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Abstract—Robot vision is an interdisciplinary field that deals
with how robots can be made to gain high-level understanding
from digital images or videos. Understanding an image at
the pixel level often does not provide enough information for
decision making and action taking. In this case, higher level
semantic information that describes the image is required. This
helps the robot to accomplish complex tasks that require visual
understanding.

For robots to add value they need to be sufficiently effective
at executing tasks in different settings. Despite many impressive
advances in robot vision, robots still lack the ability to func-
tion as humans do in complex environments. Importantly, this
includes being able to interpret and understand the perceptual
complexities of the world.

Robot vision is dependant on ideas from both computer vision
and machine learning. In this paper we provide a overview of the
advances in these disciplines and how they contribute to robot
vision.

I. INTRODUCTION

Although robots have gained widespread adoption in well-
curated factory environments, there remain many issues when
moving to unstructured settings, featuring cluttered scenes or
unanticipated events. The perceptual challenges are not only
at the level of recognising objects, but often for useful action
further contextualisation is required.

For example, when a wind gust blows leaves through an
open door, a human will know to close it. In order to interpret
the scene in the same way, a robot will first have to recognise
and identify the images of the leaves, and then that they are
contextually out of place indoors.

In a complex human environment it is still a challenge
for robots to perform complex tasks autonomously. This is
typically handled through either controlling the environment or
augmenting the sensors. For example, a robot to help paralysed
army veterans around the house [2] works indoors and can
operate in a cluttered environment but relies on customised
QR code-like symbols to help the robot identify common
objects. On the other hand, an autonomous robotic laundry
folding system is restricted to only using certain clothing
and operations [3]. Although these robots function in tightly
controlled environments, the potential to extend their impact
is great [4].

Robot vision (RV) is the field concerned with how a
robot gains perceptual information about its surroundings.
This draws on techniques from a number of areas, most

notably computer vision (CV) and machine learning (ML),
as illustrated in figure 1 [5].
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Fig. 1. High level diagram illustrating relationships between disciplines [5]

Humans rely heavily on visual input to interpret and react
to their surroundings. CV can be defined as the science that
aims to give a similar, or analogous, capability to a machine or
computer [5]. CV is concerned with the automatic extraction,
analysis and understanding of useful information from a single
image or a sequence of images. CV is a combination of signal
processing, optics, image processing and ML disciplines.
Recent developments in CV rely significantly on deep learning
(DL) methods.

As opposed to the conventional settings of CV, where the
data being processed is derived from an image or video,
RV also considers a video stream that can be controlled. In
this way, the interpretation of the data is often intrinsically
linked to the behaviour of the robot. This allows a robot to
observe, interpret and then act. The robot can either observe
the environment further or perform desired actions e.g. open
the door, or look at the scene from another angle.

Table I lists the inputs and outputs as considered by these
disciplines.

Having laid this groundwork, the rest of the paper is
structured as follows. Section II considers recent developments
in CV, and examines the tools therein from DL. Section III
then proceeds to explore problems in RV and how these



TABLE I
SUMMARY OF INPUTS AND OUTPUTS OF EACH TECHNIQUE

Technique Input Output

Signal Processing Electrical signals Electrical signals
Image Processing Images Images

Computer Vision Images Information/features
Pattern Recognition/

Machine Learning Information/features  Information
Machine Vision Images Information

Robot Vision Images Physical Action

problems can be addressed with CV and ML techniques. We
then round out this work with a discussion on current and
future trends in RV, in section IV.

II. COMPUTER VISION

Computer vision is largely concerned with three problems:
image classification (object recognition), image classification
with localization, and object detection.

A. Image classification

In image classification, a supervised machine learning algo-
rithm considers an input image and predicts a class label of
that image, indicating whether or not that class (often referring
to an object of interest) is present in the image.

ImageNet [7] is a large visual database that is commonly
used as a performance benchmark for classification problems.

The major breakthrough in performance on this dataset
came with a deep learning model for image classification:
AlexNet [9]. This was built on convolutional neural networks
(CNNs), leveraging the idea of automatically learning useful
features. This network dramatically outperformed previous im-
age classification results, which relied on hand-crafted features
such as the SIFT model, with an error rate of 15.3% compared
to 26.2%.

AlexNet has subsequently been outperformed by other mod-
els, such as VGGI16 in 2015 [10], which chained multiple
convolutional layers with the rectified linear unit (ReLU)
activation functions together. Further progress has been made
with the introduction of yet deeper networks, such as the
inception models [11], [12].

The difficulty with deeper networks for image classification
is that the error rate increases as the number of layers
increases. To address this problem residual learning was
introduced. Residual learning creates a connection between
the output of one or multiple convolutional layers and their
original input with an identity mapping. The model learns
a residual function that keeps most of the information and
produces only slight changes. ResNet, for example, is able
to train 152 convolutional layers using residual learning.
Combining inception models with residual learning allowed
the Inception-ResNet model to outperform other models [14].
Combinations of layers and models allowed for even faster
training and better performance [15].

Self-supervised learning (SSL) is a reliable learning method
that allows robots to adapt to their environment. It enables the

robot to generate its own training data combined with prior
information to improve its performance. Autonomous learning
stem from SSL and involves deep learning methods.

The latest trend in image classification involves Neural
Architecture Search (NAS) and automatically learning the
right network architecture for a task. It is used as a cell
in a Recurrent Neural Network to learn its own architecture
using reinforcement learning. For a given range of operations
and hyperparameters, multiple sequences are realized to max-
imize the accuracy as a signal reward for a given dataset.
The objective is to learn the best sequence of operations
(given a maximal depth) to get an optimized architecture
[16]. Following the NASNet model is the Progressive Neural
Architecture Search (PNAS) model [17]. This has replaced
the Reinforcement Learning with a progressive search. This is
when a single function describes all possible structures where
each structure is stacked with an operator to another. A learned
function decides the importance of learning a structure. The
highest ranked structures are selected and stacked together.

B. Image classification with localization

In image classification with localization, the model is
required to identify both the predicted class as well as a
bounding box around the object in the image to indicate
where the single object was found. The PASCAL Visual
Object Classes (VOC) challenge was another benchmark in
object classification and localisation, organised annually from
2005 to 2012 [18]. Traditionally, a common strategy in object
localization problems was to use a sliding window. This
method involves moving a window over an image to select
a sub-region and classify each image region covered by the
window using the object recognition model. These methods
incurred a high computational cost, leading to other methods
such as the sub-window search [19] and branch-and-bound
frameworks for object localization [20]. In [21] the two stage
sliding window was used with a more novel approach in [22]
moving away from operating on a pixel level search.

Subsequent approaches using convolutional neural networks
[23] demonstrates object localization without the need for
sliding windows.

C. Object detection

Object detection not only tells you which objects are
present in the image, it also outputs bounding boxes indicating
where multiple objects are. At the heart of object detection
is an object classification/recognition algorithm. To localize
the object, we have to select sub-regions of the image and
then apply the object recognition to these image sub-regions.
The straightforward way to generate smaller sub-regions is
with the sliding window method. It is an exhaustive search
method. All possible locations with different scales need to
be searched over the entire image making this method very
computational intensive. These limitations are overcome by
region-based search methods. These methods take an image
as the input and create bounding boxes around all sub-regions
in an image that are most likely to be objects. Then we can



classify these bounding boxes using the object recognition
model. The region with the highest probability scores are
considered to be the locations of the object. Selective search is
one of the most popular region search methods. It is based on
computing a hierarchical grouping of similar regions based
on color, texture, size and shape compatibility [24]. The
object detection regional-base convolutional neural network
(R-CNN) uses selective search to find the proposed locations
and deep learning to perform object recognition [25]. With
a Fast Region-based Convolutional Neural Network (Fast R-
CNN) [26], a CNN with multiple convolutional layers is used
to take the entire image as input instead of using a CNN
for each region proposal (R-CNN), thereby reducing the time
required to search each proposed region.

A Region Proposal Network (RPN) directly proposes sub-
regions, predict bounding boxes and detect objects. RPN
quickly and efficiently scans every location in order to assess
whether further processing needs to be carried out in a given
region. Faster Region-based Convolutional Neural Network
(Faster R-CNN) [27] uses a combination of an R-CNN and
RPN. RPN avoids the time used on the selective search
method, and it allows faster training and testing while improv-
ing performance. Region-based Fully Convolutional Network
(R-FCN) [28] does not do any regional proposal or selective
search but combines it into the CNN to do object detection
together with its location [29]. Neural Architecture Search Net
(NASNet) [30] discussed in image classification is used with
the Faster R-CNN model seen above for better performance
[14] with another combination of faster R-CNN seen in [31].

When it comes to object detection, where different objects in
an image are classified with localization information, the use
of sliding windows has been replaced with techniques such
as the You Only Look Once (YOLO) method [32]. YOLO
is faster and much more accurate. YOLO uses a single CNN
network for both classification and localising. You Only Look
Once (YOLO) model takes an image as input, then it divides
it into a grid where each cell of this grid predicts bounding
boxes with a confidence score. Where previous models usually
contained an object in the predicted bounding box, in YOLO
there are usually be a high number of bounding boxes without
objects. At the end of the network, the highly-overlapping
bounding boxes are merged into single one. YOLO9000 [33]
increase performance without impacting real-time application
speed.

Where the Non-Maximum Suppression (NMS) method is
applied at the end of the network in YOLO dealing with
empty bounding boxes. Single-Shot Detector (SSD) [34] uses
the Hard Negative Mining (HNM) to deal with this issue. SSD
is also an end-to-end CNN like YOLO that uses a single CNN
network for both classification and localising.

A few different visual datasets have been made available.
The availability of these data sets makes different methods
of object classification, object classification and localisation
and object detection more comparable. As seen in previous
paragraphs the three most common databases are the PASCAL
Visual Object Classes (VOC), [18], the Common Objects in

COntext (COCO) dataset [35] and the ImageNet dataset [7].

III. ROBOT VISION

Over the past decade RV has emerged as a subject area with
its own identity. This is due to the advances in hardware and
the capability to process and store large quantities of data. RV
allows a robot to process visual data from the environment,
as seen figure 2. RV has the added benefit of a video stream
that can be controlled, making this setting an interactive one.

Fig. 2. Robot perceiving its environment using an on-board camera

RV presents a set of unique challenges. Many of these
are due to different forms of partial observability in how the
robot perceives its environment. These arrive often because the
data is collected on-the-fly from a mobile sensor, rather than
through a well-curated dataset or a specifically placed camera.
The exact position and orientation of the robot or sensor may
not be explicitly known. In addition, the sensors would be
susceptible to different lighting conditions, or motion of the
sensor may induce unexpected blur on the images. The fact
that a robot can move around its environment means that many
objects may be observed at different scales or orientations to
what was seen during training. The location of the robot may
also result in objects being partially or completely occluded,
and objects of interest may thus not even be visible. This all
results in complicating issues such as object recognition or
localisation.

RV has to address these issues, and to deal with a variety
of conditions and environments through development of robust
and generalizable methods.



RV continues to address unique problems; active vision in
section III-A, anomaly detection in section III-B, interest
detection in section III-C, semantic scene understanding in
section III-D, place recognition in section III-E, simultaneous
localization and mapping in section III-F, vision based control
in section III-G, development of real-time and efficient
solutions for relevant application areas in section III-H.

The following sections highlight some of the latest work in
RV addressing these challenges.

A. Active vision

Using the ability to manipulate the viewpoint of a camera,
which is a very natural advantage of a camera on a robot,
the environment can be investigated and better information
can be obtained. This is active vision. Active vision was
introduced to improve the perceptual quality of tracking results
[36]. This method addresses the issues of object occlusion,
limited field of view or limited camera resolution. It has also
been suggested that visual attention and the selective aspect
of active camera control can help in other tasks like learning
more robust models of objects and environments with less
labeled samples or autonomously. For more information see
the survey of active vision applications in robotics [37].

B. Anomaly detection

Anomaly detection is an unsupervised learning task where
the goal is to identify abnormal patterns in data. Anomaly
detection in the manufacturing industry is commonly used on
robots to detect manufacturing flaws [?]. Anomaly detection
can be extended to images of a different nature, for example
to detect anomalous faces using autoencoders [38]. Work on
anomaly detection using one-class neural networks [39] is
another approach to the problem. Unsupervised and semi-
supervised video anomaly detection is summarised in [40]
using deep learning methods.

C. Interest detection

When a robot is deployed semi-autonomously it might
be useful if interesting information could be summarised
and communicated to the operator. This might be something
as simple as highlighting something that is out-of-place or
unusual. The difficult question is to define what is interesting.
This depends on the situation and environment. To ask the
robot to send or store only relevant images and information
makes more sense than saving a video of the duration of
the vacuum operation for the operator to watch. Recent work
focused on interest detection in robot vision can be seen in
[41].

D. Semantic scene understanding

Semantic scene understanding, in contrast to object recog-
nition, attempts to analyse objects in context with respect
to the 3D structure of the scene, its layout, and the spatial,
functional, and semantic relationships between objects, [42],
[43], [44]. Semantic scene understanding is an important for
many robot applications. A self driving car is one example that

can benefit from traffic scene understanding [45]. In general,
these techniques imbue a robot with the ability to conduct
higher-order reasoning in its environment.

E. Place recognition

Slightly different to object detection and recognition is place
recognition, which is more concerned with classifying a scene
or area in an environment based on a variety of different
visual cues. Place recognition has a number of applications
ranging from autonomous driving, robot navigation to aug-
mented reality, geo-localizing archival imagery. Vision is the
primary sensor for many localization and place recognition
algorithms. The difficulty with place recognition is the factors
like illumination and season that change the appearance of an
image of the same place significantly. There is an overview
[46] on place recognition and a visual place recognition survey
[47] that provide insight into this topic.

F. Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) allows the
robot to understand where it is in a map of an environment
while also updating the map of this environment. SLAM
is a method of simultaneously determining the position of
the camera and the structure of the environment in real-
time. The work mentioned here is all reliant on camera data,
visual SLAM, although earlier research was mostly reliant
on laser scanners for SLAM. Visual sensors offer advantages
over traditional robotic mapping sensors, including low cost,
small size, passive sensing and low power consumption [48].
Vision-based mapping includes FAB-MAP [49], MonoSLAM
[50], FrameSLAM [51], V-GPS [52], Mini-SLAM [53], and
SeqSLAM methods among others. When SLAM with image
data began to give successful results [54], visual SLAM
became more widely used. Recent work demonstrates the
creation of large scale maps [55], [56]. These maps can be
automatically enhanced with meaningful 3D structures [57],
and recover shapes [58] all in real time. Place recognition
has been used in visual multi-robot simultaneous localisation
and mapping [59]. RGBD sensors have also been shown to
successfully support SLAM [60].

G. Vision-based control

Vision-based control involves executing local behaviours on
a robot, based on perception. An example of this is obstacle
avoidance using RGB-D cameras [61], [62], [63].

Robots grasping and interacting with the environment can
also be done using RGB-D data. Robot vision allows inter-
acting with the environment in this scenario. In [64] they
proposed Generative Grasping Convolutional Neural Network
(GG-CNN) to predict the quality and pose of grasps at every
pixel. This one-to-one mapping from a depth image overcomes
limitations of current deep-learning grasping techniques by
avoiding discrete sampling of grasp candidates and long com-
putation times.



H. 3D object detection

In work introduced in the previous sections, the information
of the images as well as the 3D structure of the scene plays
an important role. There is not a hard line between computer
vision and machine learning techniques being implemented on
RGB data and on RGB-D data. Steadily, depth information is
being incorporated into these techniques that is tested to gain
the benefit of more information that can influence decision
making and high level functioning. With robot vision the use
of depth data can be seen more often. A robot has the ability
to perform actions in its environment and requires information
about objects around it.

Since robots need to operate in the real world 3D informa-
tion becomes important for understanding and interacting with
the environment. In [66] they propose a holistic approach that
exploits 2D segmentation, 3D geometry, as well as contextual
relations between scenes and objects. In more recent work
[67] a single-stage detector that outputs oriented 3D object
estimates decoded from pixel-wise neural network predictions,
was proposed for autonomous driving. Implementing YOLO
for 3D object detection [68] is another recent application.

IV. FUTURE TRENDS

The sub-fields of robot vision, image classification and ob-
ject recognition have seen great strides in real time application.
This can be largely attributed to deep learning. Convolutional
Neural Networks have made training on large data sets possi-
ble, enabling exceptionally good classification and recognition
of images. These methods were further advanced by transfer
learning where a model trained for one task is re-used on
another related task. Transfer learning also allows building
powerful image classification models using smaller amounts
of data.

We have covered the crux of computer vision and robot
vision in previous sections. This forms the basis of how to
address higher level problems. Methods providing a more
holistic understanding of the environment will be the focus
for future robotic vision research. This will improve a robot’s
interpretations of its surroundings.

The following sections highlight the leading developments
in machine learning towards these problems. Work focusing
on these methods have been used in recent publications and
combinations of methods to address RV problems can be seen.

A. Deep learning

Deep networks have demonstrated their ability to learn from
images but there is still much work to be done in understanding
aspects of the learning dynamics and training mechanisms
to enable its greater development and use. The work on DL
will only continue to grow with one of the emerging research
areas focusing on the inner workings of these methods. This
will further enable the deployment of these methods into
applications where there is a requirement to understand the
decisions made by the robot.

B. Generative models

Generative models are a class of unsupervised learning
models that use data to train a model to generate more data
matching the original distribution. These models aim to learn
the underlying probability distribution of the training data
so that it could easily sample new data from that learned
distribution. The most efficient approaches are Variational Au-
toencoders (VAE) [69] and Generative Adversarial Networks
(GAN) [70].

GAN’s consists of two neural networks: a generator and a
discriminator. During training, the generator tries to generate
realistic samples, while the discriminator needs to determine
whether they are fake or real. At the end, the generator is
capable of generating data that looks like the real thing. GANs
can be used for image to image translation, or improving the
quality of low-resolution images.

C. Deep reinforcement learning

The latest work in reinforcement learning (RL) is image
captioning [71]. Being able to describe an image in natural
language definitely contributes to understanding of the image.
DRL is a method that learns by interacting with the environ-
ment through observations, actions, and rewards. This method
does not require labelled data and use less data than other
methods.

D. Lean and augmented data learning

Since most methods require a lot of data creating data or
using transfer learning, using a model trained for one task or
domain for another application, is an important.

E. Probabilistic graphical models

In [72] they propose a hierarchical generative model that
classifies the overall scene, recognizes and segments each
object component, as well as annotates the image with a list
of tags.

V. CONCLUSION

Robot vision draws from many other disciplines. The most
prominent fields contributing to recent developments in this
area are computer vision and machine learning. The combined
progress in these fields of study is being implemented in the
field of robot vision allowing robots to get closer to being
able to interpret and understand complexities of the world as
humans do.

Machine learning techniques greatly contribute to how vi-
sual sensor data get interpreted by a robot. This enables a
robot to interpret and understand complexities of the world
better and also enhance interactions between the robot and its
surroundings.

The future of robot vision will be creative implementations
of machine learning methods to allow robots to represent their
environments in ways that facilitate optimally interacting in
those settings.
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