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ABSTRACT

We leverage logical composition in reinforcement learning to create a framework
that enables an agent to autonomously determine whether a new task can be
immediately solved using its existing abilities, or whether a task-specific skill
should be learned. In the latter case, the proposed algorithm also enables the
agent to learn the new task faster by generating an estimate of the optimal policy.
Importantly, we provide two main theoretical results: we give bounds on the
performance of the transferred policy on a new task, and we give bounds on the
necessary and sufficient number of tasks that need to be learned throughout an
agent’s lifetime to generalise over a distribution. We verify our approach in a
series of experiments, where we perform transfer learning both after learning a
set of base tasks, and after learning an arbitrary set of tasks. We also demonstrate
that as a side effect of our transfer learning approach, an agent can produce an
interpretable Boolean expression of its understanding of the current task. Finally,
we demonstrate our approach in the full lifelong setting where an agent receives
tasks from an unknown distribution and, starting from zero skills, is able to quickly
generalise over the task distribution after learning only a few tasks—which are
sub-logarithmic in the size of the task space.

1 INTRODUCTION

Reinforcement learning (RL) is a framework in artificial intelligence that enables agents to learn
desired behaviours by maximising the rewards received through interaction with an environment
(Sutton et al., 1998). While it has achieved recent success in a number of difficult, high-dimensional
domains (Mnih et al., 2015; Levine et al., 2016; Lillicrap et al., 2016; Silver et al., 2017), these
methods require millions of samples from the environment to learn optimal behaviours. This is
ultimately a fatal flaw, since learning to solve complex, real-world tasks from scratch for every task
of interest is typically infeasible. Hence a major challenge in RL is building general-purpose agents
that are able to use existing knowledge to solve new tasks quickly. That is, after learning n tasks
sampled from some distribution, the question of interest is: How can an agent leverage the skills
learned from those n tasks to improve its starting performance or learning speed in task n+ 1? This
is the problem setting formalised by lifelong RL (Thrun, 1996; Abel et al., 2018).

One approach to transfer in lifelong RL is composition (Todorov, 2009), which allows an agent to
leverage its existing skills to build complex, novel behaviours, which can then be used to solve or
speed up learning of a new task (Todorov, 2009; Saxe et al., 2017; Haarnoja et al., 2018; Van Niekerk
et al., 2019; Hunt et al., 2019; Peng et al., 2019). Recently, Nangue Tasse et al. (2020) proposed a
framework for defining a Boolean algebra over the space of tasks and optimal value functions. This
allowed for tasks and value functions to be composed using the union, intersection and negation
operators in a principled manner to yield optimal skills zero-shot.

In this work, we propose a framework for lifelong RL that focuses not only on transfer between tasks
for faster RL, but also gives guarantees on the generalisation of an agent’s skills over an unknown
task distribution. We first extend the logical composition framework of Nangue Tasse et al. (2020)
to discounted and stochastic tasks. This enables us to provide theoretical bounds for our approach
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in stochastic settings, and also enables us to easily compare our bounds to previous works in the
discounted setting. We then show how our framework leverages logical composition to tackle the
lifelong RL problem. The framework enables agents to iteratively solve tasks as they are given, while
at the same time constructing alibrary of skills which can be composed to obtain behaviours for
solving future tasks faster or even without further learning.

We empirically verify our framework in a series of experiments, where an agent is i) pretrained
on a set of base tasks provided by the Boolean algebra framework, and ii) when the pretrained
tasks are not base tasks. We show that agents here are able to achieve good performance on new
tasks before training even starts. Finally, we demonstrate our framework in the lifelong RL setting
where an agent receives tasks from an unknown non-stationary distribution and must determine
what skills to learn and add to its library, and how to combine its current skills to solve new tasks.
Results demonstrate that this framework enables agents to quickly learn a set of skills, resulting in
a combinatorial explosion in their abilities. Consequently, even when tasks are sampled randomly
from an unknown distribution, an agent is able leverage its existing skills to solve new tasks without
further learning, thereby generalising over task distributions.

2 BACKGROUND

We consider tasks modelled by Markov Decision Processes (MDPs). An MDP is de�ned by the
tuple (S; A ; p; r;  ), where (i)S is the state space, (ii)A is the action space, (iii)p(s0js; a) is a
Markov transition probability, (iv)r is the real-valued reward function bounded by[r MIN ; rMAX ], and
(v)  2 [0; 1) is the discount factor. In this work, we focus on goal-based tasks where an agent is
required to reach a subset of desirable goals in a �nite goal spaceG � S (boundary set of states). Here,
termination inGis modelled similarly to Van Niekerk et al. (2019) by augmenting the state space with
a virtual state,! , such thatp(! js; a) = 1 8(s; a) 2 (G � A ) and the rewards are zero after reaching
! . We hence consider the set of tasksM such that the tasks are in the same environment—described
by a background MDP(S; A ; p; ; r 0)—and each task can be uniquely speci�ed by a set of desirable
and undesirable goals:

M (S; A ; p; ; r 0) := f (S; A ; p; ; r ) j 8a 2 A ; r (s; a) = r 0(s; a) 8s 2 S n G;
r (g; a) = r g 2 f r MIN ; rMAX g 8g 2 Gg (1)

The goal of the agent is to compute a Markov policy� from S to A that optimally solves a given task.
A given policy � is characterised by a value functionV � (s) = E� [

P 1
t =0  t r (st ; at )], specifying

the expected return obtained under� starting from states. Theoptimalpolicy � � is the policy that
obtains the greatest expected return at each state:V � �

(s) = V � (s) = max � V � (s) for all s in S. A
related quantity is theQ-value function,Q� (s; a), which de�nes the expected return obtained by
executinga from s, and thereafter following� . Similarly, the optimalQ-value function is given by
Q� (s; a) = max � Q� (s; a) for all s in S anda in A .

2.1 LOGICAL COMPOSITION

Nangue Tasse et al. (2020) recently proposed the notion of a Boolean task algebra, which allows
an agent to perform logical operations—conjunction (^ ), disjunction (_) and negation (: )—over
the space of tasks and value functions.1 To achieve this, they extend the standard de�nitions of the
reward and value functions to de�ne goal-oriented versions as follows:
De�nition 1. The extended reward function�r : S � G � A ! R is given by the mapping

(s; g; a) 7!
�

�r MIN if g 6= s 2 G
r (s; a) otherwise;

(2)

where�r MIN � minf rMIN; (rMIN � r MAX)Dg, andD is the diameter of the MDP (Jaksch et al., 2010).
De�nition 2. The extended Q-value function�Q : S � G � A ! R is given by the mapping

(s; g; a) 7! �r (s; g; a) +
X

s02S

p(s0js; a) �V �� (s0; g); (3)

1Note that the results of Nangue Tasse et al. (2020) are for deterministic shortest path tasks. In Section 3.2,
we extended these to the family of stochastic goal-reaching tasks.

2



Accepted at NeurIPS 2021 Deep Reinforcement Learning Workshop

where �V �� (s; g) = E�� [
P 1

t =0 �r (st ; g; at )].

By penalising the agent for achieving goals different from the one it wanted to reach—�r MIN &if g 6=
s 2 G—, the extended reward function has the effect of driving the agent to learn how to
separately achieve all desirable goals. The agent can then act by simply maximising over�Q:
� (s) 2 arg maxa2A maxg2G �Q(s; g; a).

The logic operators over tasks and extended action-value functions are then de�ned as follows:

De�nition 3. LetM be a set of tasks with boundsM MIN ; M MAX 2 M such that,
r M MAX (s; a) := max

M 2M
r M (s; a) rM MIN (s; a) := min

M 2M
r M (s; a)

De�ne the: ; _ , and^ operators overM as

: (M ) := ( S; A ; p; r : M ); wherer : M (s; a) := ( r M MAX (s; a) + r M MIN (s; a)) � r M (s; a)

_(M 1; M 2) := ( S; A ; p; rM 1 _ M 2 ); wherer M 1 _ M 2 (s; a) := max f r M 1 (s; a); rM 2 (s; a)g

^ (M 1; M 2) := ( S; A ; p; rM 1 ^ M 2 ); wherer M 1 ^ M 2 (s; a) := min f rM 1 (s; a); rM 2 (s; a)g

De�nition 4. Let �Q� be the set of optimal extended�Q-value functions for tasks inM , with
bounds �Q�

MIN ; �Q�
MAX 2 �Q� which are respectively the optimal�Q-functions for the tasks

M MIN ; M MAX 2 M . De�ne the: ; _ , and^ operators over�Q� as,

: ( �Q� )(s; g; a) :=
� �Q�

MIN (s; g; a) + �Q�
MAX (s; g; a)

�
� �Q� (s; g; a)

_( �Q�
1; �Q�

2)(s; g; a) := max f �Q�
1(s; g; a); �Q�

2(s; g; a)g

^ ( �Q�
1; �Q�

2)(s; g; a) := min f �Q�
1(s; g; a); �Q�

2(s; g; a)g

Using the de�nitions for the logical operations overM and �Q� given above, Nangue Tasse et al.
(2020) construct a Boolean algebra over tasks and extended value functions. Furthermore, by
leveraging the goal-oriented de�nition of extended value functions, they also show thatM and �Q�

are homomorphic.

Proposition 1. Let �Q� be the set of optimal�Q-value functions for tasks inM . LetA : M ! �Q�

be any map fromM to �Q� such thatA (M ) = �Q�
M for all M in M . Then,

(i) M and �Q� respectively form a Boolean task algebra(M ; _; ^ ; : ; M MAX ; M MIN ) and
a Boolean EVF algebra( �Q� ; _ ; ^ ; : ; �Q�

MAX ; �Q�
MIN ),

(ii) A is a homomorphism betweenM and �Q� .

Proposition 1 allows one to compose existing tasks and skills together to create new ones in a
principled way. Furthermore, it guarantees that if we can write down a task under the Boolean algebra,
we can immediately write down the optimal value function for the task. This enables agents to solve
any new task that is expressed as the logical combination of learned ones.

3 LIFELONG TRANSFER THROUGH COMPOSITION

3.1 EXTENDING THE LIFELONG REINFORCEMENT LEARNING PROBLEM

In lifelong RL, an agent is presented with a series of tasks sampled from some distributionD. The
agent then needs to not only transfer knowledge learned from previous tasks to solve new but related
tasks quickly, but it also should not forget said knowledge in the process. We formalise this lifelong
learning problem as follows:

De�nition 5. LetD be an unknown non-stationary distribution over a set of tasksM (S; A ; p; ; r 0).
The lifelong learning problem consists of the repetition of the following steps fort 2 N:
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1. The agent samples a taskM t � D (t),

2. The agent interacts with the MDPM t until it is � -optimal inM 0; :::; M t .

This formulation of lifelong RL is similar to that of Abel et al. (2018), with the main difference being
that we do not assume thatD is a stationary distribution, and we explicitly require an agent to retain
learned skills.

As discussed in the introduction, one of the main goals in this setting is that of transfer (Taylor &
Stone, 2009). We add an important question to this setting: how many tasks should an agent learn
during its lifetime in order to generalise over the task distribution—that is to be able to solve any new
task without further learning? While most approaches focus on the goal of transfer, the question of the
number of tasks is often neglected by simply assuming the case where the agent has already learned
n tasks (Abel et al., 2018; Barreto et al., 2018). Consider for example a task space with onlyjGj = 40
goals. Then, considering the composition of goals, the size of the task space isjMj = 2 jGj � 1012.
If D is a uniform distribution overjMj , then for most transfer learning methods an agent will have
to learn most of the tasks it is presented with, since the probability of getting the same task will be
approximately zero. This is clearly impractical for a setting like RL where learning methods often
have a high sample complexity even with transfer learning. It is also extremely memory inef�cient
since the learned skills of most tasks will have to be stored.

In this section, we show how logical composition can be leveraged to learn a subset of tasks that is
suf�cient to generalise over the task distribution. We �rst extend the logical composition framework
to discounted tasks.

3.2 EXTENDING THE BOOLEAN ALGEBRA FRAMEWORK

We extend Proposition 1 to the set of discounted stochastic tasksM (Equation 1). To achieve this,
we �rst rede�ne the extended reward function to use the simpler penalty�r MIN = r MIN and include
discounting in the action-value function:
De�nition 6. The extended reward function�r : S � G � A ! R is given by the mapping

(s; g; a) 7!
�

r MIN if g 6= s 2 G
r (s; a) otherwise;

(4)

De�nition 7. The extended Q-value function�Q : S � G � A ! R is given by the mapping

(s; g; a) 7! �r (s; g; a) + 
X

s02S

p(s0js; a) �V �� (s0; g); (5)

where �V �� (s; g) = E�� [
P 1

t =0  t �r (st ; g; at )].

We now show that the Boolean algebra and zero-shot composition results of Nangue Tasse et al.
(2020) also hold for tasks inM . We use the same de�nitions of_ and^ as in De�nitions 3 and 4,
but rede�ne: over �Q� as follows:

: ( �Q� )( :) :=
� �Q�

MAX (:) if j �Q� (:) � �Q�
MIN (:)j � j �Q� (:) � �Q�

MAX (:)j
�Q�

MIN (:) otherwise;
; 8(:) 2 S � G � A :

As we discuss in the supplementary material, this is equivalent to the previous de�nition for optimal
�Q-value functions of tasks inM , but it gives better bounds when composing� -optimal �Q-value
functions.
Proposition 2. Let �Q� be the set of optimal�Q-value functions for tasks inM . LetA : M ! �Q�

be any map fromM to �Q� such thatA (M ) = �Q�
M for all M in M . Then,

(i) M and �Q� respectively form a Boolean task algebra(M ; _; ^ ; : ; M MAX ; M MIN ) and
a Boolean EVF algebra( �Q� ; _ ; ^ ; : ; �Q�

MAX ; �Q�
MIN ),

(ii) A is a homomorphism betweenM and �Q� .

We can now solve any new task inM zero-shot if we are given the correct Boolean expression that
tells the agent how to compose its optimal skills. This is essential for the following results.
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3.3 TRANSFER BETWEEN TASKS

In this section, we leverage the logical composition results to address the following question of
interest: Given an arbitrary set of learned tasks, can we transfer their skills to solve new tasks faster?
As shown in Theorem 1, we answer this question in the af�rmative. To achieve this, we �rst realise
that each taskM 2 M can be associated with a binary vectorT 2 f 0; 1gjGj which speci�es its set of
desirable goals—as illustrated by the tasks in Table 1—such that

T(g) = 1r M (g;a )= r MAX for all (g; a) 2 G � A : (6)

Now let ~T be an approximation ofT for a given taskM . We can then use thesum of products
method (SOP) to determine a candidate Boolean expression (BEXP ) in terms of the learned binary
speci�cations~Tn = f ~T1; :::; ~Tn g of a set of past taskŝM = f M 1; :::; M n g � M . An estimate of the
optimal �Q-value function ofM can then be obtained by composing the learned�Q-value functions
~�Q�

n = f ~�Q�
1; :::; ~�Q�

n g according toBEXP . Theorem 12 shows the optimality of this process.

Theorem 1. LetM 2 M be a task with binary speci�cationT and optimal extended action-value
function �Q� . Given� -approximations of the binary speci�cations~Tn = f ~T1; :::; ~Tn g and optimal
�Q-functions ~�Q�

n = f ~�Q�
1; :::; ~�Q�

n g for n tasksM̂ = f M 1; :::; M n g � M , let

TSOP = BEXP ( ~Tn ) and �QSOP = BEXP ( ~�Q�
n ) whereBEXP = SOP( ~Tn ; ~T):

De�ne,
� (s) 2 arg max

a2A
QSOP whereQSOP := max

g2G
�QSOP (s; g; a):

Then,

(i) kQ� � Q� k1 � 2
1�  ((1T 6= TSOP + 1r =2f r g gjGj

)r � + � ),

(ii) If the dynamics are deterministic,

kQ� � QSOP k1 � (1T 6= TSOP )r � + �;

where1 is the indicator function,r g(s; a) := �r (s; g; a), r � := r MAX � r MIN, andkf � hk1 :=
maxs;g;a jf (s; g; a) � h(s; g; a)j.

Theorem 1(i) says that if�QSOP is close to optimal, then acting greedily with respect to it is
also close to optimal. Interestingly, this is similar to the bound obtained by Barreto et al. (2018)
(Proposition 1) for transfer learning using generalised policy improvement (GPI), but stronger.3 This
is unsurprising, since� (s) 2 arg maxa2A maxg2G �QSOP (s; g; a) can be interpreted as generalised
policy improvement on the set of goal policies of the extended value function�QSOP . Importantly, if
the environment is deterministic, then we obtain a strong bound on the composed value functions
(Theorem 1(ii)). This bound shows that transfer learning using theSOP method is� -optimal—that
is there is no loss in optimality—when the new task is expressible as a logical combination of past
ones. With the exponential nature of logical combination, this gives agents a strong generalisation
ability over the task space—and hence over any task distribution—as shown in Theorem 2.

3.4 GENERALISATION OVER A TASK DISTRIBUTION

We leverage Theorem 1 to design an algorithm that combines theSOP approach with goal-oriented
learning to achieve fast transfer in lifelong RL.

Given an off-policy RL algorithmA , the agent initializes its extended value function~�Q, the task
binary vector~T, and a goal buffer according toA . At the beginning of each episode, the agent

2See the supplementary material for proofs of theorems.
3See Section1:4 of the supplementary material for a detailed discussion of this with the simpli�cation of the

bound in Proposition 1 (Barreto et al., 2018) to the same form as Theorem 1(i).
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Figure 1: Pick-
UpObj domain. The
red triangle repre-
sents the agent.

Goals

Ta 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Tb 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Tc 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Td 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Table 1: Base tasks for the PickUpObj domain. Each row shows the binary
speci�cationT for a task MDPM 2 M , where0 or 1 for goalg on task
T means respectively reward ofr M (g; a) = r MIN or r M (g; a) = r MAX
8a 2 A .

computesTSOP andQSOP for ~T using theSOP method and its library of learned task vectors and
extended Q-functions. It then acts using the behaviour policy (� -greedy for example) ofA with
�QSOP for the action-value function ifTSOP = ~T, and �QSOP _ ~�Q otherwise.4 If TSOP 6= ~T, the
agent also updates~�Q for each goal in the goal buffer usingA . Finally, when the agent reaches a
terminal states, it adds it to the goal buffer and updates~T(s) using the reward it receives (as per
Equation 6). The full algorithm is included in Section2 of the supplementary material. We refer
to this algorithm as SOPGOL (Sum Of Products with Goal Oriented Learning). We now show that
SOPGOL generalises over any unknown non-stationary task distribution after learning only a number
of tasks logarithmic in the size of the task space.

Theorem 2. LetD be an unknown non-stationary distribution over a set of tasksM (S; A ; p; ; r 0),
and letA : M ! �Q� be any map fromM to �Q� such thatA (M ) = �Q�

M for all M in M . Let

~Tt +1 ; ~�Q�
t +1 = SOPGOL(A ; M t ; ~Tt ; ~�Q�

t ) whereM t � D (t) and ~T0 = ~�Q�
0 = ? 8t 2 N:

Then,
dlog jGje � lim

t !1
j ~Tt j = lim

t !1
j ~�Q�

t j � jGj :

Interestingly, Theorem 2 holds even in the case where a new task is expressible in terms of past tasks
(TSOP = ~T) but we want to learn to solve it to a higher degree of optimality than past tasks. In
this case, we can pretendTSOP 6= ~T and learn a new�Q-function to the desired degree of optimality.
We can then add it to our library, and remove any other skill from our library (the least optimal for
example). Notice thatjGj is the maximum number of different skills we need to store because that is
the dimensionality of the goal space.

4 EXPERIMENTS

4.1 TRANSFER AFTER PRETRAINING ON A SET OF TASKS

We consider theP ickUpObj domain from theminigrid environment (Chevalier-Boisvert et al.,
2018), where an agent must navigate in a 2D room to pickup objects of various shapes and colours
from pixel observations (Figure 1). There arejGj = 15 goals, each corresponding to picking up
objects of 3 possible types—box, ball, key—and 5 possible colours—red, blue, green, purple, and
yellow—. Hence a set ofdlog2 jGje= 4 base tasks can be selected which can be used to solve all
2jGj = 32768 possible tasks under a Boolean composition of goals. The agent receives a reward of2
when it picks-up desired objects, and� 0:1 otherwise.

For all of our experiments in this section, we use deep Q-learning (Mnih et al., 2015) as the RL
learning method for SOPGOL and as the performance baseline. We also compare SOPGOL to
SOPGOL-transfer, or to SOPGOL-continual. SOPGOL-transfer refers to when no new skill is learned

4Since �QSOP _ ~�Q = max f �QSOP ; ~�Qg, it is equivalent to GPI and hence is guaranteed to be equal or
more optimal than the individual value functions. Hence using�QSOP _ ~�Q in the behaviour policy gives a
straightforward way of leveraging�QSOP to learn ~�Q faster.
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