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Abstract—Current structure learning practices in Bayesian
networks have been developed to learn the structure between
observable variables and learning latent parameters indepen-
dently. One exception establishes a variant of EM for learning
the structure of Bayesian networks in the presence of incomplete
data [1]. However, no method has demonstrated learning the
influence structure between latent variables that describe (or are
learned from) a number of observations. We present a method
that learns a set of naı̈ve Bayes models (NBMs) independently
given a partitioned set of observations, and then attempts to
track the high-level influence structure between every NBM. The
latent parameters of each model are then relearned to fine-tune
the influence distribution between models for density estimation
of new observations. Experimental results are provided which
demonstrate the effectiveness of our non-parametric method.
Applications of this method include knowledge discovery and
density estimation in situations where we do not fully observe
characteristics of the environment.

Index Terms—Score-based structure learning, naı̈ve Bayes
models, Bayesian networks, structure scores, Bayesian informa-
tion criterion, heuristic search, greedy hill-climbing, expectation
maximisation.

I. INTRODUCTION

L earning probability distributions using graphical models
has been a major accomplishment. In these graphical

models the joint probability distribution was described as
influence between random variables encoded as a directed
acyclic graph (DAG) which embed independence assertions
[2]. These developments gave rise to the notion of a Bayesian
network which translate these independent assertions into a
DAG that encodes a joint probability distribution [3]. Bayesian
networks span a range of applications including general diag-
nostic systems [4]; event forecasting [5]; machine vision [6];
and even music classification [7].

Perhaps the most common method of parameter estima-
tion in Bayesian networks is maximum likelihood estimation
(MLE), which optimises the likelihood function for complete
data. Unfortunately, we are not always given complete data
and often instead given a set of observations that describe a
latent phenomenon (not explicitly observed). Recovering the
influence structure from incomplete data, that is induced by a
set of observations, appears in many real-world applications
where we wish to perform density estimation, without over-
fitting, or learn structure between latent characteristics of
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an environment for knowledge discovery (e.g. learning the
influence of traffic on roads in an area, or learning how
proteins interact in a cell).

In this paper we attempt to recover the structure of influence
between naı̈ve Bayes models (NBMs). That is, can we recover
the ground truth influence structure or distribution which gave
rise to the data. Figure 1 shows an example of the influence
structure between a set of NBMs (section II-A). Each latent
variable may describe class values that represent the set of
observations.
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Fig. 1: A graphical depiction of the influence structure between
several NBMs. Each set of observations for latent variable Li is
denoted as Oi

1, . . . , O
i
K . The solid lines indicate the conditional

independence assumptions of each NBM, and the dotted lines indicate
the high-level structure of influence between each NBM.

A popular method to structure discovery, in observable data,
is score-based structure learning, where we use a scoring
metric to search for the most suitable structure relative to the
data. Most popular structure scores are variations on the like-
lihood score which calculates the probability of the data given
a potential structure. In observable data the decomposability
of the likelihood score, which is the ability to represent the
score as a sum of family scores, allows for efficient learning
procedures and significant computational saving.

However, in incomplete data, the likelihood score is not
decomposable and we have to perform inference to evaluate it.
This forces us to use non-linear optimisation techniques such
as EM or gradient ascent [8]. Furthermore, local changes to
the network can affect other parts of the network, which makes
learning with incomplete data all the more difficult.

The novelty and intuition of our approach is to learn the
optimal influence structure in layers. We firstly learn a set
of independent models, and thereafter, optimise a structure



score over possible structural configurations. Since the search
for the optimal structure is done using complete data we can
take advantage of efficient learning procedures and significant
computational saving from the structure learning literature. We
provide the following contributions. (a) The notion of influence
between the NBM representation; (b) an extension of the
traditional BIC score for NBMs rather than random variables;
(c) introduce a complete algorithm to recover the influence
structure between NBMs; (d) provide empirical evidence for
the effectiveness of our method.

This paper is structured as follows. We begin by reviewing
current literature on parameter estimation for complete and
incomplete data in section II; section III reviews current work
in structure learning; section IV provides the specification
of the structure score for this problem; section V presents
the empirical results which show the effectiveness of our
method; and finally, section VI discusses various applications
of influence networks and future work.

II. BACKGROUND

A Bayesian network is a directed acyclic graph (DAG)
whose nodes represent random variables and whose edges rep-
resent the influence of one variable over another. A Bayesian
network structure is often established as a set of independence
assertions between these random variables that encode a joint
distribution in a compact way [9].

In this section we explore preliminary work in parameter
estimation. More specifically, we will explore the definition
and representation of a NBM (section II-A); learning param-
eters for observable data (section II-B); and finally, learning
parameters for missing data (section II-C).

A. The Naı̈ve Bayes Model

Perhaps the simplest example of a Bayesian model is the
naı̈ve Bayes model (NBM) which has been traditionally and
successfully used by many expert systems [10].
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Fig. 2: An illustration of the NBM.

The NBM predefines a finite set of mutually exclusive
classes. Each instance can fall into one of these classes, this
is represented as a latent class variable. The model also poses
some observed set of features X1, . . . , Xn. The assumption is
that all of the features are conditionally independent given the
class label of each instance. That is ∀i(Xi ⊥⊥ Xi′ | C), where
Xi′ = {X1, . . . , Xn} − {Xi}

Figure 2 presents the Bayesian network representation of the
NBM. The joint distribution of the NBM factorises compactly
as a prior probability of an instance belonging to a class,
P (C), and a set of conditional probability distributions (CPDs)
which indicate the probability of a feature given the class. We
can state this distribution more formally as

P (C,X1, . . . , Xn) = P (C)

n∏
i=1

P (Xi|C).

The NBM remains a simple, yet highly effective, compact,
and high-dimensional probability distribution that is often used
for classification problems.

B. Learning with Observable Data

Perhaps the simplest parameter learning tool is maximum
likelihood estimation (MLE) from a set of observations. MLE
is foundational to many parameter learning problems and
much work has been dedicated to its development [11]. An
alternative to MLE for learning the parameters of variables in a
Bayesian network is Bayesian estimation (BE). BE follows the
Bayesian paradigm which views any event that has uncertainty
as a random variable with a distribution over it.

Suppose we have a data-set, D = {ξ1, . . . , ξM}, where each
instance, ξm, contains only one observation x, then we can
express the joint distribution of each observation (as well as
the parameter θ which generates the data) by using the chain
rule for Bayesian networks as

P (x[1], . . . , x[M ], θ) = P (x[1], . . . , x[M ]|θ)P (θ),

which gives us the prior over θ and the probability of each
instance given the parameter θ,

P (x[1], . . . , x[M ], θ) = P (θ)

M∏
i=1

P (x[i]|θ).

We note the similarities to MLE in the above expression with
the additional prior probability over θ. We can express the
posterior of this prior, given the data, using Bayes rule [12]:

P (θ|x[1], . . . , x[M ]) =
P (x[1], . . . , x[M ]|θ)P (θ)

P (x[1], . . . , x[M ])
.

There are many choices for a prior distribution, but a com-
mon choice is the Dirichlet prior [13] which is characterised
by a set of hyper-parameters (α1, . . . , αk).

C. Learning with Missing Data

We now consider a much more difficult problem of learning
parameters from missing data. Latent variables provide a
sparse parameterisation of a distribution and can be used to
aggregate observable variables.

In observable data we can optimise the likelihood of the
parameters, given the data, using MLE. Unfortunately, the
likelihood function for missing data could have multiple op-
tima which we cannot easily search for. A common strategy to
optimise the likelihood function is Expectation Maximisation
(EM) which attempts to learn both the missing data and
the parameters iteratively [8]. The EM algorithm generalises
several algorithms including the Baum-Welch algorithm used
for learning HMMs [14]. The general skeleton of the EM
algorithm is outlined in Algorithm 1.

Line 4 of Algorithm 1 is called the E-step. In this step
we perform Bayesian inference to infer the data given the
parameters. That is, for each instance, ξ[m], and each family,



variable X and parent-set U, we compute P (X,U|ξ[m], θt),
where θt is the current setting of the parameters at iteration t.
We now can compute the expected sufficient statistics, M̂ , for
each combination of values (x,u) per family. We can express
the expected sufficient statistics for (x,u) at time-slice t as

M̂θt [x,u] =

M∑
m=1

P (x,u|ξ[m], θt).

Algorithm 1 Expectation Maximisation

1: procedure EXPECTATION-MAXIMISATION(〈B0,B→〉, D)
2: Pick a starting point for the parameters.
3: for until convergence do
4: Complete the data using the current parameters
5: Estimate the parameters relative to data completion
6: end for
7: return Data and parameters
8: end procedure

Line 5 of Algorithm 1 is called the M-step. In the M-step
we treat the expected sufficient statistics, M̂ , as real sufficient
statistics and then use MLE or BE. The EM algorithm is
guaranteed to monotonically improve the log-likelihood of the
parameters relative to the data at each iteration.

III. RELATED WORK

Score-based structure learning requires the definition of a
hypothesis space of potential network structures; defines a
structure score which gauges how well the model fits the
observed training data; and finally, attempts to find the highest
scoring structure as an optimisation problem. However, given
that the search space is super-exponential in size, we resort to
heuristic techniques.

Score-based structure learning is our first choice approach
since it (a) considers the complete influence structure between
models as a state in the search space; (b) preserves basic
score properties to allow for feasible computations; and (c)
it provides a clear indication of the independence assertions
between the concerned structures relative to the data. In this
section we review related traditional score-based structure
learning practices. We begin by discussing structure scores
in section III-A, and then move to the much more difficult
problem of learning graph structures in section III-B.

A. Structure score

There are several choices of structure scores geared at
evaluating the likelihood of a particular structure given the
fit to data. A well-known choice is that of the likelihood
score which maximises the likelihood (or log-likelihood in
practice) of the structure relative to the data. We can express
this as the MLE, θ̂, given a particular graph structure, G,
relative to the data, D. This gives us the likelihood score
denoted as scoreL = `((θ̂,G) : D). In other words, if we are
presented with a particular graph structure we will find the
maximum likelihood estimate for the parameters of that graph
with respect to the data. This can be expressed more generally

as a relative cost of adding an edge between variables in a
graph structure.

The likelihood score decomposes as the number of instances
multiplied by the mutual information, (IP̂ ), between each
family of variables, minus the entropy of each variable that
is independent of the structure. More formally,

scoreL(G,D) =M

n∑
i=1

IP̂ (Xi;PaGXi
)−M

n∑
i=1

HP̂ (Xi)

where IP̂ (X;Y ) =
∑
x,y P (x, y) log

P (x,y)
P (x)P (y) ; HP̂ (X) =

−
∑
x P (x) logP (x); and PaGXi

is the parents of Xi relative
the graph structure G.

The fact that the most complicated network is always
preferred by the likelihood score, poses a significant over-
fitting problem. This is usually overcome by regulating the
hypothesis space or penalising structural complexity.

The Bayesian information criterion (BIC), is a popular
choice for trading-off model complexity and fit to data. The
BIC score consists of two terms: (i) the first describes the fit of
the hypothesised structure to the data, usually the likelihood
function scoreL = `((θ̂,G) : D); and (ii) the second is a
penalty term for complex networks. More formally the BIC
score is given as

scoreBIC = `(θ̂G : D)− logM

2
DIM [G],

where M is the number of training instances and DIM [G] is
the number of independent parameters in the network. We
note that the entropy component of the likelihood term is
negligible since it does not depend on the selected structure.
This observation allows us to rewrite the BIC score as

scoreBIC =M

n∑
i=1

IP̂ (Xi;PaGXi
)− logM

2
DIM [G].

The BIC score has the following properties. (a) As we increase
the number of samples the emphasis moves from model com-
plexity to the fit to data. In other words, as we obtain more data
we are more likely to consider more complicated structures.
(b) As the BIC score acquires more data it approaches the
true structure (or one which is i-equivalent, that is a structure
which makes the same independence assumptions). (c) The
BIC score gives the same score for members of the same i-
equivalence class, that is, different structures which encode the
same independent assumptions.

B. Learning Graph Structures

In the case of learning general graph-structures the structure
learning problem’s complexity increases significantly [12].
More formally [12],

Theorem 1. For any dataset, D, and decomposable structure
score, score, the problem of finding the maximum scoring
network, that is,

G∗ = arg max
G∈Gd

score(G : D),

is NP-Hard for any d ≥ 2, where Gd = {G : ∀i, |PaGXi
| ≤ d}.



In other words, finding the maximal scoring network struc-
ture with at most d parents for each variable is NP-hard for
any d greater than 2. This is because of the super-exponential
search space that one has to traverse to obtain the maximal
network. The above result might be discouraging. However,
using local search procedures we are able to provide a solution
using heuristic hill-climbing [15].

There are two main design choices that one needs to make
when using a local structure search procedure: (i) the choice
of search operators and (ii) search procedure.

Search operators are local steps to traverse the search space.
Common choices for local search operators are edge addition,
reversal, and deletion.

A common choice for a search procedure is greedy hill-
climbing. The greedy hill-climbing approach starts by select-
ing a prior network. The prior network could be an empty
structure; a best tree structure; a random structure; or a
structure elicited by an expert. From this prior network we
iteratively try to improve the structure’s score by utilising
search operators. In greedy hill-climbing we always apply the
change that improves the score until no improvement can be
made.

IV. LEARNING THE INFLUENCE BETWEEN NBMS

In this paper we provide the first score-based structure learn-
ing algorithm and analysis of learning the influence structure
between a set of NBMs (with incomplete data). The influence
structure encodes independence assumptions and factorises a
joint distribution between a finite set of NBMs.

We assume that the data generated from the ground
truth influence structure has the following form: DI =
{DB1 , . . . ,DBk}, where DBi = {ξ1, . . . , ξM} is a set of M
instances for NBM Bi. Each ξj is generated independently and
identically distributed from an underlying distribution, P ∗(IG),
where I is a Bayesian network which represents the influence
structure G.

IG contains a distribution between a set of NBMs,
B1, . . . ,Bk, with the independence assumptions specified by
I`(IG). We further assume that P ∗(IG) is induced by another
model, G∗(IG), which we refer to as the ground truth structure.
We will evaluate our model by recovering the local inde-
pendence assertions and joint distribution in G∗(IG), denoted
I`(G∗(IG)), by only observing DIG . The architecture of the

Fig. 3: The architecture of the proposed algorithm.

proposed algorithm is given by Figure 3. We (i) learn each
NBM independently (using EM); (ii) compute the structure
score of the complete influence network (using a scoring
function); (iii) relearn the parameters for the model (with the

new independence assertions between NBMs) which gives us
the candidate network (iv); (v) perform an operation (edge
addition, reversal, or removal) to try to improve the network
fit to data; Steps (ii), (iii), (v) are repeated until we can not
improve the score for the structure. We then select the best
network (iv). In the next section we develop the structure score
for influence network.

A. Structure Score

Intuitively we would like to measure that if a relation that
describes influence between two NBMs is preferred by the
data, then we would get more information from having this
relation than without having it [12].

Consider Figure 4 which illustrates two scenarios between
two NBMs, B0 = (GB0

, PB0
) and B1 = (GB1

, PB1
), where

GBi
and PB1

is the structure and probability distribution for
Bi respectively.
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X1 Y1

X2
. . . X3 Y2 . . . Y3
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B0 B1
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Fig. 4: Two influence structures between two NBMs.

B0 and B1 encode the local independence assumption
I`(GB0

) = {X2 ⊥⊥ X3| X1} and I`(GB1
) = {Y2 ⊥⊥ Y3| Y1}

respectively. Each of these scenarios in Figure 4 can be
described as an influence network, denoted I0 = (G0, PI0) and
I1 = (G1, PI1) respectively, where Gi denotes the structure of
the influence network Ii with probability distribution PIi . We
assume that influence between networks, which may describe
events, flows at a level of abstraction constructed by observable
variables and not directly from the observations themselves
(since the observations are dependent on the time granularity).

Selecting an influence network, either I0 or I1, requires us to
establish which structure, either G0 or G1, gives us a stronger
likelihood to the data. Let us express the preferability of a
particular structure more formally. The log-likelihood of G0
relative to the data, denoted scoreL(G0 : D), can be expressed
as:

M∑
m=1

(log θ̂x1[m] + log θ̂x2[m]|x1[m] + log θ̂x3[m]|x1[m]

+ log θ̂y1[m] + log θ̂y2[m]|y1[m] + log θ̂y3[m]|y1[m]),

(1)

and the log-likelihood score of G1 relative to the data, denoted
scoreL(G1 : D), can be expressed as:

M∑
m=1

(log θ̂x1[m] + log θ̂x2[m]|x1[m] + log θ̂x3[m]|x1[m]

+ log θ̂y1[m]|x1[m] + log θ̂y2[m]|y1[m] + log θ̂y3[m]|y1[m]),

(2)

where θ̂xi is the MLE for P (xi) and θ̂yj |xi
is the MLE for

P (yj |xi).
To intuitively express the trade-off of using one influence

structure, between these NBMs, over the other, we would like



to find which influence structure maximises the likelihood to
the data. We can express this as the difference between the log-
likelihood score of each model relative to the data as follows:
• if we have scoreL(IG1 : DI) − scoreL(IG0 : DI) > 0, then

we would prefer the structure IG1 ;
• if scoreL(IG1 : DI)− scoreL(IG0 : DI) < 0, then we would

prefer the structure IG0 ;
• finally, if scoreL(IG1 : DI) − scoreL(IG0 : DI) = 0,

then either structure will do since both give us the same
likelihood relative to the data.

By subtracting Equation 2 from Equation 1 we can express
the difference of computing the log-likelihood scores for either
influence structure over the two NBMs, denoted, scoreL(IG1 :
DI)− scoreL(IG0 : DI), as

M∑
m=1

(log θ̂y1[m]|x1[m] − log θ̂y1[m]). (3)

We can convert the summation, in Equation 3, to summing
over values rather than over data instances. Thus we can
representing each term by its respective sufficient statistics to
obtain ∑

x1,y1

M [x1, y1] log θ̂y1|x1
−
∑
y1

M [y1] log θ̂y1 . (4)

The first summation in Equation 4 expresses the summa-
tion over all parameters of values, denoted V al(Y1) given
V al(X1), multiplied by the number of times these values
occur in the data. We can more clearly express this as an
empirical distribution P̂ (x1, y1) which is expressed in the
training data DI. The sufficient statistic M [x1, y1] is equal
to the number of data instances multiplied by the empirical
joint distribution, MP̂ (x1, y1). Similarly we can state that
M [y1] =MP̂ (y1); θ̂y1|x1

= P̂ (y1|x1), and θ̂y1 = P̂ (y1).
If we express Equation 4 in terms of the empirical distribu-

tion, the difference in the score becomes∑
x1,y1

MP̂ (x1, y1) log P̂ (y1|x1)−
∑
y1

MP̂ (y1) log P̂ (y1). (5)

Both summations in Equation 5 contain the number of
samples M which is independent of type of values found in
the data and thus M can be extracted from the summation.

Both summations could have been condensed into one if
they were summed over the same values. We can artificially
insert the sum over x1 in the second summation of Equation
5 since

∑
x1
P̂ (x1, y1) = P̂ (y1). Thus we get

M(
∑
x1,y1

P̂ (x1, y1) log P̂ (y1, x1)−
∑
x1,y1

P̂ (x1, y1) log P̂ (y)).

(6)
There are two more manipulations that we can exploit in

Equation 6 to condense the difference of the scores further.
Firstly, the term P̂ (y1|x1) can be rewritten as P̂ (x1,y1)

P̂ (x1)
using

Bayes rule [12]; and secondly, both summations in Equation 6
are of the same form and the term P̂ (x1, y1) is a common term
in each summation. Therefore, using the subtraction rule for
logarithms we can condense the difference of the two scores
as

M
∑
x1,y1

P̂ (x1, y1) log
P̂ (y1, x1)

P̂ (y1)P̂ (x1)
. (7)

The summation in Equation 7 is called the mutual infor-
mation of B0 and B1 since it measures the average distance
between the joint distribution, of B0 and B1, relative to if
their distribution was a product of marginally independent
models. We denote the mutual information of the two Bayesian
networks as

scoreL(IG1 : DI)− scoreL(IG0 : DI) =M.IP̂ (B0;B1). (8)

Thus the BIC score for NBMs decomposes as

scoreBIC =M

n∑
i=1

IP̂ (Bi;PaGBi
)− logM

2
DIM [G].

The BIC score between Bayesian models has the following
properties. (a) As we increase the number of samples the
emphasis moves from model complexity to the fit to data.
In other words, as we obtain more data we are more likely to
consider more complicated structures. (b) As the BIC score
acquires more data it approaches the true structure (or one
which is i-equivalent). (c) The BIC score gives the same score
for members of the same i-equivalence class.

Note the difference between the traditional mutual infor-
mation for variables in section II and the mutual information
between Bayesian models in Equation 7. In this example it
may seem fairly similar but depending on the number of
latent variables in the model, and the structural properties
which are expressed in the model, the mutual information
over models generally aggregates structural correlations and
similarities over all of the variables in each Bayesian model.

V. EMPIRICAL RESULTS

Figure 5 shows the performance of four parameter or struc-
ture learning tasks to recover the ground truth’s distribution.
The y-axis is the relative entropy to the true distribution,
P ∗(IG), and the x-axis represents the number of training sam-
ples. The ground truth structure, G∗(IG), had 24 edges, 3 bin
values per variable, a Dirichlet prior of 5, 5 observations per
NBM, 10 NBMs, and a max in-degree of 3. The four learning
tasks are: random structure, where a ‘random’ structure is
generated with knowledge of the ground truth’s parameters;
No structure, where no conditional independence assertions
are present between models; Learned structure, where we
simultaneously estimate the parameters and structure between
models using a tabu list [16] of length 5 and 5 random
restarts; and finally, True structure, where we are given the true
structure between models and attempt to learn the parameters.
All latent variables were learned using 10 EM iterations and
achieved a 60-82% accuracy validated against the ground truth.

The relative entropy of an i-equivalent structure to
I`(G∗(IG)) will still get close to recovering the true distribu-
tion, P ∗(IG). As we see our method tends to correctly recover
the distribution between each NBM compared to random
guesses and over mutually independent models, except for
when we have very little training instances.
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Fig. 5: The performance of parameter and structure learning tasks for
instances generated from an influence network between 10 NBMs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the first method to learn the
influence structure between a set of NBMs. The main idea of
our approach is (a) learning each NBM independently (using
EM); (b) expressing the problem as structure learning in the
case of complete data (which can be solved efficiently using
current literature); and finally, (c) using EM to fine-tune the
latent parameter estimates for each independence assertion
introduced. Steps (b) and (c) are used together to select the
optimal structure.

The significance of learning an influence network depends
on our objective. If one is attempting to discover exactly the
ground truth network structure which involves stating precisely
I`(G∗(IG)), then we should concede that many perfect maps
[12] for P ∗(IG) can be achieved from DI. It is understood
that recognising I`(G∗(IG)) from G∗(IG)’s set of structures,
which give the same fit to the data (I-equivalent structures),
is not identifiable from DI since each I-equivalent structure
produces the same likelihood for DI. Therefore, if our goal
is knowledge discovery, we should instead try to recover
G∗(IG)’s i-equivalence class. This is difficult as data sampled
from P ∗(IG) does not perfectly and uniquely reconstruct the
independence assumptions of G∗(IG).

Alternatively, one could also attempt to learn an influence
network for density estimation, i.e. to estimate a statistical
model of the underlying distribution P ∗(IG). Such a model can
be used to reason about new data instances. On the one hand, if
we capture more independence assertions than those specified
in I`(G∗(IG)), we could still capture P ∗(IG) using some
setting of our recovered networks parameters. However, our
selection of more independence assumptions, rather than fewer
in I`(G∗(IG)), could result in data fragmentation. On the other
hand, selecting too few edges will result in not capturing the
true distribution P ∗(IG), but will however provide a sparse

structure that avoids data fragmentation. Generally, the latter
case is preferred in density estimation since it provides better
generalisation to new instances through a sparser representa-
tion [12].

The following future work can be explored. (a) We can
consider using operators which take much larger steps in the
search space making the search procedure less susceptible
to local optima [12]. (b) Other aspects of influence can be
explored by extending the extent that models can influence
each other. (c) More sophisticated techniques can be employed
to explore the scope of influence in the temporal setting.
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