
RESEARCH PAPER

MiDaS: a large-scale Minecraft dataset
for non-natural image benchmarking

David Torpey ,* Max Parkin, Jonah Alter, Richard Klein , and Steven James
University of the Witwatersrand, School of Computer Science and Applied Mathematics, Johannesburg,

South Africa

ABSTRACT. Reinforcement learning (RL) has recently made several significant advances using
video games as a testbed. While many of these games are relatively self-contained,
there has been a recent push to develop agents capable of tackling massive, open-
ended environments that are more reminiscent of the real world. One of the most
popular of these platforms is Minecraft, but to attain human-level performance,
agents must be able to learn, plan, and reason using high-dimensional image input.
Commonly, an agent will attempt to extract lower-dimensional features that assist
with downstream tasks. However, representation learning techniques have primarily
been applied to real-world, natural image datasets, and it is unclear how these same
methods might translate to an artificial world with non-natural images. We therefore
present MiDaS, a novel large-scale Minecraft dataset featuring 36,000 labeled
images across 60 classes. MiDaS contains information about both the blocks in the
image, critical to solving the game, as well as auxiliary information such as time of
day and biome. Further, we perform an evaluation of various models to benchmark
performance on this new dataset. Since RL agents must be capable of learning
features without labels, we include benchmarks of various self-supervised learning
approaches on the dataset. Our results indicate that self-supervised methods per-
form best in the linear evaluation paradigm, particularly in low-label settings with a
ResNet-based backbone, whereas ImageNet-pretraining assists more in the fine-
tuning setting. The full dataset is available at https://github.com/MinecraftDataset/
MiDaS.

© 2024 SPIE and IS&T [DOI: 10.1117/1.JEI.33.1.013035]

Keywords: image dataset; self-supervised learning; benchmarks; representation
learning

Paper 230944G received Aug. 8, 2023; revised Jan. 12, 2024; accepted Jan. 16, 2024; published Feb.
5, 2024.

1 Introduction
Minecraft is a 3D open-world sandbox, rich with complexity and possibilities for environmental
manipulation. It is for this reason that interest in the domain has grown in recent years, particu-
larly in deep reinforcement learning (RL).1–3 By providing the necessary tools and resources,
platforms like MineRL,4 MineDojo,5 and Microsoft’s Project Malmo6 have also facilitated
further work in this field.

Despite the increased attention in this area, to the best of our knowledge, there exists no
large-scale dataset of Minecraft images that features a wide selection of in-game objects. Such a
dataset could prove useful when attempting to solve common in-game challenges like navigation
and resource collection, or as a benchmark in various classification and detection frameworks.

*Address all correspondence to David Torpey, 674425@students.wits.ac.za

1017-9909/2024/$28.00 © 2024 SPIE and IS&T

Journal of Electronic Imaging 013035-1 Jan∕Feb 2024 • Vol. 33(1)

https://orcid.org/0000-0003-2822-7146
https://orcid.org/0000-0003-0783-2072
https://orcid.org/0000-0003-4366-4125
https://github.com/MinecraftDataset/MiDaS
https://github.com/MinecraftDataset/MiDaS
https://github.com/MinecraftDataset/MiDaS
https://doi.org/10.1117/1.JEI.33.1.013035
https://doi.org/10.1117/1.JEI.33.1.013035
https://doi.org/10.1117/1.JEI.33.1.013035
https://doi.org/10.1117/1.JEI.33.1.013035
https://doi.org/10.1117/1.JEI.33.1.013035
https://doi.org/10.1117/1.JEI.33.1.013035
mailto:674425@students.wits.ac.za
mailto:674425@students.wits.ac.za
mailto:674425@students.wits.ac.za
mailto:674425@students.wits.ac.za

Therefore, we introduce MiDaS, a novel, large-scale Minecraft dataset featuring 36,000 labeled
images across 60 classes, known as blocks. The curation process of MiDaS is designed to ensure
good coverage of common in-game objects and blocks, as well as a suitable distribution across
various dimensions, such as biome, time of day, and a block’s natural position. The amalgam of
these curation processes ensures that MiDaS serves as a useful benchmark dataset for Minecraft,
and for artificial, non-natural image classification more generally.

Much progress has been made in recent years in machine learning with algorithms capable
of efficiently learning very general, rich representations of data with a wide range of modalities,
including images,7–9 video,10,11 and text.8,12 In particular, images have an inherently extremely
large dimensionality; even for relatively small images, the representational complexity quickly
becomes prohibitive due the curse of dimensionality.13

Finding suitable low-dimensional representations of images that are useful across a wide
range of tasks is still an open problem. Most modern approaches rely on some convolutional
network-based architecture such as ResNet,14 or some transformer-based architecture, such
as the vision transformer (ViT).15 Further, since labeled data is typically hard to scale due to
the annotation bottleneck, much progress has been made in unsupervised visual representation
learning algorithms—the most common paradigm being self-supervised learning (SSL).
Techniques in this paradigm aim to learn useful, rich representations using only unlabelled
data.9,16 These pretrained networks can then be used for downstream tasks, including image clas-
sification and semantic segmentation.

To this end, we provide—through a systematic evaluation and benchmarking of models—
guidance for what modern architectures and learning techniques work well for the inherently
non-natural artificial domain presented in MiDaS. As part of this benchmarking, we perform
various analyses based on the dimensions defined by the metadata obtained during curation,
as well as by varying the number of labels available downstream, all in an effort to gain deeper
insights into the performance of model variants in more granular and specific scenarios within the
Minecraft world. Our contributions can be summarized as:

• MiDaS : a large-scale Minecraft dataset featuring 36,000 high-resolution labeled images
across 60 classes, as well as numerous metadata fields [along with the data curation tool,
Minecraft image processor (MIP)].

• A carefully designed curation process to ensure that the blocks within MiDaS contain good
coverage of various dimensions, including time of day, biome, and natural position.

• A systematic benchmark of various models whereby we vary pretraining regime, architec-
ture, and pretraining dataset. In addition, we include comprehensive analyses using some of
MiDaS’s metadata fields.

Our benchmarking results suggest that pretraining on the MiDaS dataset is the best approach
if only fixed representations are required downstream. However, if the full backbone network can
be fine-tuned in the downstream task, then pretraining on ImageNet is the preferable approach.
Additionally, we find that self-supervised pretraining with a ResNet50 backbone is superior to
supervised pretraining in either scenario and constitutes a generally reliable approach.

The rest of the paper is structured as follows. Section 2 presents previous work in the cura-
tion of similar datasets, as well as an overview of the current research landscape in visual rep-
resentation learning. Section 3 then provides a comprehensive overview of the MiDaS dataset.
Section 4 details the research methodology used during the evaluation and benchmarking of
the models, with accompanying experiments and results presented in Sec. 5. Finally, we give
some concluding remarks in Sec. 6.

2 Related Work

2.1 Image Datasets
The majority of common benchmark datasets used in computer vision research consist of natural
images depicting real-world objects or scenes. These include ImageNet,17 CIFAR100,18

Caltech101,19 COCO,20 and OpenImages.21 However, fewer benchmarks exist that contain
images of non-natural or artificial scenes. Such benchmarks datasets are important for the

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-2 Jan∕Feb 2024 • Vol. 33(1)

development of RL agents in game-like testbed environments, as well as for real-world appli-
cations, ranging from medical image analysis22 to solar cell defect detection.23

Several existing Minecraft datasets exist. These include MineRL,4 which contains millions
of state-action pairs of human demonstrations and is used for training RL agents, as well as
MineDojo.5 While MineDojo contains a large amount of data pertaining to Minecraft, the data
are typically unstructured, and there is no focus on learning useful representations of in-game
objects. This is what prompted our curation and release of MiDaS, which enables the bench-
marking of new models’ representational power in terms of representing the plethora of objects
and scenes within the common RL testbed environment of Minecraft.

2.2 Representation Learning
Most modern approaches to visual representation learning can be classed as either generative or
discriminative. Generative approaches, such as generative adversarial networks7 and variational
autoencoders,24 are typically more computationally demanding, as they usually operate directly
in pixel space. Discriminative approaches have seen more interest from the research community
of late due to their superior performance and more efficient training dynamics.

One of the most popular visual representation learning paradigms is known as SSL. Earlier
approaches known as pretext task methods required a network to solve a manually defined proxy
task, such as context prediction,25 inpainting,26 or solving image jigsaw puzzles.27 In recent
times, instance discrimination (ID) techniques have become the preferred approach to SSL.

Contrastive and non-contrastive approaches exist within ID, and they primarily differ in how
they prevent representational collapse. Both techniques aim to pull the embeddings of positive
samples together; however, contrastive approaches, such as SimCLR9 and MoCo28 prevent
collapse using an InfoNCE-like29 loss function to explicitly push away negative samples. Non-
contrastive approaches, such as SwAV,30 BYOL,31 and DINO,16 prevent collapse by regularizing
the empirical covariance matrix of the embeddings.32

Since we focus on SimCLR and DINO in this work, we explain them here in more detail.
The SimCLR architecture is shown in Fig. 1. An image x is sampled from the dataset, and two
distinct views are generated by employing random data augmentations t and t 0, respectively,
which are sampled from a (possibly infinite) set of random data augmentations. These two views
are passed through an encoder network f, followed by a projection head (usually a multi-layer
perceptron) g, to obtain the final latent embeddings zi and zj. The NT-Xent9 loss is then com-
puted and used to update the network weights. This loss encourages the latent embeddings from
random views from the same image to be pushed together, and the embeddings of random views
from different images to be pulled apart. Due to the implicit negative sampling that this loss
function inherently relies on, the batch size must typically be large to produce a reliable estimate.

Fig. 1 Architecture diagrams for SimCLR (L) and DINO (R).

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-3 Jan∕Feb 2024 • Vol. 33(1)

Figure 1 depicts the DINO architecture. Two random views are generated in the same way as
in SimCLR. However, two separate networks (unlike the more common shared-weight approach
in SimCLR)—the teacher and student—produce representations for their respective input views.
The teacher embeddings are centered, and then both teacher and student embeddings are soft-
max-normalized. The cross-entropy between these softmax-normalized embeddings is then used
as the loss. Importantly, only the student network is updated using backpropagation, whereas a
stop-gradient is applied to the teacher network, and its weights are updated using an exponential
moving average of the student network’s weights. DINO is a form of self-distillation, a paradigm
that has been widely applied in the visual SSL space.31,33 It should be noted that for both SimCLR
and DINO (and most SSL techniques), it is the encoder (and its associated representations) that
are used for downstream tasks.

3 Dataset for Minecraft Objects
Minecraft features a large collection of discrete entities known as blocks (cube-like objects),
as shown in Fig. 2. These are the fundamental units of the game and can be placed together
to create complex structures. They are also combined in various ways to form new blocks.
It is through their collection and manipulation that players interact with the Minecraft world.
We now describe MiDaS, a novel Minecraft dataset consisting of 36,000 images with
60 block-level classes. A list of all blocks included in the dataset is included in the Appendix.

3.1 Data Collection
Before creating the dataset, we built a specialized annotation tool named the MIP (Fig. 3). MIP
allowed us to automatically label and process a batch of images we had captured. In addition, it
also allowed us to easily record metadata relevant to a particular set of images. This eliminated
the need to manually process each image. The metadata and other important details are discussed
further in Sec. 3.2.

The MIP software requires that two paths are specified: the source directory that stores the
current batch of images, and the target directory where the images are transferred. The block
input field (top-left in Fig. 3) determines the class folder that the images are transferred to
in the target directory. If the class folder for the specified block does not exist, it is automatically

Fig. 2 MiDaS samples from nine different classes. Blocks are captured in different configurations,
in various in-game biomes, at different angles and distances, and in differing lighting conditions.

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-4 Jan∕Feb 2024 • Vol. 33(1)

created. The rest of the fields describe the metadata associated with a batch. As images are proc-
essed, a per-class CSV file records the specified input details. Any changes to a class folder via
MIP are updated in this file. MIP also features delete functionality to remove processed images
from the target directory, and a counting tool (bottom-right in Fig. 3) keeps track of the number of
images in the source and target directories at any time.

When creating the dataset, images were obtained using Minecraft’s in-game screenshot tool.
This involved placing blocks in different configurations, or finding them in natural positions,
capturing them from different perspectives, and then moving on to a new location. Without resiz-
ing the data, each image has spatial dimensions of 1920 × 1080 and a spatial resolution of 96dpi.
The total dataset size is ∼26 GB. All images were captured on version 1.17.1 on Minecraft: Java
Edition.

The choice of which blocks to include was guided by the following criteria.

• Block rarity: we considered how likely it is for a player (or agent) to encounter the block in
a standard playthrough, and prioritized the more common ones.

• Utilization in common training tasks: we included blocks that are frequently used when
training an autonomous agent to perform certain tasks. For example, we include all types of
logs and ores featured in the Treechop and ObtainDiamond challenges in MineRL,
respectively.

• Natural generation: we aimed to include most blocks that spawn naturally in the game.
These are blocks that a player will encounter in the Minecraft world without manually
crafting and placing them.

There are hundreds of blocks in Minecraft and our choices are by no means exhaustive.
Additionally, there are many important non-block items and resources in the game that a player
will interact with. Therefore, we do not claim that MiDaS is fully representative of the Minecraft
domain. However, our dataset includes most of the common blocks, and is diverse enough for
interesting applications in the field, such a benchmarking performance of algorithms at recog-
nizing the most common blocks that an agent is likely to encounter. Moreover, we welcome its
expansion in the future and provide the MIP annotation tool at https://github/MinecraftDataset/
MiDaS for this purpose.

3.2 Dataset Details
The data are distributed uniformly across the classes, with 600 images per block. To add variety
to the data, a block is captured with an equal split of images across 10 different in-game biomes.
This results in a total of 60 images per biome for a given block. Of these 60 images, 40 are in
bright lighting conditions (day) and the remaining 20 in dark lighting conditions (night). If a
block spawns naturally in the world, these images are included in the biome where it was found.
However, there is no set number of these natural images that are included. While this is the
common formula followed for most blocks, there are some exceptions. For these exceptions,
the biome distribution was chosen on a per-block basis in a manner consistent with

Fig. 3 The MIP annotation tool.

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-5 Jan∕Feb 2024 • Vol. 33(1)

https://github/MinecraftDataset/MiDaS
https://github/MinecraftDataset/MiDaS

Minecraft’s mechanics. For example, since ore blocks only naturally occur underground (with
the exception of coal ore, iron ore and, rarely, emerald ore), the majority of the 600 images for
these blocks were captured in caves.

As mentioned above, metadata associated with each image in a class is included in a per-
block CSV file. The important fields are described below.

• filename: the name of the PNG image as stored on disk. This follows the convention:
<block>_<index>.png, where <block> is the name of the block and <index> is the posi-
tion of the image within its class.

• block_details: extra information about the block in the image. This could be its recognized
in-game state or some other high-level description that may be useful in downstream tasks.

• block_natural_position: if true, the captured block was not placed by a player. We note here
that the environment around the block may still have been modified by a player.

• biome: the environment type in which the block is captured.
• dimension: there are three dimensions in Minecraft: the Overworld, the Nether, and the

End. Each have distinctive terrains and features. Currently, MiDaS primarily contains
blocks captured in the Overworld.

• time_description: whether the image was taken during the day or night. This field is not
applicable when the block is underground or in the Nether (where there is no day-night
cycle).

3.3 Dataset Statistics
We present some important statistics around MiDaS, its metadata, and the dataset distribution
thereto. From Table 1, we can see the majority of the blocks in the dataset are outside of their
natural position. This is primarily due to the sampling strategy employed during the curation of
MiDaS, and enables more comprehensive benchmarking of models in recognizing the different
block types. Table 2 shows the distribution of the time_description metadata flag across the
entirety of MiDaS, and we note that approximately half of the images in the dataset contain
blocks captured during daytime. Further, as mentioned previously, the 24% n/a are attributed
to those blocks captured in regions with no notion of a day-night cycle (e.g., those blocks that
are underground). We argue that these two tables show that MiDaS provides a good balance of
block instances across these two dimensions.

Table 3 shows how certain statistics are distributed across the 21 unique biomes within
MiDaS. Namely, the majority of biomes contain multiple different block types, such as deserts
and plains. However, there are biomes with only one block type, such as gravelly_mountains and
river. This is because in these biomes, there is only one common block type that can be sampled
for curation of the dataset. For similar reasons, it is these biomes that contain fewer samples,
whereas most of the biomes contain approximately 800 to 3000 samples.

Table 1 Dataset-level distribution of the block_natural_position meta-
data flag.

block_natural_position # %

True 9020 ∼25%

False 26,980 ∼75%

Table 2 Dataset-level distribution of the time_description metadata flag.

time_description # %

Day 18376 51%

Night 9072 25%

n/a 8552 24%

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-6 Jan∕Feb 2024 • Vol. 33(1)

At a block-level, the vast majority of block types are sampled from ten different biomes. The
typical split for a block’s natural position is not balanced; blocks are either primarily in natural
positions, or primarily in unnatural ones. For more details around the block-level distribution of
these statistics, see Table 10 in Appendix A.

4 Benchmarking Methodology

4.1 Model Variants
We experiment with eight different model variants, where we vary the pretraining algorithm
and pretraining dataset for each, as listed in Table 4. We experiment with both supervised
pretraining (on ImageNet), and self-supervised pretraining (on ImageNet and on our MiDaS
dataset), in addition to two of the most common architectures in modern vision: ResNet and
ViT. Supervised and self-supervised pretraining, particularly on ImageNet, are two of the most
common pretraining paradigms in the literature and thus serve as valuable benchmarks in this
study. Additionally, self-supervised pretraining has recently been shown to outperform super-
vised pretraining on various downstream tasks in certain scenarios.34

After pretraining, we benchmark each model variant’s performance on the downstream task
of object classification using the MiDaS dataset (with labels, unlike during pretraining). To better
understand the model variants at a more granular level, we investigate their behavior when vary-
ing the number of labels in the downstream task. In particular, we analyze the cases of 1%, 5%,
and 100% of the labels being available to the model during this phase.

Table 3 Biome-level statistics: number of unique blocks and number
of images per biome.

Biome Number of blocks Number of images

badlands 32 1900

basalt_deltas 7 602

birch_forest 42 2908

cave 19 4807

crimson_forest 7 649

dark_forest 41 3000

desert 43 2472

forest 3 547

gravelly_mountains 1 60

jungle 40 2940

mountains 1 97

nether_wastes 7 1055

plains 45 2689

river 1 7

savanna 42 3060

snowy_taiga 1 9

snowy_tundra 41 2409

soul_sand_valley 7 599

swamp 40 2343

taiga 42 3007

warped_forest 7 840

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-7 Jan∕Feb 2024 • Vol. 33(1)

For the self-supervised models, we experiment with two of the most popular and performant
models—SimCLR9 and DINO.16 We choose these two models such that we account for both
contrastive (SimCLR) and non-contrastive (DINO) approaches in our analyses. Further, it should
be noted that all images of our MiDaS dataset or resized to a resolution of 320 × 180 prior to
modeling for computational reasons.

It should be noted that the models used in our benchmarking were selected because they are
common in the object classification realm (such as ImageNet-pretrained models). Further, we
include self-supervised models since it has been shown that to outperform supervised pretraining
in certain scenarios.34

4.2 Pretraining Details
For SimCLR pretraining, we use the Adam35 optimizer with an initial learning rate of 0.03 and
employ cosine decay. For DINO pretraining, we use the AdamW optimizer (for both the
ResNet50 and ViT backbones) with an initial learning rate of 6.25 × 10−5 (also with cosine
decay). We train both of these models from scratch for 500 epochs with a batch size of 32.
We apply the standard set of augmentations for the generation of random views, as defined in
the SimCLR work.9 For Sup-RN50-IN, we use the pretrained weights available in PyTorch.
For the ImageNet-pretrained self-supervised models, we use the weights available in TorchHub
from the official repositories. Finally, for the MiDaS-pretrained self-supervised models, we
train on the MiDaS dataset (without labels).

4.3 Downstream Task Details
We consider two types of phases for the downstream task, both of which are common in the
literature: linear evaluation and fine-tuning. In both cases, we train on the MiDaS dataset, which
is a 60-way object classification task. As mentioned above, we vary the number of labels during
this phase to better understand model behavior in label-sparse settings.

For linear evaluation, we follow the conventional setup from the literature.9,16,31 Namely,
we take the pretrained encoder from the pretraining phase, freeze its weights, compute the
embeddings for the training images, and train a multinomial logistic regression model on the
representations using the L-BFGS optimizer. No data augmentation is performed during the
computation of the embeddings.

For fine-tuning, we take the pretrained encoder from the pretraining phase and add a linear
classification layer on top, and then fine-tune the entire model. In all cases, we train for 100
epochs with a learning rate of 0.001 with the Adam optimizer, except for the ViT-based models,
where we use a smaller learning rate for improved training stability (1e−4 for the MiDaS-
pretrained model, and 1e−5 for the ImageNet-pretrained model). As with linear evaluation,
we do not apply any data augmentations during fine-tuning.

All reported performance metrics for both linear evaluation and fine-tuning are an average of
nine independent trials to obtain accurate performance estimates and confidence intervals.

Table 4 Model variants considered in this work.

Variant name Pretraining method Pretraining dataset Backbone architecture

Sup-RN50-Rdm None None ResNet50

Sup-RN50-IN Supervised ImageNet ResNet50

SimCLR-RN50-IN SimCLR ImageNet ResNet50

SimCLR-RN50-MiDaS SimCLR MiDaS ResNet50

DINO-RN50-IN DINO ImageNet ResNet50

DINO-RN50-MiDaS DINO MiDaS ResNet50

DINO-ViT-IN DINO ImageNet ViT/S16

DINO-ViT-MiDaS DINO MiDaS ViT/S16

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-8 Jan∕Feb 2024 • Vol. 33(1)

5 Experiments
We perform analyses at a dataset level, class level, as well as using the metadata as obtained
during the curation process detailed in Sec. 3.2. Importantly, much of our analyses focus on
the 1% and 5% label sparsity settings, since these enable important and valuable insights into
more granular details of model variants’ performance and behavior.

5.1 Classification Performance
Below we discuss the results of both the linear evaluation and fine-tuning paradigms in terms of
overall classification performance for each model variant. In Figs. 4–7, we represent supervised
pretraining in red, SimCLR pretraining in blue, and DINO pretraining in green. Dotted bars
indicate ImageNet pretraining, while diagonal lines represent MiDaS pretraining.

Fig. 4 Overall classification performance of the different model variants using the linear evaluation
paradigm. Black bars represent the 95% confidence intervals.

Fig. 5 Relative increase in performance when moving from 1% to 5% of labels using the linear
evaluation paradigm. Black bars represent the 95% confidence intervals.

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-9 Jan∕Feb 2024 • Vol. 33(1)

5.1.1 Linear evaluation

The results in Fig. 4 demonstrate that performance differences are more easily recognizable in
the low-label settings of 1% and 5% of labels. In general, the ResNet50-based models self-super-
vised on MiDaS perform best, with DINO (DINO-RN50-MiDaS) achieving the highest perfor-
mance. Further, the ResNet50-based models self-supervised on ImageNet (SimCLR-RN50-IN
and DINO-RN50-IN) perform worse than their MiDaS analogues. However, when the ViT archi-
tecture is pretrained on ImageNet, it outperforms the MiDaS-pretrained ViT. This is notable
because it suggests that the ViT is potentially using the data within ImageNet more efficiently,
resulting in more general embeddings (it is indeed known that ViTs learn and encode remarkably
different information to ResNets36).

Understandably, linear evaluation with the Sup-RN50-Rdm variant (i.e., random weights/no
pretraining) results in roughly the same performance no matter the number of labels. We also
observe a generalization—to our artificial, non-natural domain of MiDaS —of the known

Fig. 6 Overall classification performance of the different model variants using fine-tuning. Black
bars represent the 95% confidence intervals.

Fig. 7 Relative increase in performance when moving from 1% to 5% of labels using fine-tuning.
Black bars represent the 95% confidence intervals.

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-10 Jan∕Feb 2024 • Vol. 33(1)

result that self-supervised pretraining on real-world, natural scenes outperforms supervised
pretraining.34 This is particularly evident in the low-label settings, where the self-supervised
variants SimCLR-RN50-IN and DINO-RN50-IN outperform the supervised model Sup-RN50-IN.

To better understand the effect of additional labels on linear evaluation performance for each
model variant, we plot the relative increase in performance when moving from 1% to 5% of
labels. This can be seen in Fig. 5. It is clear that SimCLR-RN50-IN benefits the most from the
additional labels, whereas DINO-RN50-MiDaS benefits the least. This somewhat makes sense,
since SimCLR-RN50-IN only has context of ImageNet prior to linear evaluation, whereas DINO-
RN50-MiDaS has sufficient context of MiDaS through the pretraining stage.

Suggestion: when treating the learned representations as fixed, perform self-supervised pretraining on
the (in-domain) MiDaS dataset. However, if using a transformer-based backbone, perform self-super-
vised pretraining on a large, diverse dataset like ImageNet.

5.1.2 Fine-tuning

Similarly to Sec. 5.1.1, we will focus on the low-label settings in our analyses, since at 100% of
labels (particularly for this paradigm), all models essentially solve the problem, achieving near
100% accuracy. Interestingly, from Fig. 6, we can see that the findings are almost a mirror image
of those found during linear evaluation. That is, the ImageNet-pretrained models Sup-RN50-IN,
SimCLR-RN50-IN, DINO-RN50-IN, and DINO-ViT-IN all perform better than their MiDaS-
pretrained analogues. In particular, DINO-RN50-IN performs best, with the SimCLR analogue
close behind. Further, again opposite to the linear evaluation findings, the ViT pretrained on
MiDaS actually outperforms the ImageNet-pretrained ViT.

These findings suggest that the additional degrees of freedom—enabled by allowing the
adaptation of the backbone weights during fine-tuning—allow the network to take advantage
of the full utility of the rich, general ImageNet weights (particularly with the ResNet50 models).
Even though the MiDaS-pretrained networks are tailored to the downstream task by being in-
domain, this seemingly does not outweigh the benefit of the much larger scale of ImageNet, and
the subsequent features that can be learned by pretraining on it. Additionally, since in SimCLR-
RN50-MiDaS and DINO-RN50-MiDaS are pretrained on the same dataset as the downstream
task, there may not be enough additional information for the network to learn during fine-tuning.
This limitation is inherently not present in linear evaluation due to the frozen backbone and
indeed somewhat explains the improved performance of MiDaS-pretrained models in that
setting.

We show the relative increase in performance for all models in Fig. 7. Both the supervised
methods, as well as the ViT-based methods, seem to benefit greatly from the additional labels
when going from 1% to 5% of labels. In particular, in variant Sup-RN50-Rdm, where no pre-
training is performed, there is over a 500% increase in performance with the additional labels.
This makes sense since all other models started off the downstream task at a more beneficial
location in weight space due to the associated pretraining step.

From Table 5, we can see with 1% of the downstream labels, SimCLR-RN50-IN sees
the most benefit when unfreezing the backbone network (i.e., fine-tuning). Unsurprisingly, the
model with no pretraining (Sup-RN50-Rdm) also sees much benefit from the fine-tuning,
particularly in the 5% case. Interestingly, the MiDaS-pretrained ResNet50 models extract little
benefit from the fine-tuning, and in some cases fine-tuning even hindering performance. We posit
this is due to the features learned from MiDaS pretraining not being general or rich enough to
fully take advantage of fine-tuning when compared with the much larger ImageNet dataset and
its inevitably richer and more general features.

Suggestion: when the backbone network is fine-tuned as part of the downstream task, per-
form self-supervised pretraining on a large, diverse dataset like ImageNet. However, if using
a transformer-based backbone, perform self-supervised pretraining on the (in-domain) MiDaS
dataset.

5.2 Class-Level Analysis
The three best-performing classes for each model and downstream phase for both the 1% and 5%
settings are shown in Tables 6 and 7. Similarly, the worst-performing classes are shown in
Tables 8 and 9. It is clear that the best and worst-performing classes are roughly consistent for

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-11 Jan∕Feb 2024 • Vol. 33(1)

Table 6 Best performing classes for each model for fine-tuning.

1% 5%

Sup-RN50-Rdm lava 0.721 lapis_ore 0.988

netherrack 0.5 redstone_ore 0.977

redstone_ore 0.331 lava 0.976

Sup-RN50-IN redstone_ore 0.984 gold_ore 1.0

gold_ore 0.965 redstone_ore 1.0

lapis_ore 0.937 obsidian 0.999

SimCLR-RN50-MiDaS coal_ore 0.955 lapis_ore 1.0

lapis_ore 0.949 coal_ore 0.998

lava 0.925 obsidian 0.991

SimCLR-RN50-IN lapis_ore 0.933 emerald_ore 0.999

obsidian 0.926 obsidian 0.999

redstone_ore 0.912 red_mushroom_block 0.997

DINO-RN50-MiDaS obsidian 0.855 obsidian 1.0

lava 0.846 coal_ore 0.999

netherrack 0.843 emerald_ore 0.998

DINO-RN50-IN redstone_ore 0.968 obsidian 1.0

gold_ore 0.958 redstone_ore 1.0

obsidian 0.949 crafting_table 0.999

DINO-ViT-MiDaS lapis_ore 0.963 gold_ore 1.0

gold_ore 0.951 obsidian 1.0

redstone_ore 0.938 emerald_ore 0.999

DINO-ViT-IN redstone_ore 0.655 redstone_ore 0.992

lava 0.653 emerald_ore 0.985

emerald_ore 0.595 magma_block 0.983

Table 5 Relative difference in performance of linear evaluation versus fine-tuning for both the 1%
and 5% settings. The 95% confidence intervals are provided. The model with the largest relative
increase in bold, and the model with the lowest is italicized.

1% 5%

Sup-RN50-Rdm 0.2888� 0.2239 3.7943� 0.295

Sup-RN50-IN 0.152� 0.0966 0.3521� 0.0148

SimCLR-RN50-MiDaS −0.0745� 0.0306 0.0156� 0.0081

SimCLR-RN50-IN 0.4412� 0.04 0.2419� 0.0097

DINO-RN50-MiDaS −0.3� 0.0232 −0.0251 ± 0.004

DINO-RN50-IN 0.4122� 0.0666 0.1523� 0.0055

DINO-ViT-MiDaS 0.0258� 0.0313 0.2246� 0.0112

DINO-ViT-IN −0.516 ± 0.0282 0.0116� 0.0079

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-12 Jan∕Feb 2024 • Vol. 33(1)

both linear evaluation and fine-tuning. The best-performing classes are mostly ore-like (lapi-
s_ore, gold_ore, redstone_ore, etc.), or fairly distinctive objects, such as lava and obsidian.
Interestingly, the results are fairly consistent across both architecture type and pretraining
regime.

The worst-performing classes are mostly plank-like and wood-like objects (oak_fence, spru-
ce_planks, jungle_planks, etc.), or objects that could reasonably be confused for something
wood-like, such as bookshelf, chest or dirt_path. There is a high degree of visual similarity
between these classes, and thus the models exhibit high entropy predictions for these classes
and most often confuse them (particularly in low-label settings). In these settings, there is simply
an insufficient amount of samples per class for the models to adequately learn features that
discriminate between them, especially with linear evaluation. Notably, it is clear from both
Tables 8 and 9 that with even only moderately more labels, performance significantly improves
across all models.

Some of the best and worst-performing block types are shown in Fig. 8. It is clear from these
examples that the plank-like blocks have a high degree of visual similarity, whereas the ore-like
objects (on the top row) contain more discriminative features, such as the distinct color
differences of the various ore regions.

Table 7 Best performing classes for each model for linear evaluation.

1% 5%

Sup-RN50-Rdm lava 0.743 lava 0.801

netherrack 0.539 netherrack 0.585

water 0.224 glowstone 0.408

Sup-RN50-IN gold_ore 0.916 lapis_ore 0.967

torch 0.894 coal_ore 0.965

coal_ore 0.862 redstone_ore 0.953

SimCLR-RN50-MiDaS coal_ore 0.971 lapis_ore 1.0

lapis_ore 0.966 nether_gold_ore 0.994

netherrack 0.958 coal_ore 0.993

SimCLR-RN50-IN lava 0.801 magma_block 0.961

netherrack 0.77 lava 0.952

birch_log 0.761 glass 0.946

DINO-RN50-MiDaS obsidian 0.998 gold_ore 1.0

gold_ore 0.961 obsidian 1.0

coal_ore 0.96 redstone_ore 1.0

DINO-RN50-IN red_mushroom_block 0.835 magma_block 0.973

lava 0.806 bricks 0.965

netherrack 0.777 glowstone 0.964

DINO-ViT-MiDaS emerald_ore 1.0 emerald_ore 1.0

gold_ore 1.0 gold_ore 1.0

lapis_ore 1.0 lapis_ore 1.0

DINO-ViT-IN glass 0.951 magma_block 0.997

tnt 0.881 crafting_table 0.993

bookshelf 0.88 obsidian 0.988

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-13 Jan∕Feb 2024 • Vol. 33(1)

5.3 Biome Analysis
Figure 9 shows the performance of each model variant by biome. It is clear that certain biomes
contain blocks that are significantly more difficult to classify than others. For example, the moun-
tains, gravelly_mountains, and nether_wastes biomes tend to have far superior performance
across all the models compared to the snowy_tundra, badlands, and desert biomes. The reason
the latter biomes have poor performance in general is two-fold. First, the blocks that constitute
these biomes in the dataset are visually similar, such as the various plank-like blocks. Second,
these biomes tend to contain many block types, which makes it even harder to discriminate
between them when there is such little inter-block variation. In contrast, the model variants per-
form well on the former biomes primarily because the notably higher inter-block variation for
the blocks within these biomes (e.g., between the nether_gold_ore and lava blocks within the
nether_wastes biome).

Additionally, we find model performance trends that somewhat corroborate the findings
from Figs. 4 and 6. Specifically, for the linear evaluation paradigm, DINO-RN50-MiDaS per-
forms the best across the vast majority of the biomes for both the 1% and 5% settings. Moreover,
in most of the cases where this model variant does not perform best, another MiDaS-pretrained
variant performs best, particularly for the 1% setting (such as with the basalt_deltas, cave, and

Table 8 Worst performing classes for each model for fine-tuning.

1% 5%

Sup-RN50-Rdm bricks 0.0 furnace 0.298

chest 0.0 diorite 0.438

clay 0.0 spruce_planks 0.447

Sup-RN50-IN oak_fence 0.0 bed 0.662

spruce_planks 0.041 spruce_planks 0.768

glowstone 0.082 furnace 0.798

SimCLR-RN50-MiDaS oak_fence 0.0 spruce_planks 0.264

spruce_planks 0.035 jungle_planks 0.47

dirt_path 0.108 acacia_planks 0.53

SimCLR-RN50-IN oak_fence 0.0 spruce_planks 0.751

spruce_planks 0.124 jungle_planks 0.817

dirt_path 0.189 oak_planks 0.868

DINO-RN50-MiDaS oak_fence 0.0 spruce_planks 0.352

magma_block 0.043 jungle_planks 0.578

spruce_planks 0.052 birch_planks 0.639

DINO-RN50-IN oak_fence 0.0 spruce_planks 0.834

spruce_planks 0.102 jungle_planks 0.888

magma_block 0.245 dark_oak_planks 0.891

DINO-ViT-MiDaS oak_fence 0.0 bed 0.74

clay 0.061 spruce_planks 0.794

spruce_planks 0.062 sandstone 0.809

DINO-ViT-IN oak_fence 0.004 spruce_planks 0.571

clay 0.011 jungle_planks 0.715

spruce_planks 0.018 dirt_path 0.742

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-14 Jan∕Feb 2024 • Vol. 33(1)

Table 9 Worst performing classes for each model for linear evaluation.

1% 5%

Sup-RN50-Rdm crafting_table 0.0 crafting_table 0.01

jungle_log 0.0 chest 0.012

magma_block 0.0 bookshelf 0.016

Sup-RN50-IN spruce_planks 0.025 spruce_planks 0.161

magma_block 0.05 dark_oak_planks 0.261

clay 0.062 jungle_planks 0.295

SimCLR-RN50-MiDaS spruce_planks 0.048 spruce_planks 0.294

oak_fence 0.064 jungle_planks 0.447

honey_block 0.166 crimson_planks 0.48

SimCLR-RN50-IN magma_block 0.043 spruce_planks 0.341

spruce_planks 0.049 jungle_planks 0.49

oak_fence 0.119 crimson_planks 0.494

DINO-RN50-MiDaS magma_block 0.046 spruce_planks 0.326

spruce_planks 0.07 jungle_planks 0.594

jungle_planks 0.28 birch_planks 0.69

DINO-RN50-IN spruce_planks 0.031 spruce_planks 0.307

magma_block 0.078 dirt_path 0.605

dirt_path 0.098 dark_oak_planks 0.633

DINO-ViT-MiDaS dirt 0.071 jungle_planks 0.38

oak_fence 0.078 spruce_planks 0.403

spruce_planks 0.095 dirt 0.435

DINO-ViT-IN spruce_planks 0.036 spruce_planks 0.47

clay 0.109 jungle_planks 0.659

jungle_log 0.203 dirt_path 0.735

Fig. 8 Example images for some of the best-performing and worst-performing classes. Top row
(best-performing) L-R: gold_ore, lapis_ore, and redstone_ore. Bottom row (worst-performing) L-R:
dark_oak_planks, jungle_planks, and spruce_planks.

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-15 Jan∕Feb 2024 • Vol. 33(1)

soul_sand_valley biomes). In the fine-tuning paradigm, the DINO-RN50-IN model performs
best for the majority of the biomes for both label sparsity settings. Further, the MiDaS-pretrained
models still perform relatively well in this fine-tuning setting. However, the benefit of pretraining
on ImageNet is particularly clear in this setting, since the model can more easily take advantage
of the general, rich features learned from that type of large-scale pretraining, even though the
ImageNet dataset is out-of-domain with respect to the MiDaS downstream task. The benefit of
MiDaS-pretraining is far more apparent when the encoder is frozen (i.e., fixed representations),
as is the case in linear evaluation—the fact that the pretraining data is in-domain with respect to
the downstream data seems to help significantly more in this setting.

Suggestion: if the downstream task requires the ability to differentiate between the high
visually-similar objects, such as types of wood, more work is required (although the evidence
suggests that ResNet50-based DINO pretraining generally performs well across the board and
may serve as a useful direction in future work).

6 Conclusion
We introduced a large-scale, high-resolution Minecraft dataset (MiDaS) that can be used to
benchmark new algorithms in preparation for a Minecraft RL testbed environment, and as a
non-natural image object image classification benchmark in an artificial domain (along with the
dataset, we release the curation tool used when creating MiDaS). MiDaS was carefully curated to
ensure wide coverage of the pertinent and common objects within the Minecraft environment and
includes sufficiently many samples to perform effective pretraining. Moreover, we perform a
large-scale analysis of various models and pretraining methods to benchmark their performance
on MiDaS. We analyze model behavior at a more granular level, including class level and using
important metadata fields obtained during the curation of MiDaS. We note that in-domain pre-
training on MiDaS results in the best performance for linear evaluation, whereas more general,
large-scale pretraining on ImageNet performs best when fine-tuning downstream. The key

Fig. 9 Heatmaps depicting the performance of each model variant by biome (as defined in
MiDaS ’s metadata). The best-performing model for each biome is denoted by bold and underlined
text. Top row, L-R: linear evaluation 1% labels and 5% labels; bottom row, L-R: fine-tuning
1% labels and 5% labels.

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-16 Jan∕Feb 2024 • Vol. 33(1)

takeaway based on these results is to use a MiDaS-pretrained method if you require fixed rep-
resentations downstream, and ImageNet-pretrained if you can utilize the full encoder network
downstream. However, either way the key finding from the benchmark is that self-supervised
pretraining with a ResNet50 backbone is a generally reliable approach from those evaluated.

7 Appendix A: Additional Dataset Statistics
We report additional statistics regarding other block-level flags obtained during curation of the
dataset in Table 10. These include how often a block is found within its natural position within
the images of the dataset, as well as the number of biomes each block type occurs in.

Table 10 Distribution of the block_natural_position flag for each of the 60 block types.

Block % natural position % unnatural position Num biomes

acacia_log 0.93 0.07 1

acacia_planks 0.01 0.99 10

bed 0.05 0.95 10

birch_log 0.9 0.1 3

birch_planks 0.0 1.0 10

bookshelf 0.07 0.93 11

bricks 0.0 1.0 10

chest 0.03 0.97 10

clay 0.01 0.99 10

coal_ore 0.99 0.01 4

cobblestone 0.13 0.87 10

crafting_table 0.0 1.0 10

crimson_planks 0.0 1.0 9

dark_oak_log 0.9 0.1 1

dark_oak_planks 0.01 0.99 10

diamond_ore 0.04 0.96 1

diorite 0.1 0.9 10

dirt 0.0 1.0 10

dirt_path 0.13 0.87 10

emerald_ore 0.15 0.85 1

furnace 0.01 0.99 10

glass 0.0 1.0 10

glowstone 0.24 0.76 5

gold_ore 0.28 0.72 1

granite 0.1 0.9 10

grass_block 0.81 0.19 10

gravel 0.18 0.82 10

hay_block 0.14 0.86 10

honey_block 0.0 1.0 10

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-17 Jan∕Feb 2024 • Vol. 33(1)

Disclosures
There are no conflicts of interest for any of the authors of this manuscript.

Code and Data Availability
The data used in this research in made available at https://github.com/MinecraftDataset/MiDaS

Table 10 (Continued).

Block % natural position % unnatural position Num biomes

ice 0.1 0.9 10

iron_ore 0.68 0.32 1

jungle_log 0.9 0.1 1

jungle_planks 0.0 1.0 10

lapis_ore 0.19 0.81 1

lava 1.0 0.0 9

magma_block 0.17 0.83 10

melon 0.1 0.9 10

mossy_cobblestone 0.13 0.87 10

nether_bricks 0.04 0.96 5

nether_gold_ore 0.14 0.86 5

netherrack 1.0 0.0 10

oak_fence 0.08 0.92 11

oak_log 1.0 0.0 2

oak_planks 0.0 1.0 10

obsidian 0.04 0.96 10

pumpkin 0.03 0.97 10

red_mushroom_block 0.1 0.9 10

redstone_ore 0.05 0.95 1

sand 0.12 0.88 10

sandstone 0.1 0.9 10

slime_block 0.0 1.0 10

snow_block 0.04 0.96 10

spruce_log 0.96 0.04 1

spruce_planks 0.02 0.98 10

stone 0.24 0.76 10

terracotta 0.12 0.88 10

tnt 0.01 0.99 10

torch 0.14 0.86 10

warped_stem 0.33 0.67 5

water 1.0 0.0 10

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-18 Jan∕Feb 2024 • Vol. 33(1)

https://github.com/MinecraftDataset/MiDaS
https://github.com/MinecraftDataset/MiDaS

Acknowledgments
We acknowledge the Mathematical Science Lab at the University of the Witwatersrand in aiding
us to use the compute cluster for this research. Further, the authors acknowledge the Centre for
High Performance Computing (CHPC), South Africa, for providing computational resources to this
research project.

References
1. J. Oh et al., “Control of memory, active perception, and action in Minecraft,” in Int. Conf. Mach. Learn.,

PMLR, pp. 2790–2799 (2016).
2. C. Tessler et al., “A deep hierarchical approach to lifelong learning in Minecraft,” in Proc. AAAI Conf. Artif.

Intell., Vol. 31 (2017).
3. S. Alaniz, “Deep reinforcement learning with model learning and Monte Carlo tree search in Minecraft,” in

The 3rd Multidiscip. Conf. Reinforcement Learn. and Decis. Making (2017).
4. W. H. Guss et al., “MineRL: a large-scale dataset of Minecraft demonstrations,” in Proc. 28th Int. Joint Conf.

on Artif. Intell., pp. 2442–2448 (2019).
5. L. Fan et al., “MineDojo: building open-ended embodied agents with internet-scale knowledge,” in Adv. in

Neural Inf. Process. Syst., Vol. 35, pp. 18343–18362 (2022).
6. M. Johnson et al., “The Malmo platform for artificial intelligence experimentation,” in Proc. 25th Int. Joint

Conf. Artif. Intell., pp. 4246–4247 (2016).
7. I. Goodfellow et al., “Generative adversarial nets,” in Adv. in Neural Inf. Process. Syst., Vol. 27 (2014).
8. A. Radford et al., “Learning transferable visual models from natural language supervision,” in Int. Conf.

Mach. Learn., PMLR, pp. 8748–8763 (2021).
9. T. Chen et al., “A simple framework for contrastive learning of visual representations,” in Int. Conf. Mach.

Learn., PMLR, pp. 1597–1607 (2020).
10. C. Feichtenhofer et al., “SlowFast networks for video recognition,” in Proc. Int. Conf. Comput. Vis.,

pp. 6202–6211 (2019).
11. J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new model and the Kinetics dataset,” in

IEEE Conf. Comput. Vis. and Pattern Recognit., pp. 4724–4733 (2017).
12. T. Brown et al., “Language models are few-shot learners,” in Adv. in Neural Inf. Process. Syst., Vol. 33,

pp. 1877–1901 (2020).
13. R. Bellman, Dynamic Programming, Princeton University Press, Princeton, New Jersey, USA (1957).
14. K. He et al., “Deep residual learning for image recognition,” in IEEE Conf. Comput. Vis. and Pattern

Recognit., pp. 770–778 (2016).
15. A. Kolesnikov et al., “An image is worth 16x16 words: transformers for image recognition at scale,” in

Int. Conf. Learn. Represent. (2021).
16. M. Caron et al., “Emerging properties in self-supervised vision transformers,” in Proc. IEEE/CVF Int. Conf.

Comput. Vis. (ICCV), pp. 9650–9660 (2021).
17. J. Deng et al., “ImageNet: a large-scale hierarchical image database,” in IEEE Conf. Comput. Vis. and Pattern

Recognit., pp. 248–255 (2009).
18. A. Krizhevsky, “Learning multiple layers of features from tiny images,” https://www.cs.toronto.edu/~kriz/

learning-features-2009-TR.pdf (2009)
19. L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few training examples: an

incremental Bayesian approach tested on 101 object categories,” in Conf. Comput. Vis. and Pattern Recognit.
Workshop, pp. 178–178 (2004).

20. T.-Y. Lin et al., “Microsoft COCO: common objects in context,” Lect. Notes Comput. Sci. 8693, 740–755
(2014).

21. I. Krasin et al., “OpenImages: a public dataset for large-scale multi-label and multi-class image classifica-
tion,” https://github.com/openimages (2016).

22. G. Varoquaux and V. Cheplygina, “Machine learning for medical imaging: methodological failures and
recommendations for the future,” NPJ Digit. Med. 5, 48 (2022).

23. L. Pratt, D. Govender, and R. Klein, “Defect detection and quantification in electroluminescence images
of solar PV modules using U-net semantic segmentation,” Renew. Energy 178, 1211–1222 (2021).

24. D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in Int. Conf. Learn. Represent.
(2014).

25. C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning by context prediction,”
in IEEE Int. Conf. Comput. Vis., pp. 1422–1430 (2015).

26. D. Pathak et al., “Context encoders: feature learning by inpainting,” in Proc. IEEE Conf. Comput. Vis. and
Pattern Recognit., pp. 2536–2544 (2016).

27. M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving jigsaw puzzles,” Lect.
Notes Comput. Sci. 9910, 69–84 (2016).

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-19 Jan∕Feb 2024 • Vol. 33(1)

https://doi.org/10.1109/ICCV.2019.00630
https://doi.org/10.1109/CVPR.2017.502
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV48922.2021.00951
https://doi.org/10.1109/ICCV48922.2021.00951
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/CVPR.2004.383
https://doi.org/10.1109/CVPR.2004.383
https://doi.org/10.1007/978-3-319-10602-1_48
https://github.com/openimages
https://github.com/openimages
https://doi.org/10.1038/s41746-022-00592-y
https://doi.org/10.1016/j.renene.2021.06.086
https://doi.org/10.1109/ICCV.2015.167
https://doi.org/10.1109/CVPR.2016.278
https://doi.org/10.1109/CVPR.2016.278
https://doi.org/10.1007/978-3-319-46466-4_5
https://doi.org/10.1007/978-3-319-46466-4_5

28. K. He et al., “Momentum contrast for unsupervised visual representation learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. and Pattern Recognit. (2020).

29. A. V. D. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,”
arXiv:1807.03748 (2018).

30. M. Caron et al., “Unsupervised learning of visual features by contrasting cluster assignments,” in Adv. in
Neural Inf. Process. Syst., Vol. 33, pp. 9912–9924 (2020).

31. J.-B. Grill et al., “Bootstrap your own latent-a new approach to self-supervised learning,” in Adv. in Neural
Inf. Process. Syst., Vol. 33, pp. 21271–21284 (2020).

32. Q. Garrido et al., “RankMe: assessing the downstream performance of pretrained self-supervised represen-
tations by their rank,” in Int. Conf. Mach. Learn., PMLR, pp. 10929–10974 (2023).

33. X. Chen and K. He, “Exploring simple Siamese representation learning,” in Proc. IEEE/CVF Conf. Comput.
Vis. and Pattern Recognit., pp. 15750–15758 (2021).

34. L. Ericsson, H. Gouk, and T. Hospedales, “How well do self-supervised models transfer?” in IEEE/CVF
Conf. Comput. Vis. and Pattern Recognit., pp. 5414–5423 (2021).

35. D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” in Int. Conf. Learn. Represent.
(2015).

36. M. Raghu et al., “Do vision transformers see like convolutional neural networks?” in Adv. in Neural Inf.
Process. Syst., Vol. 34, pp. 12116–12128 (2021).

David Torpey is a PhD student at the University of the Witwatersrand. He received his BSc,
BSc Hons, and MSc degrees from the same institution. His research focuses on deep learning
and computer vision, with a particular focus on self-supervised learning.

Max Parkin earned his bachelor’s degree in computer science from the University of the
Witwatersrand. Motivated by a passionate interest in computer graphics and machine learning,
he pursued postgraduate research with a focus on computer vision and dimensionality reduction
at the same institution. His academic pursuits reflect a dedication to exploring the intersection of
these disciplines, thereby contributing to the advancement of the field.

Jonah Alter graduated from the University of theWitwatersrand, procuring a bachelor of science
in computer science and a postgraduate degree specializing in computer vision. His core research
interests are at the intersection between computer science and innovative gaming technologies.
His academic journey, continued intrigue, and subsequent work in the field reflect his commit-
ment to translating theoretical advancements into tangible applications in enhancing image
processing and contributing to the landscape of those revolutionizing interactive entertainment.

Richard Klein is an associate professor at the School of Computer Science and Applied
Mathematics, University of the Witwatersrand, South Africa, where he also received his PhD
in 2017. He is a principal investigator at the PRIME Lab and RAIL Lab. He is one of the original
founders of the Deep Learning Indaba. His interests involve computer vision and data-efficient
learning.

Steven James is a senior lecturer at the University of the Witwatersrand, South Africa. He
received his PhD from the same institute in 2021, where he was also the first African recipient
of a Google PhD fellowship in machine learning. He is a principal investigator at the RAIL
Lab, Africa’s largest academic machine learning research group. His interests revolve around
reinforcement learning and planning.

Torpey et al.: MiDaS: a large-scale Minecraft dataset for non-natural image. . .

Journal of Electronic Imaging 013035-20 Jan∕Feb 2024 • Vol. 33(1)

https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR46437.2021.01549
https://doi.org/10.1109/CVPR46437.2021.01549
https://doi.org/10.1109/CVPR46437.2021.00537
https://doi.org/10.1109/CVPR46437.2021.00537

