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Abstract—Numerous fields of science have investigated stochas-
tic processes which are partially observable. However, the dis-
covery and analysis of the interaction between, and the influ-
ence upon each other, of several of these processes, have not
been probed extensively. This paper uses probabilistic structure
learning in an attempt to learn influence relationships between
stochastic processes that are partially observed. These processes
are represented by hierarchical dynamic Bayesian networks (H-
DBNs). To track the direct influence between the these processes,
we provide an algorithm that extends the BIC structure score
as well as the cumbersome (greedy hill-climbing) local search
procedure. Our method leverages the temporal nature of the
HDBN through the use of assembles thereby surpassing the
standard approach that treats each process as a single variable.
The derived BIC-score for HDBN families is clearly shown to be
theoretically decomposable and empirically consistent.

Index Terms—Learning influence networks, Structure learning,
Hidden Markov models, Stochastic processes.

I. INTRODUCTION

Stochastic processes are often used for narrating the pro-
gression of variables with respect to time. In spite of this, the
reciprocal influences between several of these processes is not
addressed much in the literature. Constraint-based structure
learning can view the influence relation between processes
as a collection of independence assumptions. It is assumed,
from this constraint-based approach, that a perfect map can
be obtained from this collection.

This can be achieved using statistical tests for conditional
independence [1]. Applications that use constraint-based meth-
ods that try to learn the structure between processes include:
discovering micro-behaviour in econometric models [2], iden-
tifying interacting networks in the brain [3], and for causal
interpretation between statistical models [4].

Statistical tests frequently are incorrect with regard to
determined independence assertions. This oversights, while
performing multiple hypothesis testing, can spread into the
structure of the network which subsequently decreases the

likelihood of recovering the true probabilistic graphical influ-
ence network [5]. This paper proposes an alternate approach
as being better suited to this task since it:

1) looks at all the possible influence relations between
processes as a single state in the search space;

2) maintains essential score properties which allows for
feasible computations;

3) and it presents an unambiguous signal about the in-
dependence assertions between dynamic models with
respect to the data.

More formally, we can define the concept of direct influence
between two processes, A→ and B→, as a proportional
relationship between them. More specifically, this proportional
relationship suggests that changing some value in some point
in time t1 in A→ will ‘directly’ impact the concurrent value
at the same point in the time t1 in B→.

This ‘direct’ influence is defined with respect to delayed
influence where changes in a value in process A→ at time t1
will only result in a change in the subsequent value at or after
t1 in B→.

This paper provides the very first score-based structure
learning modelling of this problem to find the complete direct
influence network (DIN), which is a dynamic Bayesian net-
work (DBN) which factorises over a joint distribution between
a finite collection of stochastic and partially observable pro-
cesses represented as hierarchical dynamic Bayesian networks
(H-DBNs).

The following two assumptions are made in our search for
the optimal DIN:
• Firstly, we will assume that the data, D = {ξ1, . . . , ξM},

is sampled IID (over time) from some under-
lying dynamic distribution P ∗(H), where H =
{H1(X ), . . . ,HK(X )} is a collection of H-DBNs over
the collection of random variables X = {X1, . . . , XN}.

• Secondly, we assume that P ∗(H) is produced by another
DBN, G∗(H), which is called the ground truth structure.

This paper aims to recover the local independence assertions
in G∗(H), denoted I`(G∗(H)), by only observing D. The978-1-5386-5541-2/21/$31.00 ©2021 IEEE



importance of learning a DBN Bayesian network structure is
determined by its motivation for use:

• Attempts to learn the ground truth DIN structure (knowl-
edge discovery) means precisely stating I`(G∗(H)), then
one should accept that there are many perfect maps for
P ∗(H) that exist in D [6]. It is well accepted that iden-
tifying I`(G∗(H)) from G∗(H)’s collection of Bayesian
networks, which will provide identical “fit" to data, is
not identifiable from the data-set D given that every I-
equivalent structure will yield an identical likelihood for
D. This means at best one may wish to recover the I-
equivalence class of G∗(H). However, this is difficult
since data sampled from P ∗(H) will never perfectly
recreate the independence assumptions of G∗(H).

• If we are searching for a DIN for density estimation,
which is to approximate a model which is similar to
the underlying distribution P ∗(H) in order to answer
probabilistic queries (such as calculating a conditional
probability given some values as evidence). In this case
we need to be wary of two possibilities:

– if one specifies more independence assumptions
(between processes) than those already captured in
I`(G∗(H)), we may still be able to capture P ∗(H)
using some arrangement of the model parameters.
Conversely, a specification of more independence
assumptions than I`(G∗(H)), may result in data
fragmentation.

– Alternatively, selecting few edges may result in re-
stricting the model to never being able to capture
the true empirical distribution P ∗(H). However, few
edges implies a sparser structure than one with more
edges which avoids fragmentation.

In practice, often less edges are chosen for density
estimation given that better generalisation is gained for
new instances [5].

The significance of this study are broad. DINs for partially
observable processes can express complex relationships and
reveal how processes effect each other.

For example, DINs can represent how traffic in road net-
works manifest in data. In educational data mining we can
reveal the influence between participants in a lecture venue
using a DIN. Density estimate can reveal the implications
of students success based on modelled these interactions.
Alternatively, we can model influence between end-users in an
IoT network [?], [7]; or perhaps learn the influence between
learned skills in a human or robot [?].

The method in this paper expands notions in score-based
structure learning for tracking direct influence between par-
tially observable processes by:

1) factorising the collection of processes into a collection
of H-DBNs;

2) and thereafter, defines an assemble relation between
proceeses and a scoring function to evaluate the quality
of candidate DINs.

After these two steps, we consider the well defined com-
binatorial optimisation problem: to search through the search
space for the DIN which optimises the score – which we return
as the goal structure with respect to D.

This paper makes the following technical contributions:
1) to the best of our knowledge, this paper provides the first

score-based algorithm to learn a DIN structure between
a collection of processes;

2) we expand one the traditional BIC score to one which
scores H-DBNs;

3) we show that the new BIC score for H-DBNs is theo-
retically decomposable and empirically consistent;

4) we expand on the traditional greedy heuristic search
procedure to one which uses assembles to link H-
DBNs meaningfully while preserving decomposability
and score-equivalence necessary for a feasible search.

The following structure is followed by this paper: Section
II presents how each process is learned (Section II-A), the
assemble for direct influence (Section II-B), the derived BIC
score for H-DBNs (Section II-C), and the structure search
procedure (Section II-D); and then, Section III and Section IV
review the results and conclusion of this work respectively.

II. THE STRUCTURE SELECTION ALGORITHM

Traditional Score-based structure learning involves estab-
lishing a conjecture space of candidate networks; establishing
a scoring metric which calculates the network-to-observed data
compatibility; and an algorithm to distinguish networks to
optimise the score as a well-defined optimisation problem.

However, since the search space is super-exponential in size,
this poses an NP-hard problem which can be partially solved
using heuristic procedures. This section outlines the score-
based structure learning algorithm employed in this study
which is used to construct the DINs between the collection
of input processes.

A. Hierarchical Dynamic Bayesian Networks (H-DBNs)

Stochastic processes are random variables with statisti-
cal dependencies between them that unfold over time. The
complex probability density can be modelled using dynamic
Bayesian networks (DBNs).

This paper extends the traditional DBN into a H-DBNs
which is able to encode the associations between the ran-
dom variables using the language of probabilistic graphical
modelling. The H-DBNs can be defined as a two-time-slice
hierarchical Bayesian network:

Definition 1. A hierarchical Bayesian network (HBN) is pair
H = (GX , PGX ) where PG is a distribution that factorizes
over the hierarchical structure GX .

Definition 2. A two-time-slice hierarchical Bayesian network
(2-THBN) for a process over X is a HBN over X ′ given XI ,
where XI ⊆ X is a collection of interface variables and X ′
is the next time-slice.

Definition 3 (Hierarchical dynamic Bayesian networks). A
hierarchical dynamic Bayesian network (H-DBN) is a tuple



HDB = 〈H0,H→〉, where H0 is a HBN over X (0), repre-
senting the initial distribution over states and H→ is a 2-
THBN for the process. Given a time interval T ≥ 0, the
distribution over X (0:T ) is described as a unrolled HBN, where
for any i = 1, . . . , n: the Bayesian structure and conditional
probability distributions (CPDs) of X (0)

i are identical for Xi

in H0; and the Bayesian structure and CPDs of X (t)
i for t > 0

are identical for the next time-slice X ′

i in H→.
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Figure 1: A direct influence assemble between two H-DBNs,
G1 → G0, with three time-slices.

B. The Direct Assemble

We have so far discussed a common representation for a
temporal process using the notion of a HDBN. We now define
the assemble relation which describes direct influence between
a family of H-DBNs.

We introduce the direct assemble which imposes an added
collection of independence assertions between two H-DBNs,
H1 and H2, by inserting an edge which is directed from all the
latent (not observed) variables in H1 to all the corresponding
latent variables in H2, given that I`(H1) is the same as
I`(H2), Figure 1 illustrates this relation. The notation used
in Figure 1 are as follows:
• the intra-time-slices are shown as solid lines;
• the persistent inter-time-slice edges are shown using

broken lines;
• lastly, the assemble are provided by the dotted-lined

edges.
We formally define this assemble as:

Definition 4 (The direct assemble). Consider two HBNs,
H0 = (G1, PH0) and H1 = (G2, PH1), where G0 is the
hierarchical network structure whose nodes represent ran-
dom variables OG

0

1 , . . . , OG
0

k , LG
0

k+1, . . . , L
G0

m , and G1 is a
hierarchical network structure whose nodes represent random
variables OG

1

1 , . . . , OG
1

k , LG
1

k+1, . . . , L
G1

m , where both G0 and
G1 encode the same collection of independence assumptions,
and O and L represent the observable and latent variables
respectively. Then the assemble structure ofH0 toH1, denoted

H0→1, is defined as H0→1 = (G0→1, PH0→1
), where G0→1

is a hierarchical network structure whose nodes represent the
random variables OG

0→1

1 , . . . , OG
0→1

i , LG
0→1

i+1 , . . . , LG
0→1

n with
the additional independence assumptions: ∀ Latent variables
Li: (LG

1

i ⊥⊥ NonDescendants
LG1

i

|LG
0

i , PaG
1

H0
). In other words

each variable Li is conditionally independent to its nonde-
scendants given its parents.

The latent (not observed) variables need to be learned
when a structure is proposed by the assembled configuration.
This assembled configuration expounds direct influence in a
straightforward implementation between models, and provides
a sparse representation between families of H-DBNs.

More importantly, it provides an instinctive way of ex-
pressing the way ‘direct’ influence is expected to flow from
one time slice to another, where the choice of granularity
proposes a trade-off between generalised and circumstantial
direct influence structures.

Algorithm 1: The Direct Influence Assemble
1: procedure FAMILYSCORE(HDB H0,HDB [] Hd)
2: score = 0
3: if !isEmpty(Hd) then
4: for each time-slice, t, in H0 do
5: for each variable, x, in H0[t] do
6: if isLatent(H0[t][x]) then
7: UGH0[t][x]

= {}
8: if hasInterDep(H0[t][x]) then
9: UGH0[t][x]

= {InterDep(H0[t][x]),

10: ExtDep(H0[t][x])}
11: else
12: UGH0[t][x]

= {ExtDep(H0[t][x])}
13: end if
14: score += SP̂ (H0[t][x],U

G
H0[t][x]

)

15: else if isObs(H0[t][x]) then
16: if hasInterDep(H0[t][x]) then
17: UGH0[t][x]

= {InterDep(H0[t][x])}
18: score += SP̂ (H0[t][x],U

G
H0[t][x]

)
19: else
20: score += SP̂ (H0[t][x], {})
21: end if
22: end if
23: end for
24: end for
25: else
26: for each time-slice, t, in H0 do
27: for each variable, x, in H0[t] do
28: if hasInterDep(H0[t][x]) then
29: UGH0[t][x]

= {InterDep(H0[t][x])}
30: score += SP̂ (H0[t][x],U

G
H0[t][x]

)
31: else
32: score += SP̂ (H0[t][x], {})
33: end if
34: end for
35: end for
36: end if



37: end procedure

A decomposable score for a complete network is one which
can also be written as a sum of family scores for the complete
network. Algorithm 1 provides a procedure to compute the
family score of a collection of H-DBNs given the direct
influence assemble using any decomposable score, where
UGH0[t][x]

is a collection of dependency variables for variable
x in time-slice t in HDBN H0 and SP̂ is the score produced
given the empirical distribution.

We see that on line 9, variables with inter-time-slice de-
pendencies have parents from previous time-slices and from
external dependency models. However, as seen on line 15, ob-
servable variables do not have inter-times-slice dependencies
since they are relatively instantaneous compared to our time
granularity and so only have intra-time-slice dependencies to
latent variables at higher hierarchical positions.

C. Bayesian Information Criterion

This paper attempts to recover a direct influence network
(DIN) between Bayesian temporal models as a well defined
optimisation problem: a score is established which measures
potential DIN structures relative to the data-set D. We then
use heuristic search procedures to find the highest scoring DIN
structure.

Many attempts have been made to design scores for this
learning task, including the likelihood score and the Bayesian
information criterion (BIC) score [8]. Here we extend the
traditional likelihood score to one which evaluates a DIN
relative to D by using an assemble relation instead of a
standard Bayesian network. We further show that the derived
score is decomposed for these DINs.

The likelihood score, sometimes referred to as the log-
likelihood score, computes the ‘averaged distance’ between

the empirical joint distribution, P̂ (xH
(t)
k

i ,u
H(t)

k
i ), relative to

the product of marginals, P̂ (uH
(t)
k

i )P̂ (x
H(t)

k
i ), which relates

the collection I`(G) to D. In the rare case that the two
models H0 and H1 are independent in D, which almost
never happens in empirical data, the proposed score never
prefers the simpler network over the more complicated one,
since scorel(GH0→H1

: D) ≥ scorel(G∅ : D). Therefore, the
likelihood score can not generalise to the data samples from
the empirical ground truth distribution, P ∗(H), presenting an
over-fitting problem.

To circumvent this, the BIC is often used as a replacement
for the likelihood score [8]. The BIC score is a variation of
the likelihood score with a which prefers simpler structures,
however, it is willing to consider more complex structures only
if there is sufficient justification in the data [5].

In other words, the BIC score is willing to mathematically
trade-off the fit to data for model complexity - and vice-versa
depending on how much data is seen by the model - in doing so
decrease over-fitting. In this research the BIC score is adapted
to measure the trade-off between the fit to data of a DIN with
its complexity. The following score is proposed:

scoreBIC(H0 : D) =M
K∑

k=1

(

T∑
t=1

(

N∑
i=1

(IP̂ (X
H(t)

k →H
(t)
0

i ;

UH0

X
H(t)

k
→H(t)

0
i

))))

− logM

c
DIM [H0],

(1)

where M is the size of the data-set; K is the size of
the dependency model set; T is count of time-slices for
each dependency model; N is the size of the variable set
in each time-slice; IP̂ is the measure of mutual dependence
(mutual information) with regard to the empirical distribution;
DIM [H0] is the size of the set of independent parameters in
H0; and → is the symbol for the assemble relation.

Equation 1 is derived in Preposition 1. Preposition 1 reveals
that Equation 1 is nothing more than the traditional likelihood
score (fit to data) with an added penalty term. In Preposition
1:

1) The entropy term, HP̂ , is independent from the structure
chosen and is therefore negligible.

2) The result trades-off the fit to data with the complexity
of the DIN.

In Preposition 1, there are two notable behaviours regarding
the growth rates of the terms considered:

1) Mutual information: The term IP̂ grows linearly with
respect to the number of samples considered in D.

2) Complexity: The term logM
c DIM [H0] grows logarith-

mically with respect to the size of the data sample D.
Consequently, the result in Preposition 1 gives rise to the

following special properties:
1) Score Consistency: The more data we have - the more

likely we converge to the set I`(G∗).
2) Score Decomposability: The score can be expressed

(through algebraic manipulation) as a sum of fam-
ily scores, which allows implementations to benefit
from computational saving when performing a structure
search.

3) score-equivalence: members from a set of I-equivalent
structures will result in the same score as other members
of the set.

The next section considers the prior, state space and search
procedure to reconstruct a DIN.

D. Priors, State Space, and Search Procedure

In the previous sections we discussed a score and assemble
that can be used to evaluate the quality of possible DINs
between a collection of H-DBNs. We now consider the task
of searching through different influence network structures and
choosing a DIN which provides the highest score with respect
to an assemble relation.

Many contributions in structure learning have been made
over the last 60 years. These include attempts to reconstruct
tree-like structures [9], Bayesian network structures [10], and
general networks [11], [12].



a) Parameter Prior: Our implementation of discrete
Dirichlet parameter priors follow those used by [13] and
[14]. We make use of the BDe prior with score-equivalence
and parameter independence (local and global) as essential
properties [13].

b) Structure Prior: We use tree-based structure priors,
where a score is calculated for every pair of H-DBNs in our
collection of models. We then perform any polynomial time
maximum weighted spanning tree (MWST-score) algorithm
[15] to find the optimising structure.

For any restriction of the in-degree, learning a DIN struc-
ture between H-DBNs is NP-hard. Therefore, huristic search
procedures are required. We are faced with a combinatorial
optimisation problem to find direct influence between HBNs.
We solve this problem by utilising a local search procedure.

We define a search space as a collection of candidate net-
work structures; a scoring function, that we aim to maximize;
the structure assemble, which associates our learned HDBN
models; and finally, a search procedure which explores the
search space. We have already discussed the structure score
and assemble which leaves us to discuss the search space and
elected procedure.

We explore a search space where each search state is a
complete DIN. We connect our search space in terms of the
following operations: edge addition, edge removal, and edge
reversal. These computationally efficient operators provide a
manageability small diameter of the search space (K2) [5].

c) Search Procedure: [11] compared various search pro-
cedures including K2, local search, and simulated annealing.
[11] show that local search offers the best time-accuracy trade-
off, unless a good ordering is known. In this study no such
ordering is assumed. Therefore we employ a greedy hill-
climbing local search procedure.

We pick an initial starting point DIN, G, and calculate
the score of G with respect to some structural assemble.
We then consider all neighbours of G which are possible 1-
step transformations given the predetermined operators, and
compute their scores. Lastly, the change is applied which leads
to the best improvement of the score.

The returned DIN, G, from the iterative heuristic search
procedure can either have reached a local optima or a plateau.
In order to avoid these we use random restarts and a tabu list
[16].

III. RESULTS

Figure 2 shows the parameter and structure learning task
performance for samples generated from a DIN with 4 HDBN
models, 4 latent variables per HDBN network, 3 time-slices,
4 values per variable, 3 edges, a max in-degree of 2, and 2
observable variables.

Six learning tasks are compared using the KL-divergence of
the learned to the true network. Each curve shows the averaged
performance of 10 same sized data-sets, 3 time-slices (Ts), 2
observable variables (Obs), 4 latent variables (Var) learned
with 10 EM iterations (EMit), 5 random restarts (RR), a tabu-
list length of 5 (TL), and 20 structure search iterations (SSit).

Each curve’s description in Figure 2 is as follows:

1) (Random), which learns parameters with a randomly
generated direct influence graph structure, a maximum
in-degree of 2 for each HDBN, and a Dirichlet parameter
prior of 5;

2) (Baseline), which learns both the parameters and struc-
ture representing each HDBN as a single variable (we
plotted only the average of both (Random) and (Base-
line)), Dirichlet parameter prior of 5, with a MWST-
score tree structure prior, and combining each time-slice
into one (cBS);

3) (Low PPrior, Tree SPrior), a first setting of our method
which learns both the parameters and structure with a
Dirichlet parameter prior of 5, with a MWST-score tree
structure prior;

4) (High PPrior, Tree SPrior), a second setting of our
method which learns both the parameters and structure
with a Dirichlet parameter prior of 50, a MWST-score
tree structure prior;

5) (Low PPrior, No SPrior), a third setting of our method
which learn both the parameters and structure with a
Dirichlet parameter prior of 5, and no structure prior;
and finally,

6) (True Struc), which learns only the parameters given the
correct network structure and a Dirichlet parameter prior
of 5. The error bars shows +/- one standard deviation for
the curves (TrueStruc) and (High PPrior, Tree SPrior).

Of all methods provided, learning the direct influence
structure using the proposed score-based approach with the
HDBN BIC score and direct assemble, performs better than a
randomly assigned structure. Figure 2 also suggests that using
a MWST-score structure prior provides better performance
towards learning the true network with a low prior; a higher
Dirichlet parameter prior enables a more stable convergence
to the true network; and treating H-DBNs as single variables
may be better if there are fewer data instances available (in
our analysis at about 85 samples our method does better).
The complications of the search procedure could be derived
from the latent components of each HDBN, which are the only
means of transferring information between the HDBN model
variables.

IV. CONCLUSION

This paper provided the first score-based structure learning
algorithm to learn the network structure and parameters (distri-
bution) of a DIN structure between a collection of processes.
Figure 2 suggests that it is not significantly harder to recover
both the structure and parameters than just the parameters,
which is reason for optimism.

Future work one can investigate the use of operators able to
traverse the search space in larger steps [17]. An advantage of
doing this can avoid local optima, however care must be taken
to avoid cyclic iterations due to disregarding steep gradients.
Finally, A more detailed analysis on parameter tuning is
necessary to optimise the performance of our approach.
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