Augmentative Topology Agents For Open-ended Learning Supplementary Material

Muhammad Umair Nasir, Michael Beukman, Steven James and Christopher Cleghorn

APPENDIX I Action Distribution Figures

In Figure 1 we have added figures for the action distributions of each algorithm.

APPENDIX II Hyperparameter Settings

This appendix is for hyperparameter settings which were used for ATEP and the baselines. Table I shows hyperparameters for ES in EPOET. Table II shows settings for NEAT in ATEP and Table III shows parameter configurations for CPPNs. General hyperparameters for reproduction are given in Table IV.

TABLE I: ES hyperparameter settings

Hyperparameter	Setting
ES Population	512
Weight update method	Adam
Initial learning rate	0.01
Decay factor of learning rate	0.9999
Initial noise standard deviation	0.1
Lower bound of noise standard deviation	0.01
Decay factor of noise standard deviation	0.999

TABLE II: NEAT hyperparameter settings

Hyperparameter	Setting
Population size	1000
Crossover probability	0.3
Weight mutation (small) probability	0.85
Weight mutation (large) probability	0.15
Weight mutation (small) range	-0.1 - +0.1
Weight mutation (large) range	-1 - +1
Connection mutation probability	0.85
Node mutation probablity	0.15
Maximum stagnation	60
<i>c</i> ₁	1.0
<i>c</i> ₂	1.0
<i>c</i> ₃	3.7
Delta threshold	3.0
Initial condition	full
Activation function	tanh
Number of inputs	24
Number of outputs	4

TABLE III: CPPN hyperparameter settings

Hyperparamer	Setting
-	
Initial condition	full
Activation default	identity
Activation options	identity sin sigmoid square tanh
Aggregation default	sum
bias init stdev	0.1
bias init type	gaussian
bias max value	10.0
bias min value	-10.0
bias mutate power	0.1
bias mutate rate	0.75
num inputs	1
num outputs	1
response init mean	1.0
response init type	gaussian
response max value	10.0
response min value	-10.0
single structural mutation	True
structural mutation surer	default
weight init stdev	0.25
weight init type	gaussian
weight max value	10.0
weight min value	-10.0
weight mutate power	0.1
weight mutate rate	0.75

*University of the Witwatersrand, South Africa

Fig. 1: Action Distributions for (top row) SBT-ATEP, (middle row) FBT-ATEP and (bottom row) EPOET40x40. Each column represents one specific dimension of the action array.

TABLE IV: EPOET	general	hyperparameter	settings	for
ATEP				

Hyperparameter	Setting	
Derve and the active state	200	
Reward infestion	200	
Environment difficulty MC	25 - 340	
Transfer check	25	
Reproducibility check	150	
Active environments	20	

APPENDIX III Transfer Mechanisms

Algorithm 1: Species-Based Transfer
Input : Candidate population's best individual
I_c . A function $find_delta(.)$ that
calculates delta score and $\delta_{threshold}$.
Let $M = All$ environments - {Candidate
environment}
foreach $m \in M$ do
I_m = best individual of environment m
$\delta_{ct} = \text{find_delta}(I_c, I_m) \text{ using Equation 1}$
if $\delta_{ct} \leq \delta_{threshold}$ then
delete target species
Transfer candidate species to target
population
else
Transfer is not possible
end
end

This appendix shows pseudocodes of Species-based and Fitness-based transfer mechanisms. Algorithms are shown in Algorithms 1 and 2, respectively. Algorithm 2, in particular, is very similar to the transfer algorithm described by Wang et al. [1]. Algorithm 2: Fitness-Based Transfer

Input : Candidate population's best individual
I, a function Score(.) that calculates the
maximum of the target agent's 5 most
recent fitness scores.
Let M = All environments - {Candidate
environment}
foreach m in M do
Compute direct transfer I_D ;
if $I_D > Score(m)$ then
Compute fine-tuning transfer I_P ;
if $I_P > Score(m)$ then
Add m to $T_{candidates}$
else
Transfer not possible
end
else
Transfer not possible
end
end
Delete whole population of $T_{candidates}$
Transfer whole candidate population to $T_{candidates}$

REFERENCES

[1] R. Wang, J. Lehman, A. Rawal, J. Zhi, Y. Li, J. Clune, and K. Stanley, "Enhanced POET: Openended reinforcement learning through unbounded invention of learning challenges and their solutions," in *International Conference on Machine Learning*, 2020, pp. 9940–9951.