
Augmentative Topology Agents For Open-ended Learning

Muhammad Umair Nasir, Michael Beukman, Steven James and Christopher Cleghorn

Abstract— In this work, we tackle the problem of open-
ended learning by introducing a method that simulta-
neously evolves agents and increasingly challenging en-
vironments. Unlike previous open-ended approaches that
optimize agents using a fixed neural network topology, we
hypothesize that generalization can be improved by allow-
ing agents’ controllers to become more complex as they
encounter more difficult environments. Our method, Aug-
mentative Topology EPOET (ATEP), extends the Enhanced
Paired Open-Ended Trailblazer (EPOET) algorithm by
allowing agents to evolve their own neural network struc-
tures over time, adding complexity and capacity as neces-
sary. Empirical results demonstrate that ATEP results in
general agents capable of solving more environments than a
fixed-topology baseline. We also investigate mechanisms for
transferring agents between environments and find that a
species-based approach further improves the performance
and generalization of agents.

I. INTRODUCTION

Machine learning has successfully been used to solve
numerous problems, such as classifying images [1], writ-
ing news articles [2, 3] or solving games like Atari [4]
or chess [5]. While impressive, these approaches still
largely follow a traditional paradigm where a human
specifies a task that is subsequently solved by the agent.
In most cases, this is the end of the agent’s learning—
once it can solve the required task, no further pro-
gression takes place. Open-ended learning is a research
field that takes a different view: rather than converge
to a specific goal, the aim is to obtain an increasingly
growing set of diverse and interesting behaviors [6, 7].
One approach is to allow both the agents, as well as
the environments, to change, evolve and improve over
time [8, 9]. This has the potential to discover a large
collection of useful and reusable skills [10], as well
as interesting and novel environments [11]. Open-ended
learning is also a much more promising way to obtain
truly general agents than the traditional single task-
oriented paradigm [12].

The concept of open-ended evolution has been a
part of artificial life (ALife) research for decades now,
spawning numerous artificial worlds [13, 14, 15, 16, 17].
These worlds consist of agents with various goals, such

*University of the Witwatersrand, South Africa

as survival, predation, or reproduction. Recently, open-
ended algorithms have received renewed interest [7],
with Stanley et al. [6] proposing the paradigm as a path
towards the goal of human-level artificial intelligence.

A major breakthrough in open-ended evolution was
that of NeuroEvolution of Augmenting Topologies
(NEAT) [18], which was capable of efficiently solv-
ing complex reinforcement learning tasks. Its key idea
was to allow the structure of the network to evolve
alongside the weights, starting with a simple network
and adding complexity as the need arises. This inspired
future research about open-endedly evolving networks
indefinitely [17]. Specifically, novelty search [19], used
the idea of novelty to drive evolution, instead of tradi-
tional objective-based techniques. This in turn led to the
emergence of quality diversity (QD) algorithms [20, 21,
22, 23], which are based on combining novelty with an
objective sense of progress, where the goal is to obtain
a collection of diverse and high-performing individuals.

While QD has successfully been used in numer-
ous domains, such as robotic locomotion [24, 21, 25],
video game playing [22] and procedural content genera-
tion [26, 27], it still is not completely open-ended. One
reason for this is that the search space for phenotypical
behavior characteristics (or behavioral descriptors) re-
mains fixed [21]. A second reason is that in many cases,
the environment remains fixed, which limits the open-
endedness of the algorithm [9]. A way to circumvent
this is to co-evolve problems and solutions, as is done
by Minimal Criterion Coevolution (MCC) [8]. This co-
evolutionary pressure allowed more complex mazes to
develop, and better agents to solve them emerged, giving
rise to an open-ended process.

However, MCC had some limits; for instance, it only
allows new problems if they are solvable by individuals
in the current population. This leads to only slight
increases in difficulty, and complexity which only arises
randomly. Taking this into account, Paired Open-ended
Trailblazer (POET) [9] builds upon MCC, but instead
allows the existence of unsolvable environments, if it
was likely that some individuals could quickly learn to
solve these environments. POET further innovates by
transferring agents between different environments, to
increase the likelihood of solving hard problems. While



POET obtained state of the art results, its diversity slows
down as it evolves for longer. Enhanced POET [28]
adds improved algorithmic components to the base
POET method, resulting in superior performance and
less stagnation. Enhanced POET, however, uses agents
with fixed topology neural network controllers. While
this approach works well for simple environments, it
has an eventual limit on the complexity of tasks it can
solve: at some point of complexity, the fixed topology
agents may not have sufficient capacity to solve the
environments.

To address this issue, we propose Augmentative Topol-
ogy Enhanced POET (ATEP), which uses NEAT to
evolve agents with variable, and potentially unbounded,
network topologies. We argue that fixed-topology agents
will cease to solve environments after a certain level of
complexity and empirically show that ATEP outperforms
Enhanced POET (EPOET) in a standard benchmark
domain. Finally, we find that using NEAT results in im-
proved exploration and better generalization compared
to Enhanced POET.

II. RELATED WORK

POET [9] and EPOET [28] are the founding algo-
rithms of the field of open-ended reinforcement learning,
building upon prior approaches such as MCC [8]. This
has led to an explosion of new use cases such as
PINSKY [29, 30], which uses POET on 2D Atari games.
This approach extends POET to generate 2D Atari video
game levels alongside agents that solve these levels.
Quessy and Richardson [10] uses unsupervised skill
discovery [31, 32, 33] in the context of POET to discover
a large repertoire of useful skills. Meier and Mujika [34]
also investigate unsupervised skill discovery through
reward functions learned by neural networks. Other uses
of POET include the work by Zhou and Vanschoren
[35], who obtain diverse skills in a 3D locomotion task.
POET has also been shown to aid in evolving robot
morphologies [36] and avoiding premature convergence
which is often the result when using handcrafted curric-
ula. Norstein et al. [37] use MAP-Elites [21] to open-
endedly create a structured repertoire of various terrains
and virtual creatures.

Adversarial approaches are commonly adopted when
developing open-ended algorithms. Dennis et al. [38]
propose PAIRED, a learning algorithm where an ad-
versary would produce an environment based on the
difference between the performance of an antagonist and
a protagonist agent. Domain randomization [39], priori-
tized level replay [40] and Adversarially Compounding
Complexity by Editing Levels (ACCEL) [41] adopt

a similar adversarial approach, where teacher agents
produce environments and student agents solve them.

Several domains and benchmarks have been proposed
with the aim of encouraging research into open-ended,
general agents. Team et al. [12] introduce the XLand en-
vironment, where a single agent is trained on 700k 3D
games, including single and multi-agent games, resulting
in zero-shot generalization on holdout test environments.
Barthet et al. [42] introduced an autoencoder [43, 44]
and CPPN-NEAT based open-ended evolutionary al-
gorithm to evolve Minecraft [45, 46] buildings. They
showed how differences in the training of the autoen-
coders can affect the evolution and generated structures.
Fan et al. [47] create a Minecraft-based environment,
MineDojo, which has numerous open-ended tasks. They
also introduced MineCLIP as an effective language-
conditioned reward function that plays the role of an
automatic metric for generation tasks. Gan et al. [48]
introduce the Open-ended Physics Environment (OPEn)
to test learning representations, and tested many RL-
based agents. Their results indicate that agents that make
use of unsupervised contrastive representation learning,
and impact-driven learning for exploration, achieve the
best result.

III. ENHANCED POET

Since our method is heavily based on EPOET, we
briefly describe this method, as well as the original
POET algorithm. POET focuses on evolving pairs of
agents and environments in an attempt to create spe-
cialist agents that solve particular environments. POET
uses the 2D Bipedal Walker Hardcore environ-
ment from OpenAI Gym [49] as a benchmark. The
first environment is a flat surface, and as evolution
progresses, the environments become harder with the
addition of more obstacles. POET also transfers agents
across environments, which can prevent stagnation and
leverage experience gained on one environment as a step
towards solving another. An Environment-Agent (EA)
pair is eligible to reproduce when the agent crosses a
preset reward threshold on this environment. The next
generation of environments is formed by mutating the
current population and selecting only those environ-
ments that are neither too easy nor too hard. Finally,
environments are ranked by novelty, and only the most
novel children pass through to the next generation. More
information about the hyperparameters of POET is listed
in the supplementary material.

EPOET improves upon POET by adding in two
algorithmic improvements: (1) a general method of
evaluating the novelty of challenges and (2) an improved
approach to deciding when agents should transfer to new



environments. In the original POET, the way to evaluate
novelty was to compare the environment characteriza-
tion (EC) of different environments. This is obtained by
using some fixed, domain-specific static features, such
as the roughness of the terrain. This inherently limits the
exploration of the algorithm, as it is restricted to explore
within these preset confines. Enhanced POET introduces
an improved EC, Performance of All Transferred Agents
EC (PATA-EC), which is based on the performance
of different agents in the environment. Secondly, the
original transfer mechanism in POET was generally
inefficient, as it increased the required computation (as
each agent needed to be fine-tuned), and resulted in
subpar transfers as it was too easy to qualify for transfer.
Enhanced POET makes this process more strict, only
transferring very promising agents.

Enhanced POET also improves upon the environmen-
tal encoding used in the original algorithm, which was
fixed and thus had a limited number of unique and
diverse environments it could represent. The solution to
this problem is to use a more expressive encoding in
the form of compositional pattern producing networks
(CPPNs) [50]. A CPPN is a specific neural network,
which can take in x,y coordinates and produce a specific
pattern when evaluated across an entire region. These
CPPNs are evolved using the NEAT [18] algorithm,
which increases the complexity of the environments as
evolution progresses.

Lastly, the authors introduce Accumulated Number of
Novel Environments Created and Solved (ANNECS),
a metric for open-ended learning that, intuitively, de-
scribes the amount of interesting new content that is
generated by the algorithm. ANNECS counts the number
of environments that satisfy two constraints: (1) it must
neither be too easy nor too hard and (2) it must be
eventually solved by some agents in the future. Thus,
if the ANNECS metric increases as time goes on, it
indicates that the algorithm is continually producing
novel and interesting environments.

IV. OPEN-ENDEDLY EVOLVING THE TOPOLOGY OF
AGENTS

Many of the approaches introduced in prior work
have been implemented using a fixed topology approach
in conjunction with optimizers such as evolutionary
strategies (ES) [51], V-MPO [52] (a modified version of
maximum a posteriori optimization [53] which relies on
value functions) and Proximal Policy Optimization [54],
which motivates us to explore NEAT and the benefits it
brings to the open-ended learning framework. We first
describe the use of NEAT in Section IV-A and describe
the overall approach in Section IV-B.

A. NeuroEvolution of augmenting topologies

We leverage NeuroEvolution of Augmenting Topolo-
gies (NEAT) to evolve the structure of an agent’s
controller. NEAT starts with a population of simple
neural networks (NNs), where the input neurons are
directly connected to the output neurons without any
hidden layers. Crossover is performed between two
parents and the resulting children are mutated by adding
connections and nodes, or perturbing weights. In this
way, the NN will gradually be complexified. One of
the major problem to overcome is the Permutations or
Competing Convention Problem [55, 56]. Competing
conventions describes the case in which the crossover
of networks that represent the same solution but are
encoded differently (e.g. a different ordering of neurons)
can lead to a loss of information and a significantly
worse child. NEAT addresses this by introducing a
method to keep track of the historic origin of a gene
by using the innovation number. Using this innovation
number, identical genes from two parents can be aligned,
while genes that only occur in one (denoted excess
or disjoint genes depending on their position) can be
inherited from the fitter parent. Finally, NEAT intro-
duces speciation [57], where individuals with similar
topologies are grouped together, and share a fitness. This
protects innovation and ensures diversity. This speciation
calculation is shown in Equation 1. In this equation,
c1,c2, and c3 are coefficients that indicate the importance
of each factor while N is the number of genes in the
larger genome. E and D denote the number of excess
and disjoint genes respectively. W is the average weight
difference of similar genes. δ , then, indicates how close
two genomes are; if δ is less than some threshold, then
the two genomes belong to the same species.

δ =
c1E
N

+
c2D
N

+ c3 ·W (1)

NEAT has demonstrated superior performance when
compared to fixed topology approaches, and has been
used in numerous subsequent research works to great
success [50, 19, 58, 59, 60].

B. Augmentative Topology Enhanced POET (ATEP)

In this section, we discuss the basic building blocks of
our algorithm and the different variants we experimented
with. ATEP combines EPOET with NEAT to allow the
agents’ network topologies to evolve. This means that
the algorithmic steps are very similar to EPOET, and
the main differences are (1) the optimizer used: we use
NEAT to optimize the variable-topology agents whereas
EPOET used Evolution Strategies to optimize fixed-
topology agents; and (2) the transfer mechanism, which



Fig. 1: A flowchart demonstrating the flow of the ATEP framework, with blocks in green being where ATEP differs
from POET. For both EPOET and ATEP, each environment is associated with an agent, represented by an ES
population for EPOET and a NEAT population for ATEP. The environment images used in the chart were created
by ATEP. Please refer to the supplementary material for pseudocode describing the transfer mechanisms used in
ATEP.

will be discussed later in this section. The detailed flow
of ATEP is described in Figure 1.

We first use NEAT to evolve a population for each
environment. The valid environments (those that pass
the minimal criterion) then reproduce to create a new
generation of (slightly harder) environments. We then
take the environment that is the most novel (as measured
by the Euclidean distance between the PATA-EC scores),
and create a new environment-agent pair. The transfer
eligibility of these environments is then evaluated, and
if there are valid transfers available, we can move agents
between environments. In EPOET, transfer is performed
as follows: we compare the fitness of the candidate agent
to the fitness of the target agent, over the previous 5
generations. If the candidate’s fitness is greater than
all previous 5 fitness scores, we fine-tune it on the
target environment and again compare it against the
best fitness from the previous 5 generations. If both of
these checks are passed we transfer the candidate and
replace the target. For ATEP, we experiment with two
different transfer mechanisms, the first being inspired by
the approach used by EPOET, denoted as Fitness-Based
Transfer ATEP (FBT-ATEP). In this case, we compare
the best genome in the candidate population to the best
genome from the target population. We then perform
the same checks as EPOET, and if both are passed, we
replace the entire target population with the candidate.

For the second transfer mechanism, we use the specia-
tion inherent in NEAT to influence transfer. Specifically,
we check if the best genome in the candidate population
is within a δ threshold (using the speciation calculation
in Equation 1) of any target environment’s best genome.
If this is the case, we transfer the candidate species

and replace the target species with it. This approach,
called Species-Based Transfer ATEP (SBT-ATEP), skips
the step of comparing fitness scores and has its own
advantages which we discuss in the next section. Finally,
we also consider random transfer (RT-ATEP) and no
transfer (NT-ATEP) to investigate whether the transfer
mechanisms have a large impact on the results.

C. Experimental setup

Now we describe the experimental setup for ATEP, its
variants, and our baselines. In ATEP, we use NEAT as
the algorithm to evolve the topology and weights.1 To
reduce the computational load, we change one aspect
of the original EPOET paper, reducing the number of
active environments from 40 to 20. We make this change
for both EPOET and ATEP, so the results are still
comparable.

We set up two baselines: the first, denoted as
EPOET40x40, is EPOET with the original controller
consisting of two hidden layers with 40 nodes each. The
second baseline, EPOET20x20, is a controller with two
layers of 20 nodes each. This allows us to evaluate the
effect of having a small fixed topology, a larger fixed
topology, and a variable topology. Furthermore, this
allows us to confirm our hypothesis that fixed topology
agents will stagnate after a certain level of complexity.
For further details on the controllers, please refer to the
supplementary material.

V. RESULTS AND DISCUSSION

In this section, we discuss and analyze our results.
We break the results into 3 different categories: Open-

1Hyperparameter settings for the various methods are listed in the
supplementary material.



Endedness, nodes complexity exploration and general-
ization ability. All results are gathered based on 2 seeds
due to the expensive computational load, with each
algorithm requiring approximately 50,000 to 200,000
CPU hours for a single run. EPOET20x20 required the
least amount of computation, while SBT-ATEP required
the most. Each algorithm was run in parallel on a cluster
consisting of 264 Intel Xeon cores, with the runtime
ranging between 10 and 30 days.

A. Open-endedness

As mentioned, Wang et al. [28] introduce the AN-
NECS metric to capture the open-endedness of an algo-
rithm; we take it as our most important score to judge
which algorithm performs better on complex environ-
ments.

Figure 2 shows the ANNECS score as a function
of training time. We see that there is a significant
difference between EPOET20x20 and FBT- and SBT-
ATEP, indicating that the small network results in solv-
ing fewer environments. EPOET40x40 performs sub-
stantially better than EPOET20x20, and is competitive
with ATEP early on during training. The rate of increase
in ANNECS, however, does decrease after about 13k
iterations, whereas ATEP increases at a consistent rate.
This substantiates our hypothesis that fixed topology
agents will start stagnating at some level of environ-
ment complexity, due to capacity issues. While we can
improve the results by increasing the size of the network,
that will merely delay the onset of stagnation.

FBT-ATEP outperforms EPOET40x40, although it
also slows down slightly as time progresses. This is
due to replacing the entire target population with the
transferred population, which may eliminate all useful
skills learned by the target population. SBT-ATEP, on
the other hand, only replaces a single species that is
close to the candidate species, leaving the rest of the
population intact. We also find that SBT-ATEP has neg-
ligible delays in solving environments and, even though
it performed similarly to FBT-ATEP and EPOET40x40
early on during training, it starts to outperform these in
the second half of the experiment. This, as we will show
later, is partly due to SBT-ATEP exploring more actions.
We further note that the variations using no transfer (NT-
ATEP) or random transfer (RT-ATEP) perform poorly,
indicating that intelligent transfer mechanisms are nec-
essary.

Although ATEP outperforms EPOET, it is more com-
putationally expensive, as measured by the number of
function evaluations. One function evaluation means one
individual being evaluated on an environment. SBT-
ATEP has the most function evaluations since once

a species transfers from one population to another, it
becomes highly probable that it can transfer in the
opposite direction because they may now be within the
δthreshold range. This increases the population size, re-
sulting in more function evaluations. The tradeoff here is
of function evaluations to performance, which is justified
as the performance confirms our hypothesis. Figure 3
displays the total number of function evaluations.

B. Nodes complexity exploration

We have now shown that SBT-ATEP outperforms all
of the other tested methods based on the ANNECS score.
We also find that it generally uses a smaller neural
network with fewer nodes than the other algorithms.
Figure 4 shows the number of nodes and corresponding
fitness value for each algorithm. We can see that SBT-
ATEP generally has a high fitness, but fewer nodes
than the other approaches. This is echoed in Figure 5c,
where SBT-ATEP has the least number of nodes for
most of the experiment, although it gradually adds nodes
and complexity. FBT-ATEP, on the other hand, adds
nodes very rapidly. This again indicates that the transfer
mechanism in EPOET is critical.

Inspired by this, we further look into a simple Fitness
to Nodes ratio (FNR) metric, shown in Figure 5a, and
find that SBT-ATEP outperforms all other algorithms on
this metric for the majority of the run. This indicates that
SBT-ATEP outperforms all other algorithms on a per-
environment basis, while using fewer nodes. This leads
us to believe that a better-curated transfer mechanism,
based on SBT-ATEP, will sustain the FNR for longer
runs.

Furthermore, in Figure 5b, we calculate an ANNECS
to Nodes ratio (ANR) metric with the intent to observe
the role of nodes in the Open-Endedness of the agents,
i.e. to have the ability to complexify over time. We
observe that SBT-ATEP performs significantly better
than the other models. FBT-ATEP has the lowest ANR,
as it adds nodes much faster than the rate of increase in
ANNECS.

C. Generalization Ability

We next evaluate the generalization ability of our
open-ended agents, as prior work [12] has shown that
these agents have the potential to generalize to new
unseen environments. To concretely test this, we first
take the 20 latest environments from each method.
For each environment, we take the latest agent that
could solve this environment from the method under
consideration. Each of these agents is now evaluated
on the selected environments from the other methods



2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
0

20

40

60

80

100 Algorithm
FBT-ATEP
SBT-ATEP
EPOET40x40
EPOET20x20
RT-ATEP
NT-ATEP

Iterations

AN
N
EC

S

Fig. 2: Accumulated Number of Novel Environments Created and Solved (ANNECS). To save compute, we stop
the NT- and RT-ATEP experiments early, as it is clear that they perform poorly.

FBT-ATEP SBT-ATEP E-POET40x40 E-POET20x20
0

2

4

6

8

10

Models

lo
g1

0(
Fu

nc
tio

n 
Ev

al
ua

tio
ns

)

Fig. 3: Cumulative sum of the number of function eval-
uations, with the Y-axis converted to a log-scale. While
ATEP requires significantly more function evaluations,
we find that its total wall-time is only 3 times more than
EPOET, as the neural networks are generally smaller and
each evaluation does not take as long.

(60 in total). We perform 30 runs per environment-
agent pair and calculate the mean and maximum of
the rewards. We split the results into three categories:
environments with fitness scores above 300, between
200 and 300, and below 200. Scores below 200 indicate
that the environment has not been solved by the agent.
Figure 6d shows the performance of each method when
evaluated on the 60 other environments. We observe that
SBT-ATEP outperforms all other models, with only 10%
of the environments remaining unsolved.

Secondly, we test the generalization capabilities of
agents on all of the environments created by their own
algorithm. We exclude EPOET20x20 as it fails to solve

0 20 40 60 80 100 120 140
Nodes

0

50

100

150

200

250

300

Fi
tn

es
s

Algorithm
FBT-ATEP
SBT-ATEP
EPOET40x40
EPOET20x20

Fig. 4: Mapping of fitness to nodes. We plot values every
1000 iterations, starting at iteration number 150. Each
dot represents a specific iteration, as well as the mean
fitness over all environments and the mean number of
nodes in the population.

80 environments in the whole run. We take into account
80 environments that were solved by the model itself
and observe how each agent performs on all of them.
Figures 6a, 6b and 6c show the results. Here, early-
stage agents perform worse and late-stage agents are
shown to have generalization abilities on previously



5k 10k 15k 20k 25k
0

20

40

60

80

Iteration

FN
R

(a)

5k 10k 15k 20k 25k
0

0.5

1

1.5

2

2.5

3

3.5

Iteration

AN
R

(b)

5k 10k 15k 20k 25k
0

20

40

60

80

100

120

140
Algorithm

FBT-ATEP
SBT-ATEP
EPOET40x40
EPOET20x20

Iteration

N
od

es

(c)

Fig. 5: Analysis with respect to the number of nodes. Figure (a) shows FNR along iterations, (b) shows ANR along
iterations, (c) shows the addition of nodes along iterations

unseen landscapes. The transfer mechanism plays a key
role in this generalization, as it exposes agents to more
environments. Despite not having seen all environments,
late-stage agents generalize much better. SBT-ATEP
generalizes the best, with the lowest proportion of un-
solved environments, in contrast to the lower-performing
EPOET40x40 and FBT-ATEP.

Finally, we briefly investigate potential reasons why
SBT-ATEP outperforms FBT-ATEP. We find that SBT-
ATEP explores more actions, as it only transfers a single
species instead of replacing the target population as is
done by FBT-ATEP. This allows the new species to
complement the actions that were already explored by
the existing population. The action distributions of each
action for SBT-ATEP, FBT-ATEP and EPOET40x40 are
shown in the supplementary material.

VI. CONCLUSION AND FUTURE WORK

This work investigated the effect of having an Aug-
mentative topology agent on an open-ended learning
algorithm’s performance. We hypothesized that using
a fixed topology would result in agents that exhibit
delays in solving an environment after a certain point in
environment complexity. We showed that this is indeed
the case, and addressed this limitation by introduc-
ing ATEP, which allows the network topology of the
agents to change and add complexity as necessary. We
demonstrated that this approach outperforms existing
methods in terms of the ANNECS score and general-
ization ability, while using fewer nodes in the neural
networks. Our approach, however, does require more
function evaluations than competing approaches. Thus,
a promising future direction would be to use NEAT
with Novelty Search [19] or Surprise Search which
tends to converge faster than simple NEAT [61]. QD
algorithms may also be worthwhile to explore in the
context of open-ended learning as they have the ability
to produce a population of high-performing and di-
verse individuals [62]. Exploring Neurogenesis [63, 64],

where neurons are added to a single neural network
based on various external triggers, could also be a
promising direction. To reduce computational load, it
would also be promising to look into developing single-
population open-ended learning methods without losing
the exploration abilities of EPOET.

Furthermore, we have opened up possible future re-
search into transfer mechanisms. We compared simple
approaches such as FBT and SBT, but more advanced
approaches could yield further performance improve-
ments. For instance, we could combine both FBT and
SBT in a weighted manner, or transfer only a certain
percentage of a species or population. Finally, this work
provides a starting point, like EPOET itself, into open-
ended learning with augmentative topology agents. We
therefore used the simple 2D BipedalWalker as our
benchmark. Future work should compare ATEP with
standard EPOET on different and more complex envi-
ronments. Ultimately, we hope that this new approach
furthers research into open-ended algorithms that do not
slow down over time, and can keep up with an ever-
changing environment.

REPRODUCIBILITY AND ETHICAL STATEMENT

For reproducibility, we have provided a GitHub repo2

where users can follow instructions to reproduce the
experiments. We also provide pseudode and hyperpa-
rameter settings in the supplementary material. ATEP
is an Open-Ended Learning algorithm that has stochas-
tic elements, similar to many other machine learning
algorithms. It is critical for users to perform standard
evaluations as the user would do for other machine
learning algorithms. A full run of ATEP may be compu-
tationally expensive and will take approximately 50,000
to 200,000 CPU hours.

2https://github.com/umair-nasir14/ATEP LLR

https://github.com/umair-nasir14/ATEP_LLR


20 40 60 80
0

20

40

60

80 Fitness
Above 300
200 to 300
Below 200

Agents

En
vi

ro
nm

en
ts

(a) EPOET40x40

20 40 60 80
0

20

40

60

80 Fitness
Above 300
200 to 300
Below 200

Agents

En
vi

ro
nm

en
ts

(b) FBT-ATEP

20 40 60 80
0

20

40

60

80 Fitness
Above 300
200 to 300
Below 200

Agents

En
vi

ro
nm

en
ts

(c) SBT-ATEP

SBT FBT EPOET40x40 EPOET20x20
0

20

40

60

80

100 Fitness
Above 300
200-300
Below 200

Algorithm

En
vi

ro
nm

en
ts

(d)

Fig. 6: Figures showing generalization capabilities. Figures (a), (b) and (c) show agents of 80 solved environments
being tested on all 80 environments, for EPOET40x40, FBT-ATEP and SBT-ATEP respectively. Note that
EPOET20x20 does not take part in this test as it failed to produce 80 environments in the run. Figure (d) shows
each algorithm being tested on the 20 latest environments created by all other algorithms, i.e., each algorithm is
evaluated on 60 environments. The Y-axis shows the percentage of environments in each category. Each test is
conducted for 30 runs and the mean scores are taken.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Informa-
tion Processing Systems, 2012, pp. 1106–1114.

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever et al., “Language models are unsu-
pervised multitask learners,” OpenAI blog, vol. 1,
no. 8, p. 9, 2019.

[3] T. Schick and H. Schütze, “It’s not just size that
matters: Small language models are also few-shot
learners,” in Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, 2021, pp. 2339–2352.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski et al.,

“Human-level control through deep reinforcement
learning,” nature, vol. 518, no. 7540, pp. 529–533,
2015.

[5] D. Silver, T. Hubert, J. Schrittwieser,
I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel et al., “A general
reinforcement learning algorithm that masters
chess, shogi, and go through self-play,” Science,
vol. 362, no. 6419, pp. 1140–1144, 2018.

[6] K. O. Stanley, J. Lehman, and
L. Soros, “Open-endedness: The last
grand challenge you’ve never heard of,”
O’Reilly Online, 2017. [Online]. Available:
https://www.oreilly.com/ideas/open-endedness-
the-last-grand-challenge-youve-never-heard-of

[7] K. O. Stanley, “Why open-endedness matters,”
Artificial life, vol. 25, no. 3, pp. 232–235, 2019.

[8] J. C. Brant and K. O. Stanley, “Minimal crite-

https://www.oreilly.com/ideas/open-endedness-the-last-grand-challenge-youve-never-heard-of
https://www.oreilly.com/ideas/open-endedness-the-last-grand-challenge-youve-never-heard-of


rion coevolution: a new approach to open-ended
search,” in Proceedings of the Genetic and Evolu-
tionary Computation Conference, 2017, pp. 67–74.

[9] R. Wang, J. Lehman, J. Clune, and K. O. Stan-
ley, “Paired open-ended trailblazer (POET): End-
lessly generating increasingly complex and diverse
learning environments and their solutions,” arXiv
preprint arXiv:1901.01753, 2019.

[10] A. Quessy and T. S. Richardson, “Rewardless
open-ended learning (ROEL),” 2021.

[11] L. Gisslén, A. Eakins, C. Gordillo, J. Bergdahl, and
K. Tollmar, “Adversarial reinforcement learning
for procedural content generation,” in 2021 IEEE
Conference on Games. IEEE, 2021, pp. 1–8.

[12] O. E. L. Team, A. Stooke, A. Mahajan, C. Barros,
C. Deck, J. Bauer, J. Sygnowski, M. Trebacz,
M. Jaderberg, M. Mathieu et al., “Open-ended
learning leads to generally capable agents,” arXiv
preprint arXiv:2107.12808, 2021.

[13] T. S. Ray, “An approach to the synthesis of life,”
Artificial life II, pp. 371–408, 1991.

[14] C. Ofria and C. O. Wilke, “Avida: A software plat-
form for research in computational evolutionary
biology,” Artificial life, vol. 10, no. 2, pp. 191–229,
2004.

[15] L. Spector, J. Klein, and M. Feinstein, “Division
blocks and the open-ended evolution of devel-
opment, form, and behavior,” in Proceedings of
the Genetic and Evolutionary Computation Con-
ference, 2007, pp. 316–323.

[16] L. S. Yaeger and O. Sporns, “Evolution of neu-
ral structure and complexity in a computational
ecology,” in Artificial Life X: Proceedings of the
Tenth International Conference on the Simulation
and Synthesis of Living Systems, 2006, pp. 330–
336.

[17] L. Soros and K. Stanley, “Identifying necessary
conditions for open-ended evolution through the
artificial life world of chromaria,” in ALIFE 14:
The Fourteenth International Conference on the
Synthesis and Simulation of Living Systems, 2014,
pp. 793–800.

[18] K. O. Stanley and R. Miikkulainen, “Evolving
neural networks through augmenting topologies,”
Evolutionary computation, vol. 10, no. 2, pp. 99–
127, 2002.

[19] J. Lehman, K. O. Stanley et al., “Exploiting open-
endedness to solve problems through the search for
novelty.” in ALIFE, 2008, pp. 329–336.

[20] J. Lehman and K. O. Stanley, “Evolving a diversity
of virtual creatures through novelty search and

local competition,” in Proceedings of the Genetic
and Evolutionary Computation Conference, 2011,
pp. 211–218.

[21] J.-B. Mouret and J. Clune, “Illuminating search
spaces by mapping elites,” arXiv preprint
arXiv:1504.04909, 2015.

[22] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stan-
ley, and J. Clune, “Go-explore: a new approach
for hard-exploration problems,” arXiv preprint
arXiv:1901.10995, 2019.

[23] O. Nilsson and A. Cully, “Policy gradient assisted
map-elites,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2021, pp.
866–875.

[24] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret,
“Robots that can adapt like animals,” Nature, vol.
521, no. 7553, pp. 503–507, 2015.

[25] D. Tarapore, J. Clune, A. Cully, and J.-B. Mouret,
“How do different encodings influence the perfor-
mance of the map-elites algorithm?” in Proceed-
ings of the Genetic and Evolutionary Computation
Conference, 2016, pp. 173–180.

[26] A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Ta-
lakat: Bullet hell generation through constrained
map-elites,” in Proceedings of The Genetic and
Evolutionary Computation Conference, 2018, pp.
1047–1054.

[27] S. Earle, J. Snider, M. C. Fontaine, S. Nikolaidis,
and J. Togelius, “Illuminating diverse neural cellu-
lar automata for level generation,” in Proceedings
of the Genetic and Evolutionary Computation Con-
ference, 2022, pp. 68–76.

[28] R. Wang, J. Lehman, A. Rawal, J. Zhi, Y. Li,
J. Clune, and K. Stanley, “Enhanced POET: Open-
ended reinforcement learning through unbounded
invention of learning challenges and their solu-
tions,” in International Conference on Machine
Learning, 2020, pp. 9940–9951.

[29] A. Dharna, J. Togelius, and L. B. Soros, “Co-
generation of game levels and game-playing
agents,” in Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital
Entertainment, vol. 16, no. 1, 2020, pp. 203–209.

[30] A. Dharna, A. K. Hoover, J. Togelius, and L. Soros,
“Transfer dynamics in emergent evolutionary cur-
ricula,” IEEE Transactions on Games, 2022.

[31] V. Campos, A. Trott, C. Xiong, R. Socher, X. Giró-
i-Nieto, and J. Torres, “Explore, discover and learn:
Unsupervised discovery of state-covering skills,” in
Proceedings of the 37th International Conference
on Machine Learning, vol. 119, 2020, pp. 1317–



1327.
[32] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine,

“Diversity is all you need: Learning skills without
a reward function,” in International Conference on
Learning Representations, 2019.

[33] A. Sharma, S. Gu, S. Levine, V. Kumar, and
K. Hausman, “Dynamics-aware unsupervised dis-
covery of skills,” in International Conference on
Learning Representations, 2020.

[34] R. Meier and A. Mujika, “Open-ended reinforce-
ment learning with neural reward functions,” arXiv
preprint arXiv:2202.08266, 2022.

[35] F. Zhou and J. Vanschoren, “Open-ended learning
strategies for learning complex locomotion skills,”
arXiv preprint arXiv:2206.06796, 2022.

[36] E. H. Stensby, K. O. Ellefsen, and K. Glette, “Co-
optimising robot morphology and controller in a
simulated open-ended environment,” in Interna-
tional Conference on the Applications of Evolu-
tionary Computation, 2021, pp. 34–49.

[37] E. S. Norstein, K. O. Ellefsen, and K. Glette,
“Open-ended search for environments and adapted
agents using map-elites,” in International Confer-
ence on the Applications of Evolutionary Compu-
tation (Part of EvoStar). Springer, 2022, pp. 651–
666.

[38] M. Dennis, N. Jaques, E. Vinitsky, A. Bayen,
S. Russell, A. Critch, and S. Levine, “Emergent
complexity and zero-shot transfer via unsupervised
environment design,” Advances in Neural Infor-
mation Processing Systems, vol. 33, pp. 13 049–
13 061, 2020.

[39] F. Sadeghi and S. Levine, “Cad2rl: Real single-
image flight without a single real image,” arXiv
preprint arXiv:1611.04201, 2016.

[40] M. Jiang, E. Grefenstette, and T. Rocktäschel, “Pri-
oritized level replay,” in International Conference
on Machine Learning, 2021, pp. 4940–4950.

[41] J. Parker-Holder, M. Jiang, M. Dennis,
M. Samvelyan, J. Foerster, E. Grefenstette,
and T. Rocktäschel, “Evolving curricula with
regret-based environment design,” arXiv preprint
arXiv:2203.01302, 2022.

[42] M. Barthet, A. Liapis, and G. N. Yannakakis,
“Open-ended evolution for Minecraft building gen-
eration,” IEEE Transactions on Games, 2022.

[43] M. J. Kusner, B. Paige, and J. M. Hernández-
Lobato, “Grammar variational autoencoder,” in
International Conference on Machine Learning,
2017, pp. 1945–1954.

[44] X. Chen, D. P. Kingma, T. Salimans, Y. Duan,

P. Dhariwal, J. Schulman, I. Sutskever, and
P. Abbeel, “Variational lossy autoencoder,” arXiv
preprint arXiv:1611.02731, 2016.

[45] S. C. Duncan, “Minecraft, beyond construction and
survival,” 2011.

[46] M. Cipollone, C. C. Schifter, and R. A. Mof-
fat, “Minecraft as a creative tool: A case study,”
International Journal of Game-Based Learning
(IJGBL), vol. 4, no. 2, pp. 1–14, 2014.

[47] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang,
H. Zhu, A. Tang, D.-A. Huang, Y. Zhu, and
A. Anandkumar, “Minedojo: Building open-ended
embodied agents with internet-scale knowledge,”
arXiv preprint arXiv:2206.08853, 2022.

[48] C. Gan, A. Bhandwaldar, A. Torralba, J. B. Tenen-
baum, and P. Isola, “Open: An open-ended physics
environment for learning without a task,” in 2021
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2021, pp.
5878–5885.

[49] G. Brockman, V. Cheung, L. Pettersson, J. Schnei-
der, J. Schulman, J. Tang, and W. Zaremba, “Ope-
nAI gym,” arXiv preprint arXiv:1606.01540, 2016.

[50] K. O. Stanley, “Compositional pattern producing
networks: A novel abstraction of development,”
Genetic programming and evolvable machines,
vol. 8, no. 2, pp. 131–162, 2007.

[51] T. Salimans, J. Ho, X. Chen, S. Sidor, and
I. Sutskever, “Evolution strategies as a scalable al-
ternative to reinforcement learning,” arXiv preprint
arXiv:1703.03864, 2017.

[52] H. F. Song, A. Abdolmaleki, J. T. Springen-
berg, A. Clark, H. Soyer, J. W. Rae, S. Noury,
A. Ahuja, S. Liu, D. Tirumala et al., “V-MPO: On-
policy maximum a posteriori policy optimization
for discrete and continuous control,” arXiv preprint
arXiv:1909.12238, 2019.

[53] A. Abdolmaleki, J. T. Springenberg, J. Degrave,
S. Bohez, Y. Tassa, D. Belov, N. Heess, and
M. Riedmiller, “Relative entropy regularized policy
iteration,” arXiv preprint arXiv:1812.02256, 2018.

[54] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, “Proximal policy optimization al-
gorithms,” arXiv preprint arXiv:1707.06347, 2017.

[55] N. J. Radcliffe, “Genetic set recombination and its
application to neural network topology optimisa-
tion,” Neural Computing & Applications, vol. 1,
no. 1, pp. 67–90, 1993.

[56] D. J. Montana, L. Davis et al., “Training feedfor-
ward neural networks using genetic algorithms.” in
International Joint Conference on Artificial Intel-



ligence, vol. 89, 1989, pp. 762–767.
[57] S. W. Mahfoud, “Niching methods for genetic al-

gorithms,” Ph.D. dissertation, University of Illinois
at Urbana-Champaign, 1995.

[58] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A
hypercube-based encoding for evolving large-scale
neural networks,” Artificial life, vol. 15, no. 2, pp.
185–212, 2009.

[59] J. Schrum, V. Volz, and S. Risi, “CPPN2GAN:
Combining compositional pattern producing net-
works and gans for large-scale pattern generation,”
in Proceedings of the Genetic and Evolutionary
Computation Conference, 2020, p. 139–147.

[60] M. L. Clei and P. Bellec, “Neuroevolution of
recurrent architectures on control tasks,” in Genetic
and Evolutionary Computation Conference, Com-
panion Volume, J. E. Fieldsend and M. Wagner,
Eds., 2022, pp. 651–654.

[61] D. Gravina, A. Liapis, and G. Yannakakis, “Sur-
prise search: Beyond objectives and novelty,” in
Proceedings of the Genetic and Evolutionary Com-
putation Conference 2016, 2016, pp. 677–684.

[62] V. Bhatt, B. Tjanaka, M. C. Fontaine,
and S. Nikolaidis, “Deep surrogate assisted
generation of environments,” CoRR, vol.
abs/2206.04199, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2206.04199

[63] K. Maile, E. Rachelson, H. Luga, and D. G. Wil-
son, “When, where, and how to add new neurons
to ANNs,” arXiv preprint arXiv:2202.08539, 2022.

[64] T. J. Draelos, N. E. Miner, C. C. Lamb, J. A. Cox,
C. M. Vineyard, K. D. Carlson, W. M. Severa,
C. D. James, and J. B. Aimone, “Neurogenesis
deep learning: Extending deep networks to accom-
modate new classes,” in 2017 International Joint
Conference on Neural Networks (IJCNN). IEEE,
2017, pp. 526–533.

https://doi.org/10.48550/arXiv.2206.04199

	Introduction
	Related work
	Enhanced POET
	Open-endedly evolving the topology of agents
	NeuroEvolution of augmenting topologies
	Augmentative Topology Enhanced POET (ATEP)
	Experimental setup

	Results and discussion
	Open-endedness
	Nodes complexity exploration
	Generalization Ability

	Conclusion and future Work

