
Learning the Influence Structure between Partially Observed Stochastic Processes
using IoT Sensor Data

Ritesh Ajoodha and Benjamin Rosman
School of Computer Science and Applied Mathematics

The University of the Witwatersrand, Johannesburg
And

The Council of Scientific and Industrial Research, Pretoria
South Africa

Abstract

The recent widespread of availability of sensors, as part of the
IoT, presents the opportunity to learn the properties of com-
pound distributions in practical applications. Understanding
temporal distributions by observations collected from the IoT
can advance many intelligent applications. In this paper we
develop an algorithm to learn influence between stochastic
processes using observations obtained from the IoT. The pro-
posed method learns these processes using temporal mod-
els independently, and then attempts to recover the under-
lying distribution of influence between them. Experimental
results are provided which demonstrate the effectiveness of
our method. This approach is useful in applications that re-
quire an understanding of how partially observed high-level
processes can influence each other given a set of observations
at different times.

Introduction
The Internet of Things (IoT) is a network of on-line devices
which are able to exchange data. These devices contain sen-
sors which collect observations from environments. Several
such observations can be aggregated to describe some par-
tially observed phenomena whose recovery can be useful for
intelligent applications. For example, intelligent transporta-
tion systems (ITS) attempts to provide traffic management
that allows users to traverse transportation networks in a safe
and effective manner.

Predicting the influence of traffic conditions can be
achieved by aggregating features obtained from the IoT
that describe transportation networks. Such features include
weather observations (smart watches), the time, number of
cars (smart phones), and event start-times (smart calenders).
All of this data can be collected at different times of the day
from on-line smart devices to tell us something about tem-
poral phenomena (e.g. network traffic).

In this paper we provide a theoretical foundation for such
temporal intelligent applications. We provide an algorithm
to learn influence between partially observed stochastic pro-
cesses described by IoT observations. More specifically, we
wish to learn the structure and parameters of a probability
distribution which describes the influence between a set of
partially observed processes.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Learning a probability distribution for temporal processes
can aid in performing density estimation for trajectories; or
perhaps for mere knowledge discovery where we are inter-
ested to learning how processes interact (e.g. learning the
influence of how the mood of workers in an office affect the
performance and work-flow of activities in a corporate en-
vironment. In this case, IoT can provide sensor data from
smart-watches, cell phones, etc.) to describe the hypothet-
ical mood of individuals. This paper stems from the work
of Ajoodha and Rosman (2017), who recovered the influ-
ence structure between latent variables aggregated over ob-
servations in the non-dynamic setting (Ajoodha and Rosman
2017).

Learning and representing a probability distribution over
partially observed stochastic processes poses a difficult
learning problem. Unlike in observable data, the likelihood
function in incomplete data is not decomposable and we
have to perform inference to evaluate it. This forces us to
use non-linear optimisation techniques such as EM or gra-
dient ascent (Binder et al. 1997) to optimise the likelihood
function.

The novelty and intuition of our approach is to learn
the optimal influence structure in layers. We firstly learn a
set of independent models (as HMMs), and thereafter, op-
timise a structure score over possible structural configura-
tions. Since the search for the optimal structure is done us-
ing complete data we can take advantage of efficient learn-
ing procedures and significant computational savings from
the structure learning literature (Koller and Friedman 2009).

We provide the following contributions: (a) we introduce
the notion of delayed influence between HMMs; (b) extend
the traditional BIC score for temporal models rather than
random variables; (c) provide a complete algorithm to re-
cover the influence structure between HMMs; (d) provide a
notion of a delayed structural assemble (DSA) to relate tem-
poral models for delayed influence; (e) and finally, provide
empirical evidence for the effectiveness of our method with
respect to a generative ground-truth distribution.

This paper is structured as follows. The background sec-
tion reviews current literature on parameter estimation for
complete and incomplete data; the related work section re-
views current work in structure learning; we then provide
the specification of our algorithm, this includes the mod-
ified structure score and introduces a DSA; thereafter, we

present the empirical results which show the effectiveness
of our method; and finally, we provide a discussion of the
results in terms of IoT sensor data.

Background
A Bayesian network (Jensen 1996) is a directed acyclic
graph (DAG) whose nodes represent random variables and
whose edges represent the influence of one variable over an-
other. A Bayesian network structure is often established as a
set of independence assertions between these random vari-
ables that encode a joint distribution in a compact way (Pearl
1988).

In this section we review preliminary work in param-
eter estimation for Bayesian networks (Koller and Fried-
man 2009). We explore the basic definition of a dynamic
Bayesian network (DBN), define a hidden Markov model
(HMM), review methods to learning parameters for observ-
able data; and finally, review learning parameters for missing
data (Heckerman, Geiger, and Chickering 1995).

Dynamic Bayesian Networks
The Markov (representing the next state as independent from
the past given the present) and time invariance (allowing the
system dynamics to be stationary) assumptions (Koller and
Friedman 2009) allow us to compactly represent a trajectory
over time since we need only specify a 2-time-slice Bayesian
network that consists of the initial distribution, P (X), and
a transition model, P (X ′|X), where X is a template set
of random variables. The transition model can then be un-
rolled into a dynamic Bayesian network (Koller and Fried-
man 2009).

A 2-time-slice Bayesian network for a process over the
set of template variables X is a conditional Bayesian net-
work over X ′ given XI , where XI ⊆ X is a set of interface
variables (Koller and Friedman 2009).

The conditional Bayesian network only has parents,
and hence conditional probability distributions (CPDs), for
X ′. Interface variables refer to those variables that per-
sist through the temporal aspect of the model (e.g. abstract
changes in the process). Consequently for every template
variable we have a template factor (a matrix of CPDs) which
will be initialised as the model unfolds. For example, we can
describe a transitional distribution as

P (X ′|X) = P (X ′|XI) =

n∏
i=1

P (X ′i|PaX′i),

where PaX′i is the parent set for X ′i . A dynamic Bayesian
network (DBN) (Koller and Friedman 2009) is a pair
〈B0,B→〉, where B0 is a Bayesian network over X (0), rep-
resenting the initial distribution over states and B→ is a 2-
time-slice Bayesian network for the process. For any desired
time span T ≥ 0, the distribution over X (0:T) is defined as a
unrolled Bayesian network, where, for any i = 1, . . . , n, the
structure and CPDs of X (0)

i are the same as those for Xi in
B0; the structure and CPDs of X (t)

i for t > 0 are the same
as those for X ′i in B→.

Hidden Markov Models
A hidden Markov model is a DBN (Eddy 1996). The likeli-
hood function of the hidden Markov model, as illustrated in
Figure 1, relative to the data decomposes as

L(Θ : X0:T , O0:T) =
∏
i,j

θ
M [Xi→Xj]
Xi→Xj

∏
i,k

θ
M [Xi,Ok]

Ok|Xi ,

where Θ is the complete set of parameters, M [Xi → Xj]
is the count of transitions from Xi → Xj for observation k
in the state i, and M [Xi, Ok] is the counts for Xi and Ok.
For a more detailed overview of DBNs and hidden Markov
models see (Murphy 2002; Bishop 2006). In the next two
section we look at learning parameters for general Bayesian
networks.

X(0) X(1)

O(1)

X(2)

O(2)

X(3)

O(3)

Figure 1: An illustration of a hidden Markov model with 4 times-
lices. The dotted lines indicate the inter-time-slice edges for the
persistent variable X(t). The solid lines indicate the intra-time-
slice edges for each respective time-slice.

Learning Parameters with Observable Data
A common parameter learning method is Bayesian Estima-
tion (BE). BE follows the Bayesian paradigm which views
any event that has uncertainty as a random variable with
a distribution over it. Suppose we have a data-set, D =
{ξ1, . . . , ξM}, where each instance contains only one ob-
servation x, then we can express the joint distribution of
each observation (as well as the parameter θ which gener-
ates the data) by using the chain rule for Bayesian networks
as P (x[1], . . . , x[M], θ) = P (x[1], . . . , x[M]|θ)P (θ). This
gives us the prior over θ and the probability of each instance
given θ,

P (x[1], . . . , x[M], θ) = P (θ)

M∏
i=1

P (x[i]|θ).

We can express the posterior of this prior, given the data,
using Bayes rule:

P (θ|x[1], . . . , x[M]) =
P (x[1], . . . , x[M]|θ)P (θ)

P (x[1], . . . , x[M])
.

There are many choices for a prior distribution such
as the Dirichlet conjugate prior (Heckerman, Geiger, and
Chickering 1995) which is characterised by a set of hyper-
parameters (α1, . . . , αk).

Learning Parameters with Missing Data
We now consider the much more difficult problem of learn-
ing parameters from missing data. We consider latent vari-
ables since we need to learn latent variables to aggregate ob-
servations. We often consider latent variables because they

provide a sparse parameterisation of a distribution (Koller
and Friedman 2009).

Estimating missing data is a well defined problem in
statistics (Rubin 1976). Since the likelihood function for
missing data has multiple optima, we must resort to heuris-
tic methods. A common algorithm to optimise the likeli-
hood function is Expectation Maximisation (EM) which at-
tempt to learn both the missing data and the parameters iter-
atively. The EM algorithm generalises several algorithms in-
cluding the Baum-Welch algorithm used for learning HMMs
(Dempster, Laird, and Rubin 1977). The EM algorithm is
a 2-step process, the E-step and the M-step. In the E-step
we perform Bayesian inference to infer the data given the
parameters. That is, for each instance, ξ[m], and each fam-
ily, X and U, we compute P (X,U|ξ[m], θt), where θt is
the current setting of the parameters at iteration t. We now
can compute the expected sufficient statistics, M̂ , for each
combination of values x,u per family. We can express the
sufficient statistics as

M̂θt [x,u] =
M∑
m=1

P (x,u|ξ[m], θt).

In the M-step we treat the expected sufficient statistics, M̂ ,
as real sufficient statistics and then use BE. The EM algo-
rithm is guaranteed to monotonically improve the likelihood
of the parameters relative to the data at each iteration (Caffo,
Jank, and Jones 2005).

Related Work
A popular approach to structure learning is Score-based
structure learning which requires the definition of a hypothe-
sis space of potential network structures; defines a structure
score which gauges how well the model fits the observed
training data; and finally, attempts to find the highest scoring
structure as an optimisation problem. However, given that
the search space over models is super-exponential in size,
one resorts to heuristic techniques (O’Gorman et al. 2015).

We consider score-based structure learning (Tang and Xu
2014) since it (a) considers the complete structure between
models as a state in the search space; (b) preserves basic
score properties (metrics to evaluate the worth of a model
relative to the data) to allow for feasible computations; and
(c) it provides a clear indication of the independence asser-
tions between the concerned structures relative to the data. In
this section we review score-based structure learning com-
ponents. We begin by discussing structure scores; attempt to
learn tree-structured networks; and then finally, move to the
more difficult problem of learning graph structures.

Structure score
A well-known choice of structure score is the Bayesian in-
formation criterion score (BIC-score) (Watanabe 2013). The
BIC-score is a popular choice for trading-off model com-
plexity and fit to data (Schwarz 1978). The BIC score con-
sists of two terms: the first describes the fit of the hypoth-
esised structure to the data, usually the likelihood function
scoreL = `((θ̂,G) : D); and the second is a penalty term

for complex networks. More formally the BIC score is given
as

scoreBIC = M

n∑
i=1

IP̂ (Xi;PaGXi)−
logM

2
DIM [G].

where IP̂ (X;Y) =
∑
x,y P̂ (x, y) log P̂ (x,y)

P̂ (x)P̂ (y)
; M is the

number of training instances; DIM [G] is the number of in-
dependent parameters in the network; and P̂ is the empirical
distribution. The likelihood term maximises the likelihood
(θ̂) given a particular graph structure (G) relative to the data
(D).

The BIC score has the following properties (Gelman,
Hwang, and Vehtari 2014). (a) As we increase the number
of samples the emphasis moves from model complexity to
the fit to data. In other words, as we obtain more data we
are more likely to consider more complicated structures. (b)
As the BIC score acquires more data it approaches the true
structure (or one which is i-equivalent, that is a structure
which makes the same independence assumptions). (c) The
BIC score gives the same score for members of the same i-
equivalence class, that is, different structures which encode
the same independent assumptions (Malone 2015). We now
turn our attention to using scoring functions to learn tree
structures.

Learning Tree Structures
Learning a tree structured network is perhaps the simplest
structure learning problem. The first application of learning
a tree structured network was proposed by (Chow and Liu
1968). Having selected a structure score, we turn our atten-
tion to an optimisation problem which attempts to maximise
the selected score over potential structures.

There are several reasons that one would learn tree struc-
tured networks. Firstly, there already exists powerful algo-
rithms for efficient optimisation over high-dimensional tree
structured networks; and secondly, trees provide sparse net-
works with manageable generalised parameterisation which
reduces over-fitting.

A general algorithm to obtain a tree structure network is
to compute the score of every pair of variables and then use a
maximum weighted spanning tree (MWST) algorithm (Pearl
2014). One could use any standard MWST algorithm such
as Prim or Kruskal in O(n2). Using a MWST allows us to
summarise the most important dependences between sets of
variables with one parent.

Learning Graph Structures
In the case of learning general graph-structures the struc-
ture learning problem’s complexity increases significantly
(Koller and Friedman 2009). More formally (Koller and
Friedman 2009), for any dataset, D, and decomposable
structure score, score, the problem of finding the maximum
scoring network, that is,

G∗ = arg max
G∈Gd

score(G : D),

is NP-Hard for any d ≥ 2, where Gd = {G : ∀i, |PaGXi | ≤
d}. In other words, finding the maximal scoring network

structure with at most d parents for each variable is NP-
hard for any d greater than 2. However, using local search
procedures we are able to provide a solution using heuristic
hill-climbing (Fan, Yuan, and Malone 2014).

There are two main design choices that one needs to make
when using a local structure search procedure: (i) the choice
of search operators and (ii) search procedure.

(i) Search operators are local steps to traverse the search
space. Common choices for local search operators are edge
addition, reversal, and deletion.

(ii) A common choice for a search procedure is greedy
hill-climbing. The greedy hill-climbing approach starts by
selecting a prior network. From this prior network we it-
eratively try to improve the structure’s score by utilising
search operators. In greedy hill-climbing we always apply
the change that improves the score until no improvement can
be made.

In the next section we provide the first analysis of the
problem of learning delayed influence between temporal
models.

Learning Delayed Influence Between HMMs
Delayed influence between two stochastic processes, A→
and B→, is defined as where a change of a variable in pro-
cess A→ at time t1 will only result in a change in the vari-
ables at or after t1 in B→. In this paper we provide the first
score-based structure learning analysis of this problem to
discover the complete delayed dynamic influence network
(DDIN) structure. More formally, a DDIN is a DBN that fac-
torises the joint distribution between a finite set of stochastic
processes represented as HMMs.

We assume that the data generated from the ground-
truth influence structure has the following form:
D〈I0,I→〉G = {D〈H1

0,H1
→〉, . . . ,D〈Hk0 ,Hk→〉}, where

D〈Hi0,Hi→〉 = {ξ1, . . . , ξM} is a set of M instances
from HMM 〈Hi0,Hi→〉. These instances are observations
collected from IoT sensors which describe a latent phe-
nomenon. Each ξj is generated IID over time from an
underlying temporal distribution, P ∗(〈I0, I→〉G), where I0
is an initial network and I→ is an unrolled network with
respect to structure G.
〈I0, I→〉G contains a distribution between a set of HMM

models, 〈H1
0,H1

→〉, . . . , 〈Hk0 ,Hk→〉, with the independence
assumptions specified by I`(〈I0, I→〉G). We further as-
sume that P ∗(〈I0, I→〉G) is induced by another model,
G∗(〈I0, I→〉G), which we refer to as the ground-truth
structure. We will evaluate our model by recovering the
local independence assertions in G∗(〈I0, I→〉G), denoted
I`(G∗(〈I0, I→〉G)), by only observing the IoT sensor data,
D〈I0,I→〉G .

The architecture of the proposed algorithm is given by
Figure 2. We (ii) learn each HMM independently (EM); (iii)
set the independence assumptions with respect to each tem-
poral model and learn the resulting dynamic influence net-
work; (v) compute the structure score of the model (using a
scoring function and assemble for influence networks); (vi)
see if we converge or if the number of iterations (i) exceeds
the iteration threshold (t); (vii) apply the operator which re-

sults in the best improvement of the score with respect to
the data. Steps (iii), (iv), (v), and (vii) are repeated until we
can not improve the score for the structure with respect to
the data or if we exceed the specified number of iterations.
We then select the best network (viii). We will refer to this
algorithm as the Greedy structure search (GESS).

(i) Partially observed IoT data,
D〈I0,I→〉G from P ∗(〈I0, I→〉G)

(ii) Learn inde-
pendent networks,

H = {〈H1
0,H1

→〉, . . . , 〈Hk0 ,Hk→〉}

(iii) Set of independence
assumptions, I`(H)

(iv) Expectation Maximization,
EM(H, I`(H))

(v) Structure score,
score(H, I`(H), assemble(α))

(vi) (i ≥ t)

(vii) Apply operator,
modify(I`(H))

(viii) I`(H)

Yes

No

Figure 2: The architecture of the proposed algorithm.

In the next section we define the scoring function used
to score DDINs; and finally, we introduce the notion of a
delayed structural assemble (DSA) to relate HMMs in our
DDIN.

Structure Scores for DDINs
In step (v) of Figure 2, we need to calculate the score of
a DDIN. Intuitively we would like a score to measure if a
set of independence assumptions between sets of HMMs is
preferred, then we would get more information from having
these assumptions than having different ones in D〈I0,I→〉G .

We adopt an extension of the likelihood score called the
Bayesian information criterion (BIC) (Schwarz 1978) for
this task. The BIC score is a derivation of the likelihood
score that is biased to simpler structures, but as it acquires
more data it can prefer more complex structures to describe
the distribution (Koller and Friedman 2009). In other words,

it trades-off fit to data with model complexity, thereby re-
ducing overfitting. We present the following extension of the
likelihood score for a DDIN, denoted scoreBIC(〈I0, I→〉G :
D〈I0,I→〉G), in terms of the BIC score which spans sets of
unrolled HMMs with respect to the Markov and time invari-
ance assumptions:

M

K∑
k=1

(

T∑
t=1

(

N∑
i=1

(IP̂ (X
〈Hk0 ,Hk→〉(t)
i ;PaG

X
〈Hk0 ,H

k
→〉

(t)

i

)

− logM

c
DIM [G],

where M is the number of samples; K is the number of de-
pendency models; T is the number of time-slices for any
dependency model; N is the number of variables in each
time-slice; and DIM [G] is the number of independent pa-
rameters in the entire influence network.

The BIC score is simply the likelihood of the data with
an added penalty term. We also notice that the BIC score
for HMMs tends to trade-off the fit to D〈I0,I→〉G with
model complexity. That is, the mutual information term, IP̂ ,
grows linearly with the number of samples, and the com-
plexity term, logM

c DIM [H0], grows logarithmically with
the size of samples in D〈I0,I→〉G . Therefore, the larger the
amount of data the more compelled the score will be to
fit D〈I0,I→〉G and thus, with enough data, prefers the set
I`(G∗(〈I0, I→〉G)). In the next subsection we address how
to manage the structural relations between HMMs imposed
by the DDIN.

Structure Assembles
In the previous section we introduced the BIC score for
DDINs which weighted a dynamic influence network based
on empirical correlation between sets of HMMs with respect
to the data. Each variable in the DDIN is paired with a parent
set whose members may span variables in multiple HMMs
in addition to variables in its own network structure. The
collective selection of parents for variables in a DDIN is de-
cided by an imposed delayed structural assemble (DSA).

A DSA is a configuration which connects temporal mod-
els by their variables to other temporal models. It partly
defines the parent sets for variables necessary to construct
a DDIN. To intuitively capture this influence structure be-
tween temporal models we need to insert dependencies be-
tween different time-points that span various models. How
far back the dependency between time-slices go depends on
the influence structure of the distribution. More generally,
we can describe delayed influence with respect to α-many
previous time-slices for a family of temporal models. For
example, Figure 4 illustrates delayed influence between two
unrolled HMMs, 〈A0,A→〉 and 〈B0,B→〉, with α = 2.

More generally, suppose you are given a family of HMMs
and an imposed structure, where 〈H0

0,H0
→〉 represents

the child with the parent set PaG〈H0
0,H0
→〉

= {〈H1
0,H1

→〉,
. . ., 〈Hk0 ,Hk→〉}. Further assume that I`(〈Hj0,Hj→〉) is the
same for all j = 0, . . . , k. Then the delayed assemble net-
work, denoted 〈A0,A→〉G , satisfies all the independence
assumptions I`(〈Hi0,Hi→〉) ∀ i = 0, . . . , k. In addition,

∀ j and ∀ t, 〈A0,A→〉(t) also satisfies the following inde-
pendence assumptions for each latent variable denoted Li
and some t > α ∈ Z+: ∀ L〈H

0
0,H0
→〉(t)

i : (L〈H
0
0,H0
→〉(t)

i ⊥⊥
NonDescendants

L
〈H0

0,H
0
→〉

(t)

i

| L〈H
k
0 ,Hk→〉(t)

i , L
〈Hk0 ,Hk→〉(t)−1

i ,

. . . ,L〈H
k
0 ,Hk→〉(t)−α

i , Pa
〈H0

0,H0
→〉(t)

Li
). The computational

complexity to analyse each step in the search space is sum-
marised asymptotically as O(HTX(I + α)M).

〈A0,A→〉: A1
1

A1
4

. . . A1
6

A2
1

A2
4

. . . A2
6

A3
1

A3
4

. . . A3
6

〈B0,B→〉: B1
1

B1
4

. . . B1
6

B2
1

B2
4

. . . B2
6

B3
1

B3
4

. . . B3
6

Figure 4: Two unrolled HMMs, 〈A0,A→〉 and 〈B0,B→〉, as rep-
resented with 3 time-slices and α = 2. The HMMs are connected
with a DSA. The unshaded variables are latent and the shaded vari-
ables are observable.

The properties of the DSA are as follows. (a) DSA of-
fers a sparse ensemble of dependencies with respect to α;
(b) large values of α may capture a richer distribution trad-
ing off generalisation for quality density estimation; (c) the
assemble provides a suitable representation for applications
which we require delayed influence between processes (e.g.
IoT sensors for navigation systems).

Empirical Results

In this section we present the performance of seven DDIN
parameter and/or structure learning tasks with respect to
the generative ground-truth DDIN’s distribution. The perfor-
mance is summarised in Figure 3, which shows the relative
entropy to the generative ground-truth DDIN (log-scale) and
execution times over the number of training samples. The re-
sults are averaged over 10 trials for the following structure
learning tasks. Random structure, which used a randomly
generated structure for a DDIN and learned the missing and
observable parameters; No structure, which modelled each
HMM as mutually independent to others and learned param-
eters; Tree structure, which learning a tree structure between
the HMMs as well as learned parameters; BIC with GESS,
which used the BIC score with GESS and learned parame-
ters; AIC with GESS which used the AIC score with GESS
and learned parameters; and finally, TSLP, which used the
ground-truth structure, but relearned parameters. The sec-
ond y-axis is the execution times for each learning task. In
all learning tasks both the latent and observable parameters
were learned from sets of synthetic sensor observations.

0 100 200 300 400 500 600 700
10−11

10−10

10−9

10−8

Number of samples

R
el
at
iv
e
E
n
tr
op

y

Relative Entropy

Random structure
No structure

Tree structures
GESS with BIC
GESS with AIC
True structure

104

105

E
x
ec
u
ti
o
n
T
im

e
(m

il
li
se
co
n
d
s)

Execution Time

Random structure
No structure

Tree structures
GESS with BIC
GESS with AIC
True structure

Figure 3: The performance of seven parameter and structure learning tasks. The left log-scale y-axis shows the relative entropy to the
ground-truth generative DDIN; the x-axis shows the increase in sample size; and the right log-scale y-axis shows the execution time of each
learning task. The parameters of the experiment is as follows. All latent variables in every HMM were learned using EM with 5 class labels,
5 observations, and 20 EM iterations to learn each latent variable. The EM recovered 65 − 87% of the original cluster assignments. All
learned variables used a Dirichlet Prior of 5. To allow for a manageable use of memory all DDINs with over 5000 independent parameters
were heavily penalised. 20% of data produced was used for testing and 80% was for training. The were 50 structure search iterations used
to recover each model (5 random restarts when reached local optima, and used a tabu list of length 10). The DDIN had 10 HMMs with 5
time-slices each. Finally, the ground-truth DDIN had 15 edges randomly positioned at each trail with α = 2. Error bars are given by the
shaded region.

Discussion and Future Work

In this section we interpret the results towards using IoT sen-
sor data for this learning task. We note that the two penalty-
based learning procedures were the most successful towards
recovering the ground-truth distribution. However, using no
structure and tree structure generalised the ground-truth bet-
ter to new instances for fewer observations (less than 200)
than the two penalty-based procedures. With regard to exe-
cution time, the two penalty-based learning procedures were
exponential while the others were linear. Restricting the in-
degree performs faster then GESS with AIC or BIC, how-
ever under-performs during density estimation. It is also un-
realistic to know the in-degree in most practical applications
involving IoT sensor data.

The sensitivity of the BIC and AIC scores to judge when
to restrict the structure guides the selection of independence
assumptions, with roughly the same execution time, and out-
performs all other methods for a large number of samples.
This means when we have fewer IoT observations, we are
better off using sparser structures which also take a shorter
time to learn. In particular, tree structures summarise the
most important dependencies which allow us to perform in-
ference faster, while random graphs provide a faster learn-
ing time but, through their density, will suffer for inference
tasks.

The significance of learning a DDIN structure depends
on our learning objective. If one is attempting to discover

exactly the ground-truth network structure, which involves
stating precisely I`(G∗(〈I0, I→〉G)), then we should con-
cede that there exist many perfect maps for P ∗(〈I0, I→〉G)
which can be recovered from D〈I0,I→〉G . Therefore, if our
goal is knowledge discovery, we should instead try to re-
cover G∗(H)’s I-equivalence class. Alternatively, one could
also attempt to learn the temporal influence network for
density estimation from a set of IoT sensors, i.e. to es-
timate a statistical model of the underlying distribution
P ∗(〈I0, I→〉G). Such a model can be used to reason about
new data instances.

One of the benefits of using Bayesian networks is the abil-
ity to encode domain expertise in a simple way. IoT data
which describe real-world phenomena has mostly already
been discussed and explored in other sciences. We can incor-
porate these finding easily in our Bayesian learning model to
converge faster. For example, incorporating prior knowledge
about traffic on particular transportation networks can help
us make better decisions with less data to learn from.

In summary, influence networks provide rich, expressive,
and intuitive understanding of influence between temporal
processes deduced from IoT sensor data.

Acknowledgments
The first author gratefully acknowledges the support of the
Teaching Development Grant Collaborative Project funded
by the Department of Higher Education, South Africa (Ref.

APP-TDG-0020/21); NRF Scarce Skills Doctoral Scholar-
ship, and the Post-Graduate Merit Award Scholarship for
Doctoral Studies.

References
Ajoodha, R., and Rosman, B. 2017. Tracking influence be-
tween naı̈ve bayes models using score-based structure learn-
ing. In IEEE proceedings, Pattern Recognition Associa-
tion of South Africa and Robotics and Mechatronics Inter-
national Conference (PRASA-RobMech), 2017.
Binder, J.; Koller, D.; Russell, S.; and Kanazawa, K. 1997.
Adaptive probabilistic networks with hidden variables. Ma-
chine Learning 29(2):213–244.
Bishop, C. M. 2006. Pattern recognition and machine learn-
ing. springer.
Caffo, B. S.; Jank, W.; and Jones, G. L. 2005. Ascent-
based monte carlo expectation–maximization. Journal of the
Royal Statistical Society: Series B (Statistical Methodology)
67(2):235–251.
Chow, C., and Liu, C. 1968. Approximating discrete prob-
ability distributions with dependence trees. IEEE transac-
tions on Information Theory 14(3):462–467.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Max-
imum likelihood from incomplete data via the em algorithm.
Journal of the royal statistical society. Series B (method-
ological) 1–38.
Eddy, S. R. 1996. Hidden markov models. Current opinion
in structural biology 6(3):361–365.
Fan, X.; Yuan, C.; and Malone, B. M. 2014. Tightening
bounds for bayesian network structure learning. In AAAI,
2439–2445.
Gelman, A.; Hwang, J.; and Vehtari, A. 2014. Under-
standing predictive information criteria for bayesian models.
Statistics and Computing 24(6):997–1016.
Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995.
Learning bayesian networks: The combination of knowledge
and statistical data. Machine learning 20(3):197–243.
Jensen, F. V. 1996. An introduction to Bayesian networks,
volume 210. UCL press London.
Koller, D., and Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. MIT press.
Malone, B. 2015. Finding optimal bayesian network struc-
tures with constraints learned from data.
Murphy, K. P. 2002. Dynamic bayesian networks: represen-
tation, inference and learning. Ph.D. Dissertation, Univer-
sity of California, Berkeley.
O’Gorman, B.; Babbush, R.; Perdomo-Ortiz, A.; Aspuru-
Guzik, A.; and Smelyanskiy, V. 2015. Bayesian network
structure learning using quantum annealing. The European
Physical Journal Special Topics 224(1):163–188.
Pearl, J. 1988. Probabilistic reasoning in intelligent systems.
palo alto. Morgan Kaufmann. PEAT, J., VAN DEN BERG,
R., & GREEN, W.(1994). Changing prevalence of asthma
in australian children. British Medical Journal 308:1591–
1596.

Pearl, J. 2014. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan Kaufmann.
Rubin, D. B. 1976. Inference and missing data. Biometrika
581–592.
Schwarz, G. 1978. Estimating the dimension of a model.
The annals of statistics 6(2):461–464.
Tang, Y., and Xu, Z. 2014. A score based approach towards
improving bayesian network structure learning. In Advanced
Cloud and Big Data (CBD), 2014 Second International Con-
ference on, 39–44. IEEE.
Watanabe, S. 2013. A widely applicable bayesian infor-
mation criterion. Journal of Machine Learning Research
14(Mar):867–897.

