
Single-labelled Music Genre Classification Using
Content-Based Features

Ritesh Ajoodha, Richard Klein, and Benjamin Rosman

Abstract—In this paper we use content-based features to
perform automatic classification of music pieces into genres.

We categorise these features into four groups: features ex-
tracted from the Fourier transform’s magnitude spectrum, fea-
tures designed to inform on tempo, pitch-related features, and
chordal features.

We perform a novel and thorough exploration of classification
performance for different feature representations, including the
mean and standard deviation of its distribution, by a histogram
of various bin sizes, and using mel-frequency cepstral coefficients.

Finally, the paper uses information gain ranking to present a
pruned feature vector used by six off-the-shelf classifiers. Logistic
regression achieves the best performance with an 81% accuracy
on 10 GTZAN genres.

Index Terms—Music genre classification, feature selection,
feature representation, MFCC aggregation, area moments, tempo
detection, pitch detection, chordal identification, information gain
ranking.

I. INTRODUCTION

MUSIC genre, while often being vaguely specified, is
perhaps the most common classification scheme used to

distinguish music. Although single human responses to genre
classification can be biased and stereotypical, there exists
a consensus of broad genre definitions across populations
worldwide.

Genre classification is one of multiple music classification
methods, including mood and artist classification. Although
these methods are also similarity-based measures across dif-
ferent music meta-data (e.g. lyrics, artist, timbre), genre offers
a culturally authorised prominence on the construction of tradi-
tional classes which is more functional for music classification.

Music genre has such a pressing influence on consumers that
a listener may prefer one song to another based more on the
song’s genre than the actual song itself [1] [2]. End-users are
more likely to browse music by genre than artist similarity,
recommendation, or even music similarity [3]. Therefore,
successful music genre classification algorithms will enable
users to browse music within genre categories.

Our aim is to explore the space of automatic music genre
classification, so as to decrease search-time for music pieces
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within large databases. This system relies only on the audio
signal itself and does not consider any meta-data.

Observing interactions between genre classes through
content-based features can unveil cultural associations that
exist between these genre classes and is of musicological
significance [4].

II. BACKGROUND

Music Genre Classification is the process of categorising
music pieces using traditional and cultural aspects. These
traditions and cultures are not precisely defined and so over
the years it has become vague as to what characteristics secure
music to a particular genre.

Traditional musical aspects are given by four characteristics
[5]: melody, harmony, rhythm and sound (timbre, dynamics,
and texture) which are hypothesised to contribute considerably
to the notion of musical genre. However, standard genre text-
book definitions are qualitative, subjective, context dependent,
and therefore are difficult to automate.

As a result of the ambiguities that exist between content-
based genre definitions the ground truth classification accuracy
becomes inescapably bounded as many people may disagree
on a particular genre classification of a piece of music.

Composers often do not abide by “genre definitions”, which
makes us question whether some composers are accepted by
currently “defined” music genres. For this reason music genre
classification is categorised using human discretion and is
therefore prone to errors and subjectivity as many pieces of
music sit on boundaries between genres [6].

Successful genre classification makes use of cultural-based
rather than content-based feature dissimilarity between genre
classes. In this work we do not consider such meta-data, due
to lack of availability.

Many genres do not only sound similar but also contain
multiple sub-genres which share some similar characteristics.
The difficulty of genre classification thereby increases when
considering hundreds of other genre types and their respective
sub-genres.

Although some authors provide an awareness of genre clas-
sification performance bounds imposed by human responses
to genre classification [7] [8], further study in experimental
research is needed to draw more concise conclusions regarding
human responses to genre classification and how this affects
ground truth. Humans are biased and subjective in genre
classification, which ultimately leads to a lack of consensus in
genre labels and thus poor quality of ground truth.



To make matters worse, genre definitions evolve over time
and continuously give rise to newer structures that have signifi-
cantly different feature compositions [9]. Therefore, regardless
of feature dimensionality, well-built classification procedures
are required to classify features successfully with some regard
for genre development. This is difficult as the scalability of
even the most powerful supervised classification models are
unsatisfactory [10].

Benetos and Kotropoulos (2008) 75.0%
Bergstra et al. (2006) 82.5%
Holzapfel and Stylianou (2008) 74.0%
Li et al. (2003) 79.7%
Lidy et al. (2007) 76.8%
Panagakis et al. (2008) 78.2%
Sturm (2013) 83.0%
Tzanetakis and Cook (2002) 61.0%

TABLE I: Noteworthy genre classification algorithms on 10
GTZAN genres.

A review of the literature shows very few capable genre
classification systems using the GTZAN dataset. The GTZAN
dataset is a collection of 1000 thirty second excepts. The 1000
music excepts are categorised into 10 genres, 100 excepts for
each genre. Systems thus far have not adopted automatic genre
classification models for media retrieval and recommendation.
Successful genre classification includes work by Sturm (2013)
[11] who achieved 73-83% on 10 genres; and Bergstra et. al.
(2006) [12] who achieved 82.50% on 10 GTZAN genres [13].
Table I shows some noteworthy music genre classification
algorithms on 10 GTZAN genres.

III. FEATURE ANALYSIS

Music comprises of instrument sounds, speech sound, and
environmental sounds [14] [15]. In this section we present
several features that are hypothesised to be characteristics that
can be used to correctly classify musical genre.

These features are organised into four main categories:
Magnitude-based features, where timbral features that describe
loudness, noisiness, compactness, etc. are presented; Tempo-
based features, where methods that explore rhythmic aspects
of the signal are provided; Pitch-based features, where algo-
rithms that describe the pitch of music signals are presented;
and finally, Chordal Progression features, where we explore
chroma as a chordal (environmental) distinguishing feature.

Before we present these four families of features, we
will firstly introduce four feature representations that will be
explored for each feature distribution.

A. Feature Representation

In addition to the mean, the following feature representa-
tions will be applied to each feature and the best representation
for each feature will be used in the final classification.

The Feature Histogram: The feature histogram arranges
the feature’s local window intensities into bin ranges. The
content of each bin is counted and modelled by a frequency
histogram. The histogram bin values are normalised and used
for classification.

MFCC Aggregation: MFCC representation is a well-
known feature representation that takes the first n MFC
coefficients (coefficients that make up the short-term power
spectrum of sound) as it would a 16khz signal [16] [17].
If the feature contains more than one dimension, then each
dimension is assessed independently and n coefficients will
be produced per dimension. In this paper we set n = 4.

Area Moments: Image moments is a central concept in
computer vision and has its root in image processing. Fujinaga
(1996) [16] produced 10 such moments for image processing:
an image is treated as a 2-dimensional function f(x, y) =
z, where x and y are indexes of the underlying matrix. The
feature values extracted from the audio signal will be treated
as a 2-dimensional image and Fujinaga’s moments algorithm
will be applied to the feature vector.

B. Magnitude-based Features

The magnitude spectrum, obtained from the fast Fourier
transform of a signal, houses a family of spectral features
which can be used for genre classification. Exploration of
the magnitude spectrum has allowed us to identify signal
change, noisiness, loudness and many other spectral features
that describe aspects of discrete time signals for automatic
music genre classification.

Exploring peak-based features, from the local maxima of the
frequency domain, creates opportunities to analyse the signal
more thoroughly. In this section we explore magnitude-based
features for music genre classification.

1) Spectral Slope: The spectral slope can be observed
when natural audio signals tend to have less energy at high
frequencies. Peeters (2004) [18] provides a way to quantify
this by applying a linear regression to the magnitude spectrum
of the signal, which produces a single number indicating the
slope of the line-of-best-fit through the spectral data.

2) Compactness: Compactness is a measure of the noisi-
ness of a signal [17] and is calculated by comparing the value
of a magnitude spectrum bin with its surrounding values. In
many genres (e.g. metal) a random and persistent disturbance
that obscures the clarity of sound is desired, which this feature
will detect. Figure 3(a) shows the compactness feature values
distributed over 10 GTZAN genres.

3) Loudness: Specific loudness is the loudness associated
with each critical band of hearing. Total loudness has been
used for multi-speaker speech activity detection, automatic
speech recognition, instrument recognition and music genre
classification.

4) Onset Detection: Onset detection describes information
about the initial magnitude of a piece of music [19]. This
feature describes the rise in magnitude from zero to some
initial value.

5) Peak Detection: Studying the peaks of a signal allows
us to account for various principal features that are contained
within a signal. For example, peak-based features such as
crest factor, peak flux, centroid, and smoothness can help us
describe the quality of AC waveform power and detecting
vibration. The peak detection algorithm by [20] will be used
for extracting peak-based features. Mckay (2005) calculated



peaks by detecting local maxima in the frequency bins, and
these maximum are calculated within a threshold where the
largest maxima within this threshold is considered [20]. These
global peaks per threshold are considered without any infor-
mation about bin location. In our experiments we took a peak
threshold of 10. Treating this set of peak values together as
a 16khz signal, we then represent these peak values by the
centroid, flux, and smoothness features.

6) Spectral Flux: Spectral flux is a content-based feature
that measures the rate of change of the magnitude spectrum.
This is achieved by comparing every frame of the magnitude
spectrum with its previous frame.

7) Spectral Variability: Statistical variability measures dis-
persion in data, i.e. how closely or spread-out the signal is
clustered. We can achieve this by measuring the standard
deviation of the magnitude spectrum of the signal.

8) Mel-Frequency Cepstral Coefficients: Mel-frequency
cepstral coefficients (MFCCs) are the coefficients that together
make up a Mel-frequency cepstrum. The components of
MFCC are those from the cepstral representation of the audio
signal. In the Mel-frequency cepstrum the frequency bands are
equally spaced which favours the human auditory system more
than using the cepstrum feature alone, which uses linearly-
spaced frequency bands.

9) Spectral Flatness: Spectral flatness is a feature used to
calibrate how pure tonal sounds are in comparison to noisy
ones. Pure tonal sound refers to resonant structure in a power
spectrum, compared to other parts containing white noise.

10) Spectral Rolloff: According to [18], [12], spectral
rolloff point is the frequency such that 85% of the signal
energy is contained below this frequency. It is correlated with
the harmonic/noise cutting frequency [18]. Figure 3(d) shows
the spectral rolloff feature values distributed over 10 GTZAN
genres.

C. Tempo Detection

Most music retains regular rhythmic formations that creates
an impression of tempo. With the purpose of understanding the
nature of music to perform genre classification, tempo must
be understood and preserved as a feature description. In this
section we establish tempo detection schemes for music genre
classification. Having already established a method to detect
the vitality in a music excerpt by using spectral energy, which
is the root mean square (RMS) of the music signal, we present
in this section the beat histogram as a crucial feature vector.

1) Energy: Energy is a fundamental descriptor used in
speech and audio processing [21]. Energy is measured by
calculating the RMS of a discrete-time signal. Figure 3(c)
shows the energy feature values distributed over 10 GTZAN
genres.

Examining the arithmetic average of the first n windows of a
signal (for our experiments we took n = 100) and calculating
the fraction of these which are below the average, we can
calculate the percentage of silence that exists in the signal -
as the fraction of low energy.

2) The Beat Histogram: The beat histogram is an ar-
rangement of signal strength to yield rhythmic intervals. This

is accomplished by measuring the energy of n consecutive
windows and computing the fast Fourier transform of the
result. This type of feature will produce a very large design
matrix and so a simple feature representation is needed. In
our experiments the mean feature representation outperformed
MFCC and the 20-bin feature histogram.

D. Pitch and Speech Detection
Pitch is a perceived characteristic contained in the frequency

of music content. Most music of the same genre exhibit
melodies that are just combined notes from a scale set. For
example, most notes from an impressionistic piece are taken
from whole-tone scales, whereas notes from a jazz pieces
of music are taken from pentatonic scales. However, often
environmental sounds overtone pitch, disguising available
pitch-related elements, which make it difficult to extract pitch
computationally. Even human auditory systems can find it
difficult to distinguish pitch under these conditions.

In this section we explore pitch and speech related algo-
rithms as an amalgam of these characteristics are hypothesised
to describe singing. Together, pitch and speech detection
schemes can help us understand gliding, portamento, or even
vibrato.

1) Amplitude Modulation: For many musical instruments
amplitude periodic modulation is a distinctive quantity. Style
introduces characteristic amplitude variation into music tones.
It has been observed that changing amplitude envelopes leads
to similarity judgments on musical timbre [22]. The energy
envelope is useful to extract features measuring amplitude
modulation (AM). It has been observed that heuristic strength
and frequency of AM can be calculated at two frequency
ranges: the first range is between 4 and 8 Hz (where the AM is
in conjunction with vibrato) and the second range is between
10 to 40 Hz which correspond to “graininess” or “roughness”
of the tone.

2) Zero Crossing Rate: The zero crossing rate (ZCR) is
the frequency of sign changes that occur along a discrete-time
signal. Being a thorough percussive descriptor, this feature has
been used in both speech recognition as well as in audio
information retrieval. Figure 3(b) shows the strongest beat
values distributed over 10 GTZAN genres.

E. Chordal Progressions
Introducing spectral feature extraction to genre detection

problems created opportunities to exploit single characteristics
of music. Chord structure and progressions have defining traits
of music for many years.

1) Chroma: Chroma is defined as a 12 component design
matrix where each dimension represents the intensity asso-
ciated with a particular semitone, regardless of octave [23].
This section implements MFCC-based chroma by extracting
MFCCs derived from a 12 component chroma design matrix.
Since the components of chroma describe the distribution of
semitones in a piece of music, it also informs us how notes
are arranged and thus provides information about chordal har-
monies. Therefore, modelling chroma indicates if a particular
genre displays an attachment or relation to harmonic chordal
progressions, as some genres do.



IV. FEATURE SELECTION

In the upper part of Table II, we present the features
mantained after using the Information gain ranking algorithm.
Information gain ranking is a filter method that evaluates the
worth of a feature by measuring the information gain with
respect to the class. The lower part of Table II lists the
eliminated features.

The cut-off point was chosen by considering Figure 1,
which shows the results of taking different numbers of features
with the highest contributions and using them to classify 10
GTZAN genres. The red-line in Figure 1 shows the cutoff-
point taken at 459 features in its respective representation.
Figure 1 suggests we could have chosen about 100 features
and achieved between 70-75% classification accuracy with
minimal performance loss, but we extended this for robustness
reasons.

V. AUTOMATIC MUSIC GENRE CLASSIFICATION

In this section we use the selected features outlined in the
upper portion of Table II to perform genre classification on 10
GTZAN genres. Table III yields the results of this experiment:
the first column lists the classifiers used; the second column
gives us the accuracy for each classifier to correctly identify
10 genres; finally, the third column lists the time to build
each classification model. The implementation details of each
of the algorithms are outlined in Table IV. Six of-the-shelf
classifiers were used: Naı̈ve Bayes; Support Vector Machines;
Multilayer Perceptron; Linear Logistic Regression Models; K-
Nearest Neighbours; and Random Forests.

Fig. 1: Classification accuracy vs the number of highest
contributing features to classify 10 GTZAN genres.

It is seen that all of the classification algorithms outper-
form the Naı̈ve Bayes method. The Support Vector machine,
Multilayer Perceptron and Random Forests are aligned by
their performance with the Multilayer Perception taking the
most time to build. The Linear Logistic Regression Model
provides the best classification score of 81%. However, with
the exception of the Multilayer Perceptron, the Linear Logistic
Regression Model takes the longest time to build. Figure
2 shows the confusion matrix for 10 GTZAN genres using
Linear Logistic Regression Models with 10-fold cross valida-
tion. The particular cluster overlap between rock and country

Features Maintained Rep. Dim. 459
Spectral Flux MFCC 4
Spectral Variability MFCC 4
Compactness Mean + SD 2
MFCCs MFCC 52
Peak Centroid Mean + SD 2
Peak Smoothness SD 1
Complex Domain Onset Detection Mean 1
Loudness + Sharpness and Spread Mean 26
OBSI + Radio Mean 17
Spectral Decrease Mean 1
Spectral Flattness Mean 20
Spectral Slope Mean 1
Shape Statistic spread Mean 1
Spectral Centroid MFCC 4
Spectral Rolloff SD 1
Spectral Crest Mean 19
Spectral Variation Mean 1
Autocorrelation Coefficients Mean 49
Amplitude Modulation Mean 8
Zero Crossing + SF MFCC 8
Envelope Statistic Spread Mean 1
LPC and LSF Mean 12
RMS Mean + SD 2
Fraction of Low Energy Mean 1
Beat Histogram SD 171
Strength of Strongest Beat Mean 1
Temporal Statistic Spread Mean 1
Chroma MFCC 48
Features Eliminated Rep. Dim. 223
Peak Flux 20-bin FH 20
Peak Smoothness Mean 1
Shape Statistic centroid, skewness Mean 1
Shape Statistic Kurtosis Mean 2
Strongest Frequency of Centroid MFCC 4
Spectral Rolloff Mean 1
Strongest Frequency of FFT MFCC 4
Envelope Centroid, Skewness and Kurtosis Mean 4
Beat Histogram Mean 171
Strongest Beat Mean + SD 2
Strength of Strongest Beat SD 1
Fraction of Low Energy SD 1
Beat Sum MFCC 4
Relative Difference Function MFCC 4
Temporal Statistic Centroid Mean 1
Temporal Statistic Skewness Mean 1
Temporal Statistic Kurtosis Mean 1

TABLE II: The features maintained (upper portion) and the
eliminated features (lower portion). Column two and three list
the feature representation and feature dimension respectively.

music (and rock and disco) is observed. Although our results
are in line with the best performing methods, and we have
not exceeded them, we offer a valuable contribution in the
form of feature analysis and representation for music genre
classification.

VI. CONCLUSION AND RECOMMENDATIONS

Although recent classification accuracy suggests that the
performance of learning models for genre classification have
become bounded, there is no confirmation to date to suggest
these bounds cannot be exceeded. Nonetheless, small changes
to existing models are unlikely to produce significantly better
classification scores. Therefore, more attention to how feature
extraction and classification are performed, or perhaps com-
pletely new approaches, are crucial to greatly exceed these
bounds.



Classifier Accuracy Time to build model

Naı̈ve Bayes 53.2% 0.56 sec
Support vector machines 75.4% 3.82 sec
Multilayer perceptron 75.2% 27.48 sec
Linear logistic regression models 81.00% 25.25 sec
K-nearest neighbours 72.80% 0.01 sec
Random forests 75.7% 18.08 sec

TABLE III: Automatic genre classification using the thinned
feature vector.

Classifier Parameters used
Naı̈ve Bayes Used a normal distribution for numeric at-

tributes and supervised discretization
Support vector ma-
chines

Kernal degree = 3; tolarance of termination
criteria = 0.001; epsilon for the loss function =
0.1; did not normalise; used polynomial kernal:
(gamma ∗ u′v + coef0)degree.

Multilayer perceptron Number of hidden layers = Number of classes;
learning rate = 0.3; training time = 500 epochs;
validation threshold = 20.

Linear logistic regres-
sion models

Maximum number of iterations for LogitBoost
= 500

K-nearest neighbours Number of neighbours to use = 1; using the ab-
solute error for cross validation; Linear search
algorithm

Random forests Number of trees used = 1000

TABLE IV: Implementation details of each classification
algorithm.

Erroneous genre labels are often caused by inexperienced
respondents and not being exposed to enough of the recording
[7], [24], [8]. The reliability of a learning model is purely
measured by the quality of its ground truth and so extensive
measures must be taken to ensure that the ground truth is well
founded and motivated.

Since genre classification is usually performed by humans
who observe cultural features (observations of arts and other
manifestations of genre cognitively regarded collectively)
more than content related features, we should not expect to
achieve ground breaking results by classifying genre purely
on content-based features. This is evident as the best genre
classification algorithms using content-based features only
achieve between 75-83% on 10 GTZAN genres.

Incorporating cultural features with structural ones in the
feature domain could notably increase current classification
rates [25]. Large scale musical structures are present in most
music genre types. Understanding the form (cyclic, binary,
rondo) of a piece of music can immediately designate a small
set of potential genre categories to which the piece could be-
long. These overall structure-based feature descriptions can be
preserved in learning models by using classifiers that exhibit
memory1. Preserving memory in learning models have been
mostly ignored and could hold the key to better understanding
chordal progressions and complex melodic structures.

The musicality of a listener is not only required when
constructing ground truth, but can also be used to satisfy
a particular customer’s genre preference. Further empirical
research in human responses to genre classification can reveal
if certain consumers with different musicality will appreciate

1Much like how hidden Markov models or recurrent neural networks work.

Fig. 2: The confusion matrix for 10 GTZAN genres using
linear logistic regression models with 10-fold cross validation.
The row and column labels represent genre labels where: G1

= Blues, G2 = Classical, G3 = Country, G4 = Disco, G5 =
Hiphop, G6 = Jazz, G7 = Metal, G8 = Pop, G9 = Reggae,
and G10 = Rock.

music differently. Empirical research should compare and
contrast different classification scores for different kinds of
customers in terms of age, culture, and musicality. This type
of psychological research will enhance our understanding of
the possibilities to increase the dependability of ground truth
and will also allow us to personalise multiple learning models
to cater for groups of individuals’ needs rather than forcing a
one fits all approach.
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