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The difficulty of learning the underlying structure between processes is a common task found
throughout the sciences, however not much work is dedicated towards this problem. In this
paper, we attempt to use the language of structure learning to address learning the dynamic
influence network between partially observable processes represented as dynamic Bayesian
networks. The significance of learning an influence network is to promote knowledge
discovery and improve on density estimation in the temporal space. We learn the influence
network, defined by this paper, by learning the optimal structure for each process first,
and thereafter apply redefined structure learning algorithms for temporal models. Our
procedure builds on the language of probabilistic graphical model representation and
learning. This paper provides the following contributions: we (a) provide a definition of
influence between stochastic processes represented by dynamic Bayesian networks; (b)
expand on the conventional structure learning literature by providing a structure score
and learning procedure for temporal models; and (c) introduce the notion of a structural
assemble which is used to associate two stochastic processes represented by dynamic
Bayesian networks.

1 Introduction

The problem of describing the interaction or influence between
stochastic processes has received little scrutiny in the current litera-
ture, despite its growing importance. Solving this complex problem
has large implications for density estimation and knowledge discov-
ery. In particular, for making predictions about later aspects of the
process, or even for learning how processes influence each other.

Usually, the individual structure of each stochastic process is
ignored and all are merged into one big process which is modelled
by some probabilistic temporal model. This approach undermines
the explanatory importance of the relations between these processes.
[1] has explored the problems with this approach. The core of the
issue mentioned by [1], is that we lose the underlying structure of
the relationships between the processes which is essential to learn
how one process influences another.

In this paper, we provide a complete method for learning the
dynamic influence network between processes. This paper also
explores the case when we are learning the influence relationship be-
tween partially observable processes. This is a significantly harder
problem since the likelihood of the temporal model to the data has
multiple optima which is induced from the missing samples [1].
Unfortunately, given that learning parameters from missing data is

also a NP-hard problem, heuristic approaches are then needed to
solve for a suitable local optimum of the likelihood function of the
parameters to the data [1].

We assess this problem by providing an algorithm to learn the
influence relations between partially observable stochastic processes
by building on the language of probabilistic graphical modelling.
In particular, we consider structure learning which searches for an
appropriate structure by using scoring metrics and provide evidence
for the effectiveness of our approach over the standard benchmarks
selected. We notice that our derived penalty-based score paired with
a greedy structure search outperforms using a random structure or
a tree structure built using the maximum weighted spanning tree
algorithm.

The application of this research is broad. Influence networks for
stochastic processes can capture the complex relationships of how
processes impact others. For example, we can learn the influence of
traffic in a network of roads to determine how the traffic condition
of a road congestion will impact on another road. In educational
data-mining we may want to determine the influence of participants
in a lecture environment to encourage student success. We may
wish to learn the influence between an IoT network [1, 2]; influence
in music [3]; or influence between the skills of learners or their
attrition [4, 5].
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An overview of the proposed algorithm in this paper is given by
the below instructions. This algorithm is expanded on later in the
paper.

(i) The stochastic processes are given as input.

(ii) The parameters for a dynamic Bayesian network is learned for
each of the stochastic processes (temporal structure remains
static - time invariant and Markov).

(iii) A structure is imposed between the dynamic Bayesian net-
works (using a relation function called an assemble). This
gives us a dynamic influence network (DIN). The parameters
for the DIN are relearned.

(iv) The structure score for the DIN is computed.

(v) A structure search algorithm is initiated to find a DIN struc-
ture which is has an optimal likelihood to the observable
data;

(vi) The optimal DIN is output.

The following contributions is made by this paper:

• The concept of dynamic influence networks (DINs) represent-
ing the influence (relationships) between partially observable
stochastic processes.

• The derivation of a dynamic Bayesian information criterion
(d-BIC score) for DINs.

• The concept of a structural assemble which is able to relate
dynamic Bayesian networks.

• The greedy structure learning procedure for learning DINs.

The following structure is used by this paper: Section 2 provides
the background and related work on DINs; Section 3 defined the
representation of DINs between partially observable stochastic pro-
cesses; Section 3.3 derives the notion of a dynamic structure score
using the notion of an assemble; Section 3.5 provides a greedy struc-
ture learning learning algorithm for learning DINs; the results and
discussion is illustrated by Section 4; and lastly, Section 5 provides
the conclusion of the research and suggestions on future work.

2 Related Work
Many statistical procedures have been used to identify influence
between variables [6, 7, 8, 9]. These statistical procedures have
been extended to the temporal environment to learn relationships
the between processes (variables over time). A significant contribu-
tion is the use of dynamic Bayesian networks which is defined as a
set of parameters and conditional independence assumptions which
together make up an acyclic structure between variables defined us-
ing factors [10, 11]. The values in these factors are referred to as the
parameters, and the list of conditional independence assumptions
between variables are referred to as the structure of the dynamic
Bayesian network.

Learning the independence assertions of a dynamic Bayesian
network can be used to make conditional independence inferences
over time (density estimation) or to simply learn the relationships be-
tween variables (knowledge discovery). [12, 13, 14, 15]. On the one
hand, a sparse graph structure may have more generalisability for
density estimation, and on the other hand having a more dense graph
can reveal unknown relationships for knowledge discovery. Care
must be taken when considering for what purpose is the network
required (more on this in the discussion) [11].

A successful approach to structure learning is using score-based
structure learning [11, 16]. In score-based structure learning we
develop a set of hypothesis structures which are evaluated using a
score-based function that computes the likelihood of the data to the
hypothesised structure. The likelihood is usually expressed as the in-
formation gain (mutual information) of the structure and parameters
of the distribution to the data.

A search algorithm is then performed to identify the highest
(possible) structure based on the structure score [17, 18, 19, 20].
Viewing this problem as an optimisation problem allows us to
adopt the already established literature on search methods in this
super-exponential space to find the optimal structure given the data
[21, 22, 23, 24].

The structure of this section is as follows. In subsection 2.1
we introduce the well established BIC score which offers a way to
trade-off the fit to data vs model complexity (the amount of inde-
pendence assumptions between variables in the data). Finally, in
subsection 2.2 we introduce a greedy search method to find the an
optimal graph structure.

2.1 The BIC score

The BIC score models the structural fit to data verses the complexity
of the conditional independence assumptions between variables, that
is, the amount of independence assumptions made on the structure
[25]. This makes it a popular choice for structure learning methods
since the model complexity has a direct impact on the performance
of inference tasks. This is because the amount of conditional inde-
pendence assumptions on a particular variable increases the factor
size of that variable exponentially. The mathematical expression of
the BIC score comprises of two terms: the first term models the fit
to data; and the second term penalises the fit to data based on the
complexity of the structure considered. The complete BIC score is
as follows:

scoreBIC = `(θ̂G : D) −
log M

2
DIM[G],

where the count of instances is denoted by M and the count of
independent parameters is denoted by DIM[G] in the Bayesian
network.

The intuition of the Bayesian score is that as the amount of
samples increase (ie. M) the score is willing to consider more
complicated structures if enough evidence (samples, ie. M) is con-
sidered [26, 27]. The BIC core is particularly effective since the
likelihood score (one without a penalty to complexity) will always
prefer the most complicated network. However, the most complex
networks also impose the risk of fragmentation, which is the expo-
nential increase to the size of the factors caused by the increase of
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the in-degree of a variable. Penalty-based structure scores allows us
to explore the opportunity to adopt more complicated structures if
there is enough justification that the likelihood of the structure and
parameters to the data is high-enough to compromise on the models
speed to perform inference tasks caused by fragmentation.

There has been much contributions in the literature on the prop-
erties of the BIC score [25, 28, 29]. Key constitutions include a
proof the it is consistent and is score equivalent which are necessary
for efficient search procedures [30, 31, 32].

2.2 Learning General Graph-structured Networks

Since the search space for the optimal Bayesian structure is super-
exponential, the difficulty of learning a graph structure for a
Bayesian network is NP-hard. More specifically, for any d ≥ 2, the
problem of finding a structure with a maximum score with d parents
is NP-hard [21, 22, 23, 24]. See [33, 34] for a detailed proof.

Despite this, there have been many contributions to learning an
optimal structure. A key contribution is using heuristic search proce-
dure to find an optimal acyclic graph structure [35]. These heuristic
search procedures make use of search operators (changes to the
graph structure) and a search algorithm (e.g. greedy search, best first
search or simulated annealing) [36]. The intuition of this approach is
find an optimal acyclic structure by gradually improving the choice
of the structure using the search operators [37, 38, 39, 40, 41].

3 Dynamic Influence Networks
We present the following algorithm to learn dynamic influence net-
works between a set of partially observable processes:

(i) Our stochastic processes are given as a set of partially ob-
served data. This is the input.

(ii) From this data, we learn a dynamic Bayesian network for
each partially observable stochastic processes. Expectation
maximisation is used to learn the latent variables.

(iii) Build a network with the set of independence assumptions
and relearn the parameters for that model.

(iv) Perform expectation maximisation once again to relearn the
latent parameters of the resulting network.

(v) Evaluate the resulting dynamic influence network using a
scoring function and structural assemble.

(vi) Determine if convergence has occurred or if we exceed the
threshold for convergence.

(vii) Apply the structural operator to the model and reevaluate the
dynamic influence network using a structure score. Repeat
steps (iii - vii) until the structure score can not be improved
or a threshold is reached.

(viii) Output the resulting network.

Figure 1 provides a flowchart of our method to learn dynamic
influence networks between partially observable processes.

(i) Par obs Process,
D〈I0,I→〉G from P∗(〈I0, I→〉G)

(ii) Learn H = {〈H1
0 ,H

1
→〉, . . . , 〈H

k
0 ,H

k
→〉}

(iii) Learn I(G) = I(GI ∪ GB) and H

(iv) EM(H, I(I(G)))

(v) Compute
score(G,I(G), assemble(α))

(vi) (l ≥ L)

(vii) Apply operator,
modi f y(I(GI))

(viii) I(G)

Yes

No

Figure 1: A flowchart of our method to learn dynamic influence networks between
partially observable processes.

3.1 Assumptions

There are various assumptions we need to make about our dynamic
influence network (DIN). For the below definitions, we denote B(t)

i
to be a shorthand for a Bayesian network Bi at time-point t.

Time Granularity Assumption We select a time-granularity, de-
noted 4, to split observable data into temporal time-slices at different
intervals. We use the notation t4 to represent the influence state
with t time-slices.

The Markov Assumption We also adopted the Markov assump-
tions between consecutive states.

Definition 1 The Markov assumption is satisfied for a DIN over
the template Bayesian networks, B = {B1, . . . ,BR}, if for all t ≥ 0,
(B(t+1) ⊥⊥ B(0:(t−1)) | B(t)).

The Time-Invariance Finally, we assume that the unrolled tem-
plate structure of the DIN (which persists through time) does not
change.
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3.2 Dynamic Influence Networks

Given the assumptions above we define the dynamic influence net-
work as follows:

Definition 2 A dynamic influence network, denoted as DIN, is a
couple 〈I0, I→〉, where I0 is an influence network over the set of
Bayesian networks, B(0) = {B1, . . . ,BR}, representing the starting
distribution and I→ is a 2-time-slice influence network for the rest of
the influence distribution (P(B′ | BI) =

∏R
i=1 P(B

′

i | PaB′i )). For any
specified time-span T ≥ 0, the joint distribution over B(0:T ) is de-
fined as an unrolled influence network, where, for any i = 1, . . . , n:
the structure and conditional probability assumptions between vari-
ables of B(0)

i are the same as those for Bi in I0; and the structure
and conditional probability assumptions between variables of B(t)

i
for t > 0 are the same as those for B

′

i in I→.

3.3 The Structure Score

In this paper we adapt the celebrated Bayesian information criterion
(BIC) to a dynamic Bayesian information criterion (d-BIC) for our
dynamic influence networks. The d-BIC score make the same trade-
off between model complexity and fit to the data, only the d-BIC
can be applied to dynamic networks.

The d-BIC score is as follows:

scoreBIC(H0 : D) = M
K∑

k=1

(
T∑

t=1

(
N∑

i=1

(IP̂(X〈H
k
0 ,H

k
→〉

(t)

i ; PaG
X
〈Hk

0 ,H
k
→〉

(t)

i

)))

−
log M

c
DIM[G],

where the amount of samples is given by M; the amount of depen-
dency models is given by K; the amount of time-slices is given by
T for any dependency model; the amount of variables in each time-
slice is given by N; IP̂ denotes the information gain in terms of the
empirical distribution; and DIM[G] is the amount of independent
parameters in the entire DIN.

The d-BIC score is designed to exchange the complexity of the
dynamic influence network, log M

c DIM[G], for the fit to the data,
D. As the amount of samples increases, the information gain term
grows linearly, and the model complexity part logarithmically grows.
The intuition of the d-BIC score is that we will be willing to consider
more complicated structures, if we have more data that justifies the
need for a more complex model (i.e. more conditional independence
assumptions).

3.4 Structure Assembles

Choosing the set of parent variables in a DIN establishes the notion
of a structural assemble. A structural assemble is a template which
relates temporal models. The structural assemble defines the parent
sets for variables to construct an dynamic influence network. More
sepcifically, the assemble relation is defined as follows:

Definition 3 Consider a family of dynamic Bayesian networks (D),
where 〈D0

0,D
0
→〉 represents the child with the parent set PaG

〈D0
0,D

0
→〉

=

{〈D1
0,D

1
→〉, . . . , 〈D

k
0,D

k
→〉}. Further assume that I(〈D j

0,D
j
→〉) is the

same for all j = 0, . . . , k. Then the delayed dynamic influence
network, denoted by 〈A0,A→〉, will satisfy all the independence
assumptions in I(〈Di

0,D
i
→〉) ∀ i = 0, . . . , k. In addition, ∀ j and ∀ t,

〈A0,A→〉
(t) also satisfies the following independence assumptions

for each hidden or latent variable denoted Li and some t > α ∈ Z+:

∀ L
〈D0

0,D
0
→〉

(t)

i : (L
〈D0

0,D
0
→〉

(t)

i ⊥⊥

NonDescendants
L
〈D0

0 ,D
0
→〉

(t)

i

|L
〈Dk

0,D
k
→〉

(t)

i , L
〈Dk

0,D
k
→〉

(t)−1

i , . . . ,

L
〈Dk

0,D
k
→〉

(t)−α

i , Pa
〈D0

0,D
0
→〉

(t)

Li
).

The assemble above an expressive representation to capture in-
fluence relationships that persist through time between temporal
models. However, the choice of α is important since choosing a
large α will render many dependencies on variables cause a frag-
mentation bottleneck, and therefore a larger computational burden
for learning and inference tasks.

3.5 Structure Search

At this point we have the following well-defined optimisation prob-
lem:

1. A training set D〈I0,I→〉G = {D〈D1
0,D

1
→〉
, . . . ,D〈Dk

0,D
k
→〉
}, where

D〈Di
0,D

i
→〉

= {ξ1, . . . , ξM} is a set of M instances from underly-
ing ground-truth DBN 〈Di

0,D
i
→〉;

2. a structure score: score(〈I0, I→〉 : D〈I0,I→〉G );

3. and, finally, we have an array of L distinct candidate struc-
tures, G = {G1, . . . ,GL}, where each structure Gl repre-
sents a unique list of condition independence assertions
I(G) = I(GI ∪ GB).

Our objective of this optimisation problem is output the DIN
which produces the maximum score. We present the following
influence structure search algorithm in Algorithm 1, where S =

{S1
→, . . . ,S

P
→} represents the set of stochastic processes; assemble,

is the option of the parameters for an assemble relation; and score,
the selected scoring function used for the search procedure.

Algorithm 1: Influence structure search

Input: S = {S1
→, . . . ,S

P
→}, assemble, score

Output: Gi

For each process we learn a temporal model
(H = {〈D1

0,D
1
→〉, . . . , 〈D

P
0 ,D

P
→〉);

Using the models in H we generate a search space (ie.
G = {G1, . . . ,Gn});

Find the structure Gi which produces the highest score
(w.r.t. assemble) in G;

return Gi

The dynamic influence network, 〈I0, I→〉G, holds a distribution
between a set of DBNs, denoted 〈D1

0,D
1
→〉 , . . . , 〈D

k
0,D

k
→〉, with

the conditional independence assumptions listed by I(〈I0, I→〉G).
We further assume that P∗(〈I0, I→〉G) is induced by another model,
G∗(〈I0, I→〉G), we will refer to this model as the underlying ground-
truth model. The model is evaluated by recovering the set of local
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independence assertions in G∗(〈I0, I→〉G), denoted I(G∗(〈I0, I→〉G)),
by only observing D〈I0,I→〉G . This structure learning procedure is
referred to in this paper as greedy structure search (GESS).

3.6 Computational Complexity and Savings

The overall computational complexity of the above structure search
algorithm is given by [42]. In order to allow for notable computa-
tional savings we suggest using a cache to store sufficient statistics
and the of max priority queues (implemented using heaps) to arrange
contending structure using their scores as keys. Random restarts
and Tabu lists are also used.

4 Experimental Results
This sections presents the performance of modelling influence be-
tween partially observable stochastic processes using dynamic influ-
ence networks (DINs). We evaluate the performance of model aside
several benchmarks.

The experimental setup is as follows. We constructed a ground-
truth DIN which was used to sample sequential data. To simulate
a partially observed process, several variables were removed from
the sequential data sample. The Algorithm provided in section 3
was used to learn candidate networks. Several variations of the
algorithm was also used, such as using the d-AIC score instead of
the d-BIC; using prior knowledge of the ground-truth structure such
as the maximum in-degree used in the generative distribution; using
tree structure for sparse generalisability; a even using no structure.

More specifically, the empirical evaluation of our method was
set against the following benchmarks:

1. a random DIN structure;

2. a DIN with no structure (i.e. all DBNs are mutually indepen-
dent);

3. a DIN with a tree like structure (each DBN has one and only
one parent DBN);

4. a structure that incorporates prior knowledge of the true struc-
ture;

5. a learned structure with the d-AIC score instead of the d-BIC
score, which is the dynamic extension of the AIC score;

6. using the full knowledge of the DIN ground-truth structure.

The parameters for the ground-truth DIN distribution is sum-
marised by Table 1.

Figure 2 illustrates a logarithmic scale plot indicating the rela-
tive entropy (also known as KL-divergence) to the ground-truth DIN
over the amount of samples alongside the aforementioned bench-
marks. The vertical axis represents the logarithmic scale of the
relative entropy to the ground-truth generative model (Table 1) and
the horizontal axis represents the amount of samples. 10 trials were
run for each experiment and the mean of the result was plotted with
the standard deviation as error bars (shaded regions). All of the
model parameters for each experiment is provided in Table 2 for
reproducibility.

In Figure 2 we record that providing no structure, a random
structure, tree structures, and finally, learning with knowledge of the
maximum order in-degree executes in a same way with reference to
their relative entropy to the ground-truth DIN. However, knowledge
about the maximum order in-degree executes better on average than
the other procedures for a large amount of instances (greater than
one thousand). The d-AIC and d-BIC scores execute on average
better than the other learning procedures (not counting learning
using the true structure). However, the d-BIC and d-AIC penalty
scores execute similarly.

Figure 3 illustrates a logarithmic scale plot indicating the execu-
tion times (in milliseconds) over the amount of samples alongside
the aforementioned benchmarks. The vertical axis represents the
logarithmic scale of the execution time of each experiment in mil-
liseconds and the horizontal axis represents the amount of samples.
10 trials were run for each experiment and the mean of the result was
plotted with the standard deviation as error bars (shaded regions).

In Figure 3 we provide the results of the execution times for
the learning procedures considered. With respect to their execution
times, the d-AIC, d-BIC scores, and learning with knowledge of the
ground-truth maximum in-degree yield the best run-time. Learning
tree-structures, generating a random structures, using no structure,
or being given the true structure can be achieved in constant time. It
is also noticed that learning with the maximum in-degree from the
ground truth can be done faster than using penalty score procedures,
which have roughly the same execution time.

In the experimental learning scenario the three penalty-based
learning procedures outperformed the benchmarks. Notably these
penalty-based learning procedures provide significant improved
performance than using no or a random structure for the DIN.

The results also indicate that learning a tree structure for the
DIN still significantly outperformed the use of a random structure.
This result is particularly useful from a computational saving per-
spective as tree structures are sparse since they capture less complex
dependence relations between variables. Tree structure summarise
effective independence assertions and thus offer better generalisabil-
ity. Another notable result from Figure 2 is that when we have fewer
samples (> 250) we may be better suited to use no structure since
imposing a structure with little training data weakens the inferences
we can draw from the model.

5 Conclusion

In this paper we empirically demonstrated the a score-based struc-
ture learning procedure to learn a DIN to represent the influence re-
lationships between partially observable stochastic processes. Why
we would want to learn a DIN depends on what the structure will
be used for.

On the one hand, if we are trying to identify the original DIN
structure for knowledge discovery, then we will need to identify
each of the original conditional independence assumptions of the
ground-truth network. This means we will need to find the set
I(G∗(〈I0, I→〉G)). This is not a promising task since there are many
perfect maps for P∗(〈I0, I→〉G) that can be derived fromD〈I0,I→〉G .

Recognising I(G∗(〈I0, I→〉G)) from the set of structures from
G∗(〈I0, I→〉G) will yield the same fit to the data. Therefore iden-
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Table 1: A table summarising the parameters for the ground-truth DIN distribution.

Ground-truth DIN Distribution
No. DBNs 10
Random variable values 3
No. time-slices 5
No. layers 2
No. CPDs between DBNs 15
max in-degree 2
No. Obs 5 p.t.
No. Latent 3 p.t.
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Relative Entropy

Random structure
No structure

Tree structures
GESS with PK

GESS with d-BIC
GESS with d-AIC
True structure

Figure 2: The relative entropy (also known as KL-divergence), to a ground truth DIN, for seven learning tasks to construct a dynamic influence network
between dynamic Bayesian networks with respect to the amount of training samples.

Table 2: A table showing all of the parameters used in the structure learning methods in this paper.

Rand No struc Tree GESS with PK GESS with BIC GESS with AIC True
α 2 2 2 2 2 2 2
No. edges - - - 15 - - 15
Max in-degree 3 - - 3 - - -
No. observable var 5 5 5 5 5 5 5
Dirichlet prior 5 5 5 5 5 5 5
Parameter threshold - - - - 5000 5000 -
EM iterations 20 20 20 20 20 20 20
EM accuracy (µ%, σ) (76%, 10)
Likelihood score - - Yes Yes Yes Yes -
Penalty score - - - - BIC AIC -
Search iterations - - - 50 50 50 -
No. random restarts - - - 5 5 5 -
Tabu-list length - - - 10 10 10 -
α 2 2 2 2 2 2 2
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Figure 3: The execution time in milliseconds for seven learning tasks to construct a dynamic influence network between dynamic Bayesian networks with
respect to the amount of training samples.

tifying the original ground-truth structure is not identifiable from
D〈I0,I→〉G . This is because the structures in the I-equivalent structure
set all produces the same numeric likelihood (mutual information)
forD〈I0,I→〉G . Therefore, we should rather try to learn a set of struc-
tures that are I-equivalent to G∗.

On the other hand, if instead we are trying to learn a DIN struc-
ture for density estimation (i.e. to draw probabilistic inferences),
then we are interested in capturing the distribution P∗(〈I0, I→〉G). If
we can successfully constructure such a distribution then we can
reason about new data instances and also sample new one.

There are two implications when learning a structure or density
estimation: Firstly, Although capturing more independence asser-
tions than specified in I(G∗(〈I0, I→〉G)) may still allow us to capture
P∗(〈I0, I→〉G, our selection of more independence assumptions could
result in data fragmentation. Secondly, selecting too sparse struc-
tures can restrict us to never being able to learn the true distribution
P∗(〈I0, I→〉G no matter how we change the parameters. However,
often sparse DIN structures can be used to promote computational
complexity savings [11].
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