 1 highlights the big difference in stability between
the KNN and Bayesian approaches. We respectively attribute these to the nearest
neighbour distance logic in KNN and the gradual belief update in the Bayesian
update. If you need a more stable classfier, then the Bayesian approach may
be better. If the rate of prediction type change is not a concern then the KNN
approach can be considered. The idea behind the Hybrid classifier is that the
classifier should ideally bring about good balance between the rate of change
in playstyle prediction type, i.e. the stability, and the accuracy of the believed
playstyle prediction. When comparing the unseen evaluation TLI stability scores
of the KNN (2.778), Bayes (0.444), and Hybrid (1.556), we see that the Hybrid
classifier’s stability sits between the KNN and Bayes classifiers, whilst obtaining
a higher average accuracy in the unseen case, as seen in Figure 4.

The choice of classifier, in terms of stability, is dependent on how the playstyle
prediction classifier is used to adapt a game accordingly. For example, when
adapting a game’s difficult at the end of a level or after an enemy encounter,
then the prediction stability of the classifier is less of a consideration because the
game adaptability occurs less frequently. However, if you are adapting the non-
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player character (NPC) behaviour in real time in response to player actions then
the stability of the classifier is quite important. In this case of playstyle-adaptive
NPC agents, players may be confused or the gameplay experience may be ad-
versely affected if the playstyle prediction changes more often, which may result
in conflicting or inconsistent NPC agent behaviour. We continue the evaluation
of our framework using the Super Mario Bros human player data, in Subsections
5.3 and 5.4.

5.3 Case II: Super Mario Bros Experiment

The Super Mario Bros evaluation dataset was created as part of a user study,
conducted by Guzdial and Riedl, consisting of seventy-four human players which
played through twelve levels of Super Mario Bros [6]. Super Mario Bros is a
platforming game which involves moving the main player character called Mario
through a two-dimensional level traversing it from left to right whilst navigating
platforms, jumping gaps, and overcoming enemies, until the end of the level is
reached. Mario is able to move left and right, jump, run, and shoot fireballs, if the
enabling fire flower item is collected [17]. We make use of the Super Mario Bros
natural human player action dataset in order to ascertain whether our framework
is able to scale to a more complex domain. Furthermore, Super Mario Bros is a
suitable domain for studying playstyles since there are a number of different ways
to play the game. The global goal of Super Mario Bros is to reach the end of the
level, however, there are coins which can be collected and various enemies which
can be defeated in different ways based on collecting different items which all
affect the final score obtained. There is also an exploratory element where players
can try find shortcuts, hidden areas, or bonus rooms accessed by traversing green
warp pipes or by breaking platform blocks to enable new pathways.

For this evaluation we define two types of play logs, based on the TLI repre-
sentation, each of which summarise the player interaction at different granular-
ities:

– Summarised Tactic level information (S-TLI): is a one-dimensional vector
which stores the number of times the player jumps, kills, runs, breaks bricks,
and dies. The S-TLI is a summarised play log view of the player’s in game
interactions.

– Extended Tactic level information (E-TLI): is a one-dimensional vector which
is an expanded more granular form of the S-TLI tracking the occurrence of
forty action and in-game interaction events.

To generate these two respective play log datasets we processed the source Mario
data and performed K-means clustering on the respective play log data to obtain
the prospective playstyles within the dataset. Figure 5 and 6 respectively show
the S-TLI and E-TLI PCA-Reduced Mario data after K-means clustering. This
processing step was necessary as the mario dataset is unlabeled. The efficacy of
this approach to surfacing prospective playstyles, is demonstrated by applying
the same unsupervised K-means clustering to our MiniDungeons dataset. Here
we were able to successfully extract the six desired clusters which correspond to
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Fig. 5: PCA-Reduced
Mario (S-TLI) data after
clustering.

Fig. 6: PCA-Reduced
Mario (E-TLI) data after
clustering.

Fig. 7: PCA-Reduced
MiniDungeons (TLI)
data after clustering.

the six playstyle proxy agents, as shown in Figure 7. The respective values of k
was determined using the silhouette coefficient and elbow method [15].

It is interesting to see that the K-means clustering on the S-TLI and E-TLI
play log representations both resulted in the same number of clusters, despite be-
ing at different levels of granularity. Which highlights a possible commonality or
relationship in the underlying play log data. The cluster labels obtained will be
used as the playstyle labels during training. The idea as shown in the MiniDun-
geons case, Figure 7, is that similar play log entries belong to the same playstyle
cluster. Thus unseen play log entries should fall within a cluster containing the
most similar play log data. From a training and evaluation perspective we took
the player action mario dataset and partitioned eighty percent of the player ac-
tion trajectories for training and the remaining twenty percent of trajectories
for validation and testing. In total two classifier types were created, where each
classifier type has a play log variant based on the S-TLI and E-TLI play log
instantiations. The first classifier type being a weighted KNN classifier and the
second being our Hybrid Bayesian classifier type which is informed by a weighted
KNN classifier as the likelihood probability function. From a baseline perspec-
tive we make use of a simple ‘random’ classifier which will at each step make a
random prediction on the player’s playstyle. In terms of our comparative base-
line we again make use of the Ingram et al. approach [12]. For the unsupervised
Ingram et al. classifier we make use of the ground truth cluster labels generated
in order to compute the performance of this model.

5.4 Case II: Super Mario Bros Experimental Results

For the Super Mario Bros evaluation the intuition behind our choice of play
log representation is that a lower level play log granularity in terms of the
player interaction should better surface or distinguish the underlying prospec-
tive playstyles. Which in turn should bring about a stronger prediction accuracy
performance. The average correct prediction percentage results obtained for the
S-TLI and E-TLI evaluations are respectively shown in Figures 8 and 9. These
shown results confirm the ability of our framework to operate and scale within a
more complex domain using human player action trajectory data. Secondly, the
difference in the average correct prediction percentage results between the S-TLI
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and E-TLI Hybrid classifiers confirm our intuition related to the player inter-
action play log granularity. The only difference between the S-TLI and E-TLI
evaluations is this play log granularity, which results in a substantial difference
in the playstyle classifier’s prediction accuracy. When comparing the weighted

Table 2: Overall Average Stability Score by Classifier
Classifier Average Stability Score

Evaluation S-TLI E-TLI
Weighted KNN 0.196 0.080

Hybrid 0.014 0.004
Random 0.745 0.754

Ingram et al. 0.040 0.161

KNN classifier results to our Hybrid classifier we see a greater difference in aver-
age prediction performance, which we attribute to the respective stability scores
obtained. As shown in Table 2, our Hybrid classifier’s Bayesian belief update
results in a better stability score than the Weighted KNN which more rapidly
changes the playstyle prediction type due to the nature of the nearest neighbour
search. The lower the stability score, the more stable the classifier. In comparison
to the MiniDungeons evaluation, the Mario evaluation better highlights the effect
that the stability of the classifier has on the end prediction result. The Hybrid
classifier’s more gradual Bayesian belief update allows for the classifier output to
be more certain about the playstyle under observation. It is important to note
that the trade-off between the prediction and the model stability still exists.
The MiniDungeons evaluation showed that a better stability does not necessary
guarantee a better average prediction result. In the MiniDungeons case both the
stability scores of the Ingram et al. (TLI) and Bayes (TLI) were more stable
in compared to the Hybrid (TLI), but the average prediction percentage results
were not better than the Hybrid (TLI). The strength of our Hybrid classifier
and framework is again highlighted as our classifiers at each step received only
the latest play log entry, whilst the Ingram classifiers received the latest play log
entry as well as the previous temporal play log entries. Thus again confirming
the success of the variable length pre-processing step.

Fig. 8: Mario S-TLI average correct pre-
diction percentage by classifier across
unseen player trajectories.

Fig. 9: Mario E-TLI average cor-
rect prediction percentage by classifier
across unseen player trajectories.
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6 Conclusion and Future Work
Our work contributes a hybrid probabilistic supervised learning framework, us-
ing Bayesian Inference informed by a K-Nearest Neighbors based likelihood, that
is able to classify players in real time at every step within a given game level
using only the latest player action or state observation. Furthermore we outper-
form our comparative baselines whilst using only the latest player observation
to make our prediction. Our experiment highlights the success of our framework
in a complex human player setting and the effect the play log representation
has on the prediction’s accuracy, stability, and generalisability. As part of our
future work we plan to use our playstyle classification framework to adapt the
gameplay experience in a meaningful way. We would also like to apply our work
in a competitive online game setting in order to illustrate the potential use and
benefit to the e-sports community from a player strategy analysis and game
analytics perspective.
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