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ABSTRACT

It is desirable for an agent to be able to solve a rich variety of problems that can
be specified through language in the same environment. A popular approach
towards obtaining such agents is to reuse skills learned in prior tasks to generalise
compositionally to new ones. However, this is a challenging problem due to the
curse of dimensionality induced by the combinatorially large number of ways
high-level goals can be combined both logically and temporally in language.
To address this problem, we propose a framework where an agent first learns a
sufficient set of skill primitives to achieve all high-level goals in its environment.
The agent can then flexibly compose them both logically and temporally to
provably achieve temporal logic specifications in any regular language, such as
regular fragments of linear temporal logic. This provides the agent with the ability
to map from complex temporal logic task specifications to near-optimal behaviours
zero-shot. We demonstrate this experimentally in a tabular setting, as well as in a
high-dimensional video game and continuous control environment. Finally, we also
demonstrate that the performance of skill machines can be improved with regular
off-policy reinforcement learning algorithms when optimal behaviours are desired.

1 INTRODUCTION

While reinforcement learning (RL) has achieved recent success in several applications, ranging from
video games (Badia et al., 2020) to robotics (Levine et al., 2016), there are several shortcomings that
hinder RL’s real-world applicability. One issue is that of sample efficiency—while it is possible to
collect millions of data points in a simulated environment, it is simply not feasible to do so in the real
world. This inefficiency is exacerbated when a single agent is required to solve multiple tasks, as we
would expect of a generally intelligent agent.

One approach to overcoming this challenge is to reuse learned behaviours to solve new tasks (Taylor
& Stone, 2009), preferably without further learning. Such an approach is often compositional— an
agent first learns individual skills and then combines them to produce novel behaviours. There are
several notions of compositionality in the literature, such as spatial composition (Todorov, 2009;
Van Niekerk et al., 2019), where skills are combined to produce a new single behaviour to be executed
to achieve sets of high-level goals (”pick up an object that is both blue and a box”), and temporal
composition (Sutton et al., 1999; Jothimurugan et al., 2021), where sub-skills are invoked one after the
other to achieve sequences of high-level goals (for example, “pickup a blue object and then a box”).

Spatial composition is commonly achieved through a weighted combination of learned successor
features (Barreto et al., 2018; 2019; Alver & Precup, 2022). Notably, work by Nangue Tasse et al.
(2020; 2022b) has demonstrated spatial composition using Boolean operators, such as negation and
conjunction, producing semantically meaningful behaviours without further learning. This ability can
then be leveraged by agents to follow natural language instructions (Cohen et al., 2021; 2022).

One of the most common approaches to temporal composition is to learn options for achieving
the sub-goals present in temporal logic tasks while learning a high-level policy over the options to
actually solve the task, then reusing the learned options in new tasks (Araki et al., 2021; Icarte et al.,
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2022). However, other works like Vaezipoor et al. (2021) have proposed end-to-end neural network
architectures for learning sub-skills from a training set that can generalise to similar new tasks.

Liu et al. (2022) observe that for all these prior works, some of the sub-skills (e.g., options) learned
from previous tasks can not be transferred satisfactorily to new tasks and provide a method to
determine when this is the case. For example, if the agent has previously learned an option for
“getting blue objects” and another for “getting boxes”, it can reuse them to “pickup a blue object and
then a box”, but it cannot reuse them to “pickup a blue object that is not a box, and then a box that is
not blue”. We can observe that this problem is because all the compositions in prior works are either
strictly temporal or strictly spatial. While the example shows that temporal composition alone is
insufficient, notice that spatial composition is also not enough for solving long-horizon tasks. In these
instances, it is often near impossible for the agent to learn, owing to the large sequence of actions that
must be executed before a learning signal is received (Arjona-Medina et al., 2019).

Hence, this work aims to address the highlighted problem by combining the approaches above to
develop an agent capable of both zero-shot spatial and temporal composition. We particularly focus
on temporal logic composition, such as linear temporal logic (LTL) (Pnueli, 1977), allowing agents
to sequentially chain and order their skills while ensuring certain conditions are always or never
met. We make the following main contributions:

1. Skill machines: We propose skill machines (SM), which are finite state machines (FSM) that
encode the solution to any task specified using any given regular language (such as regular
fragments of LTL) as a series of Boolean compositions of skill primitives—composable
sub-skills for achieving high-level goals in the environment. An SM is defined by translating
the regular language task specification into an FSM, and defining the skill to use per FSM
state as a Boolean composition of pretrained skill primitives.

2. Zero-shot and few-shot learning using skill machines: By leveraging reward machines
(RM) (Icarte et al., 2018a)—finite state machines that encode the reward structure of a
task—we show how an SM can be obtained directly from an LTL task specification, and
prove that these SMs are satisficing—given a task specification and regular reachability
assumptions, an agent can successfully solve the task while adhering to any constraints. We
further show how standard off-policy RL algorithms can be used to improve the resulting
behaviours when optimality is desired. This is achieved with no new assumption in RL.

3. Emperical and qualitative results: We demonstrate our approach in several environments,
including a high-dimensional video game and a continuous control environment. Our results
indicate that our method is capable of producing near-optimal to optimal behaviour for a
variety of long-horizon tasks without further learning, including empirical results that far
surpass all the representative state-of-the-art baselines.

2 BACKGROUND

We model the agent’s interaction with the world as a Markov Decision Process (MDP), given
by (S,A, ρ, R, γ), where (i) S is the finite set of all states the agent can be in; (ii) A is the
finite set of actions the agent can take in each state; (iii) ρ(s′|s, a) is the dynamics of the world;
(iv) R : S×A×S → R is the reward function; (v) γ ∈ [0, 1] is a discount factor. The agent’s aim is to
compute a Markov policy π from S toA that optimally solves a given task. Instead of directly learning
a policy, an agent can instead learn a value function that represents the expected return of executing an
action a from a state s, and then following π: Qπ(s, a) = Eπ [

∑∞
t=0 γ

tR(st, at, st+1)]. The optimal
action-value function is given by Q∗(s, a) = maxπ Q

π(s, a) for all states s and actions a, and the op-
timal policy follows by acting greedily with respect to Q∗ at each state: π∗(s) ∈ argmaxa Q

∗(s, a).

2.1 LTL AND REWARD MACHINES

One difficulty with the standard MDP formulation is that the agent is often required to solve a
complex long-horizon task using only a scalar reward signal as feedback from which to learn. To
overcome this, a common approach is to use reward machines (RM) (Icarte et al., 2018b), which
provide structured feedback to the agent in the form of a finite state machine (FSM). Camacho et al.
(2019) show that temporal logic tasks specified using regular languages, such as regular fragments of
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LTL (like safe, co-safe, and finite trace LTL), can be converted to RMs with rewards of 1 for accepting
transitions and 0 otherwise (Figure 1 shows an example).1 Hence, without loss of generality, we
will focus our attention on tasks specified using regular fragments of LTL—such as co-safe LTL
(Kupferman & Vardi, 2001). These LTL specifications and RMs encode the task to be solved using
a set of propositional symbols P that represent high-level environment features as follows:
Definition 2.1 (LTL). An LTL expression is defined using the following recursive syntax:
φ := p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | Xφ | Gφ | φ1Uφ2 | φ1Fφ2, where p ∈ P; ¬ (not), ∨ (or), ∧
(and) are the usual Boolean operators; X (neXt), G (Globally or always), U (Until), F (Finally or
eventually) are the LTL temporal operators; and φ,φ1, φ2 are any valid LTL expression.
Definition 2.2 (RM). Given a set of environment states S and actions A, a reward machine is a tuple
RSA = ⟨U , u0, δu, δr⟩ where (i) U is a finite set of states; (ii) u0 ∈ U is the initial state; (iii) δu : U ×
2P → U is the state-transition function; and (iv) δr : U × 2P → {0, 1} is the state-reward function.2

To incorporate RMs into the RL framework, the agent must be able to determine a correspondence
between abstract RM propositions and states in the environment. To achieve this, the agent is
equipped with a labelling function L : S → 2P that assigns truth values to each state the agent visits
in its environment. The agent’s aim now is to learn a policy π : S × U → A that maximises the
rewards from an RM while acting in an environment ⟨S,A, ρ, γ,P, L⟩. However, the rewards from
the reward machine are not necessarily Markov with respect to the environment. Icarte et al. (2022)
shows that a product MDP (Definition 2.3 below) between the environment and a reward machine
guarantees that the rewards are Markov such that the policy can be learned with standard algorithms
such as Q-learning. This is because the product MDP uses the cross-product to consolidate how
actions in the environment result in simultaneous transitions in the environment and state machine.
Thus, product MDPs take the form of standard, learnable MDPs. In the rest of this work, we will refer
to these product MDPs as tasks. To ensure that the optimal policy is also the policy that maximises
the probability of satisfying the temporal logic task specification, we will henceforth assume that the
environment dynamics are deterministic.
Definition 2.3 (Tasks). Let ⟨S,A, ρ, γ,P, L⟩ represent the environment and ⟨U , u0, δu, δr⟩ be an
RM representing the task rewards. Then a task is a product MDP MT = ⟨ST ,A, ρT , RT , γ⟩
between the environment and the RM, where ST := S × U , RT (⟨s, u⟩, a, ⟨s′, u′⟩) := δr(u, l

′),
ρT (⟨s, u⟩, a) := ⟨s′, u′⟩, s′ ∼ ρ(·|s, a), u′ = δu(u, l

′), and l′ = L(s′).

2.2 LOGICAL SKILL COMPOSITION

Consider the multitask setting where for each task M , an agent is required to reach some terminal
goal states in a goal space G ⊆ S. Nangue Tasse et al. (2020; 2022a) develop a framework for this
setting that allows agents to apply the Boolean operations ∧, ∨ and ¬ over the space of tasks and
value functions. This is achieved by first defining a goal-oriented reward function RM (s, g, a) that
extends the task rewards RM (s, a) to penalise an agent for achieving goals different from the one it
wished to achieve: RM (s, g, a) := RMIN if (g ̸= s and s is terminal) else RM (s, a); where RMIN is
the lower bound of the reward function. Using RM (s, g, a), the related goal-oriented value function
can be defined as Qπ̄M

M (s, g, a) = Eπ̄M [
∑∞

t=0 γ
tRM (st, g, at)]. Despite the modification of the

regular RL objective, an agent can always recover the regular optimal policy of the given task by
maximising over goals and actions: π∗

M (s) ∈ argmaxa maxg Q
∗
M (s, g, a).

If a new task can be represented as the logical expression of previously learned tasks, and all tasks
differ only in their rewards at goal states (that is, all tasks share the same state and action space,
transition dynamics, discount factor, and non-terminal rewards), Nangue Tasse et al. (2022a) prove
that the optimal policy can immediately be obtained by composing the learned goal-oriented value
functions using the same expression. For example, the ∨, ∧, and ¬ of two goal-reaching tasks A and
B can respectively be solved as follows (we omit the value functions’ parameters for readability):

Q∗
A ∨Q∗

B = max{Q∗
A,Q

∗
B}; Q∗

A ∧Q∗
B = min{Q∗

A,Q
∗
B}; ¬Q∗

A = (Q∗
MAX +Q∗

MIN )−Q∗
A;

where Q∗
MAX and Q∗

MIN are the goal-oriented value functions for the maximum task (Rτ = RMAX
for all G) and minimum task (Rτ = RMIN for all G), respectively. Following Nangue Tasse et al.
(2022b), we will also refer to these goal-oriented value functions as world value functions (WVFs).

1Accepting transitions are those at which the high-level task—described, for example, by LTL—is satisfied.
2RMs are more general, but for clarity, we focus on the subset that is obtained from regular languages.
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3 SKILL COMPOSITION FOR TEMPORAL LOGIC TASKS

Figure 1: Illustration of our framework: Consider a continuous environment containing a robot (red
sphere) with 3 LiDAR sensors that it uses to sense when it has reached a red cylinder ( ), a green
button ( ), or a blue region ( ). The agent first learns skill primitives to reach these 3 objects
(the red, green, and blue sample trajectories obtained from them respectively). Then given any task
specification over these 3 objects, such as: “Navigate to a button and then to a cylinder while never
entering blue regions” with LTL specification (F ( ∧X(F )))∧ (G ¬ ), the agent first translates
the LTL task specification into an RM, then plans which spatial skill to use at each temporal node
using value iteration and composes its skill primitives to obtain said spatial skills (culminating in a
skill machine), and finally uses them to solve the task without further learning. The RM is obtained
by converting the LTL expression into an FSM using Spot (Duret-Lutz et al., 2016), then giving
a reward of 1 for accepting transitions and 0 otherwise. The nodes labeled t in the RM and SM
represent terminal states (sink/absorbing states where no transition leaves the state).

To describe our approach, we use the Safety Gym Domain (Ray et al., 2019) shown in Figure 1 as
a running example. Here, the agent moves by choosing a direction and force (A = R2) and observes
a real vector containing various sensory information like joint velocities and distance to the objects in
its surrounding (S = R60). The LTL tasks in this environment are defined over 3 propositions: P =
{ , , }, where each proposition is true when the agent is ϵ = 1 metre near its respective location.

Now consider an agent that has learned how to “Go to the cylinder” (F ), “Go to a button” (F ), and
“Go to a blue region” (F ). Say the agent is now required to solve the task with LTL specification
(F ( ∧X(F )))∧ (G ¬ ). Using prior LTL transfer works (Vaezipoor et al., 2021; Jothimurugan
et al., 2021; Liu et al., 2022), the agent would have learned options for solving the first 3 tasks, but
then would be unable to transfer those skills to immediately solve this new task. This is because
the new task requires the agent to first reach a button that is not in a blue region (eventually satisfy
∧¬ ) while not entering a blue region along the way (always satisfy ¬ ). Similarly, it then must

eventually satisfy  ∧ ¬ while never satisfying . However, all 3 options previously learned will
enter a blue region if it is along the agent’s path. Hence the agent will need to learn new options for
achieving ∧ ¬ and  ∧ ¬ where the option policies never enter along the way.

In general, we can see that there are 22
P

possible Boolean expressions the agent may be required to
eventually satisfy (spatial curse), and 22

P
possible Boolean expressions the agent may be required to

always satisfy (temporal curse). This highlights the curses of dimensionality we aim to simultaneously
address. In this section, we will introduce skill primitives as the proposed solution for addressing the
aforementioned curses of dimensionality. We will then introduce skill machines as a state machine
that can encode the solution to any temporal logic task by leveraging skill primitives.

3.1 FROM ENVIRONMENT TO PRIMITIVES

We desire an agent capable of learning a sufficient set of skills that can be used to solve new tasks,
specified through LTL, with little or no additional learning. To achieve this, we introduce the notion
of primitives which aims to address the spatial and temporal curses of dimensionality as follows:

4



Published as a conference paper at ICLR 2024

Spatial curse of dimensionality: To address this, we can learn WVFs (the composable value
functions described in Section 2.2) for eventually achieving each proposition, then compose them to
eventually achieve the Boolean expression over the propositions. For example, we can learn WVFs
for tasks F , F , and F . However, the product MDP for LTL specified tasks have different
states and dynamics (see Definition 2.3). Hence, they do not satisfy the assumptions for zero-shot
logical composition (Section 2.2). To address this problem, we define task primitives below. These
are product MDPs for achieving each proposition when the agent decides to terminate, and share the
same state space and dynamics. We then define skill primitives as their corresponding WVFs.

Temporal curse of dimensionality: To address this, we introduce the concept of constraints
C ⊆ {p̂ | p ∈ P} which we use to augment the state space of task primitives3. In a given environment,
a constraint is a proposition that an agent may be required to always keep True or always keep False
in some FSM state of a temporal logic task. Equivalently, it is a proposition which may never change
across the trajectory of the agent in the FSM state. When contradicted it may transition the agent
into a failure FSM state (an FSM sink state from which it can never solve the task). For example,
some tasks like (F ( ∧ X(F ))) ∧ (G ¬ ) require the agent to solve a task F ( ∧ X(F ))
while never setting to True (G ¬ ). By setting the proposition as a constraint when learning
a primitive (e.g achieving ), the agent keeps track (in its cross-product state) of whether or not it
has reached a blue region in a trajectory that did not start in a blue region. That is, in an episode
where the agent does not start in a blue region but later goes through a blue region and terminates at a
button, the agent will achieve the goal g = { ,̂} ∈ 2P∪C . We henceforth assume the general case
C = {p̂ | p ∈ P} for our theory, then later consider different choices for C in our experiments.

We now formally define the notions of task primitives and skill primitives such as “Go to a button”:
Definition 3.1 (Primitives). Let ⟨S,A, ρ, γ,P, L⟩ represent the environment the agent is in, and C
be the set of constraints. We define a task primitive here as an MDP Mp = ⟨SG ,AG , ρG , Rp, γ⟩
with absorbing states G = 2P∪C that corresponds to achieving a proposition p ∈ P ∪ C, where
SG := (S × 2C) ∪ G; AG := A×Aτ , where Aτ = {0, 1} is an action that terminates the task;

ρG(⟨s, c⟩, ⟨a, aτ ⟩) :=
{
l′ ∪ c if aτ = 1

⟨s′, c′⟩ otherwise
; Rp(⟨s, c⟩, ⟨a, aτ ⟩) :=

{
1 if aτ = 1 and p ∈ l′ ∪ c

0 otherwise
,

where s′ ∼ ρ(·|s, a), l = L(s), l′ = L(s′), and c′ = c ∪ ((l̂ ⊕ l̂′) ∩ C).
A skill primitive is defined as Q∗

p(⟨s, c⟩, g, ⟨a, aτ ⟩), the WVF for the task primitive Mp.

The above defines the state space of primitives to be the product of the environment states and the set
of constraints, incorporating the set of propositions that are currently true. The action space is aug-
mented with a terminating action following Barreto et al. (2019) and Nangue Tasse et al. (2020), which
indicates that the agent wishes to achieve the goal it is currently at, and is similar to an option’s termi-
nation condition (Sutton et al., 1999). The transition dynamics update the environment state s and the
set of violated constraints c when any other action is taken. Here, the labeling function is used to return
the set of propositions l and l′ achieved in s and s′ respectively. Any constraint present exclusively in
l or l′ is added to c, since it has not been kept always True or always False. Finally, the agent receives
a reward of 1 when it terminates in a state where the proposition p is true, and 0 otherwise. Figure A7
shows examples of the resulting optimal policies when the set of constraints is empty and non-empty.

Since all task primitivesMG := {Mp | p ∈ P∪C} share the same state space, action space, dynamics,
and rewards at non-terminal states, the corresponding skill primitives Q∗

G := {Q∗
p | p ∈ P ∪ C} can

be composed to achieve any Boolean expression over P ∪ C (Nangue Tasse et al., 2022a). We next
introduce skill machines which leverages skill primitives to encode the solution to temporal logic tasks.

3.2 SKILL MACHINES

We now have agents capable of solving any logical composition of task primitivesMG by learning
only their corresponding skill primitives Q∗

G and using the zero-shot composition operators (Section
2.2). Given this compositional ability over skills, and reward machines that expose the reward structure

3The notation p̂ represents when a literal (a proposition p ∈ P or its negation ¬p) is being used as a constraint.
Similarly, we will use P̂ or σ̂ respectively when the literals in a set P or Boolean expression σ are constraints.
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of tasks, agents can solve temporally extended tasks with little or no further learning. To achieve this,
we define a skill machine (SM) as a representation of logical and temporal knowledge over skills.
Definition 3.2 (Skill Machine). Let ⟨S,A, ρ, γ,P, L⟩ represent the environment the agent
is in, and Q∗

G be the corresponding skill primitives with constraints C. Given a reward
machine RSA = ⟨U , u0, δu, δr⟩, a skill machine is a tuple Q∗

SA = ⟨U , u0, δu, δQ⟩ where
δQ : U → [SG ×AG → R] is the state-skill function defined by:

δQ(u)(⟨s, c⟩, ⟨a, 0⟩) := max
g∈G

Q∗
σu
(⟨s, c⟩, g, ⟨a, 0⟩),

and Q∗
σu

is the composition of skill primitives Q∗
G according to a Boolean expression σu ∈ 22

P∪C
.

For a given state s ∈ S in the environment, the set of constraints violated c ⊆ C, and state u in the
skill machine, the skill machine computes a skill δQ(u)(⟨s, c⟩, ⟨a, 0⟩) that an agent can use to take
an action a. The environment then transitions to the next state s′ with true propositions l′—where
⟨s′, c′⟩ ← PG(⟨s, c⟩, ⟨a, 0⟩) and l′ ← L(s′)—and the skill machine transitions to u′ ← δu(u, l

′).
This process is illustrated in Figure A8 for the skill machine shown in Figure 1. Remarkably, because
the Boolean compositions of skill primitives are optimal, there always exists a choice of skill machine
that is optimal with respect to the corresponding reward machine, as shown in Theorem 3.3, which
demonstrates that SMs can be used to solve tasks without having to relearn action level policies:
Theorem 3.3. Let π∗(s, u) be the optimal policy for a task MT specified by an RM RSA. Then there
exists a corresponding skill machine Q∗

SA such that π∗(s, u) ∈ argmaxa∈A δQ(u)(⟨s, c⟩, ⟨a, 0⟩).

3.3 FROM REWARD MACHINES TO SKILL MACHINES

In the previous section, we introduced skill machines and showed that they can be used to represent
the logical and temporal composition of skills needed to solve tasks specified by reward machines.
However, we only proved their existence—for a given task, how can we acquire an SM that solves it?

Zero-shot via planning over the RM: To obtain the SM that solves a given RM, we first plan over
the reward machine (using value iteration, for example) to produce action-values for each transition.
We then select skills for each SM state greedily by applying Boolean composition to skill primitives
according to the Boolean expressions defining: (i) the transition with the highest value (propositions
to eventually satisfy); and (ii) the transitions with zero value (constrains to always satisfy). This
process is illustrated by Figure A9. Since the skills per SM state are selected greedily, the policy
generated by this SM is recursively optimal (Hutsebaut-Buysse et al., 2022)—that is, it is locally
optimal (optimal for each sub-task) but may not be globally optimal (optimal for the overall task).
Interestingly, we show in Theorem 3.4 that this policy is also satisficing (reaches an accepting state)
if we assume global reachability—all FSM transitions (that is all Boolean expressions σ ∈ 22

P
)

are achievable from any environment state. This is a more relaxed version of the assumption “any
state is reachable from any other state” that is required to prove optimality in most RL algorithms,
since an agent cannot learn an optimal policy if there are states it can never reach.
Theorem 3.4. Let RSA = ⟨U , u0, δu, δr⟩ be a satisfiable RM where all the Boolean expressions σ
defining its transitions are in negation normal form (NNF) (Robinson & Voronkov, 2001) and are
achievable from any state s ∈ S. Define the corresponding SM Q∗

SA = ⟨U , u0, δu, δQ⟩ with
δQ(u)(⟨s, c⟩, ⟨a, 0⟩) 7→ maxg∈G Q∗

(σP∧¬σC)
(⟨s, c⟩, g, ⟨a, 0⟩) where σP := argmaxσ Q∗(u, σ),

σC :=
∨
{σ̂ | Q∗(u, σ) = 0}, and Q∗(u, σ) is the optimal Q-function for RSA. Then, π(s, u) ∈

argmaxa∈A δQ(u)(⟨s, c⟩, ⟨a, 0⟩) is satisficing.

Theorem 3.4 is critical as it provides soundness guarantees, ensuring that the policy derived from
the skill machine will always satisfy the task requirements.

Few-shot via RL in the environment: Finally, in cases where the composed skill δQ(u)(⟨s, c⟩, ⟨a, 0⟩)
obtained from the approximate SM is not sufficiently optimal, we can use any off-policy RL algorithm
to learn the task-specific skill QT (s, u, a) few-shot. This is achieved by using the maximising Q-
values max{γQT , (1− γ)δQ} in the exploration policy during learning. Here, the discount factor γ
determines how much of the composed policy to use. Consider Q-learning, for example: during the
ϵ-greedy exploration, we use a← argmaxA max{γQT , (1− γ)δQ} to select greedy actions. This
improves the initial performance of the agent where γQT < (1− γ)δQ, and guarantees convergence
in the limit of infinite exploration, as in vanilla Q-learning. Appendix A.2 illustrates this process.
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4 EXPERIMENTS

We evaluate our approach in three domains, including a high-dimensional, continuous control task.
In particular, we consider the Office Gridworld (Figure A2a), the Moving Targets domain (Figure A1)
and the Safety Gym domain (Figure 1). We briefly describe the domains and training procedure
here, and provide more detail and hyperparameter settings in the appendix.

Office Gridworld (Icarte et al., 2022): Tasks are specified over 10 propositions P =

{A,B,C,D,✽,K,B, x,B+, x+} and 1 constraint C = {✽̂}. We learn the skill primitives Q∗
G

(visualised by Figure A3) using goal-oriented Q-learning (Nangue Tasse et al., 2020), where the
agent keeps track of reached goals and uses Q-learning (Watkins, 1989) to update the WVF with
respect to all previously seen goals at every time step.

Moving Targets Domain (Nangue Tasse et al., 2020): This is a canonical object collection domain
with high dimensional pixel observations (84×84×3 RGB images). The agent here needs to pick up
objects of various shapes and colours; collected objects respawn at random empty positions similarly
to previous object collection domains (Barreto et al., 2020). There are 3 object colours—beige ( ),
blue ( ), purple ( )—and 2 object shapes—squares ( ), circles ( ). The tasks here are defined over
5 propositions P = { , , , , } and 5 constraints C = P̂ . We learn the corresponding skill primi-
tives with goal-oriented Q-learning, but using deep Q-learning (Mnih et al., 2015) to update the WVFs.

Safety Gym Domain (Ray et al., 2019): A continuous state and action space (S = R60,A = R2)
domain where an agent, represented by a point mass, must navigate to various regions defined by 3
propositions (P = { , , }) corresponding to its 3 LiDAR sensors for the red cylinder , the green
buttons , and the blue regions . We learn the four skill primitives corresponding to each predicate
(with constraints C = {̂}), using goal-oriented Q-learning and TD3 (Fujimoto et al., 2018).

4.1 ZERO-SHOT AND FEW-SHOT TEMPORAL LOGICS

Task Description — LTL

1 Deliver coffee to the office without breaking decorations |
(
F
(
K ∧X

(
F x

)))
∧ (G ¬✽)

2 Patrol rooms A, B, C, and D without breaking any decoration
— (F (A ∧X (F (B ∧X (F (C ∧X (FD))))))) ∧ (G ¬✽)

3 Deliver coffee and mail to the office without breaking any decoration
—

((
F
(
K ∧X

(
F
(
B ∧X

(
Fx

)))))
∨
(
F
(
B ∧X

(
F
(
K ∧X

(
Fx

))))))
∧(G¬✽)

4 Deliver mail to the office until there is no mail left, then deliver coffee to office while there
are people in the office, then patrol rooms A-B-C-D-A, and never break a decoration
—

(
F
(
B ∧X

(
F
(
x ∧X

(
¬BU

(
¬B+ ∧B ∧X

(
F
(
K ∧X

(
¬xU

(
¬x+ ∧ x ∧X

(FA ∧X (F (B ∧X (F (C ∧X (F (D ∧X (FA)))))))))))))))))) ∧ (G ¬✽)

Table 1: Tasks in the Office Gridworld. The RMs are generated from the LTL expressions.

We use the Office Gridworld as a multitask domain, and evaluate how long it takes an agent to learn a
policy that can solve the four tasks described in Table 1. The tasks are sampled uniformly at random
for each episode. In all of our experiments, we compare the performance of SMs without further
learning and SMs paired with Q-learning (QL-SM) with that of regular Q-learning (QL) and the
following state-of-the-art RM-based baselines (Icarte et al., 2022): (i) Counterfactual RMs (CRM):
This augments Q-learning by updating the action-value function at each state (Q(s, u, a)) not just
with respect to the current RM transition, but also with respect to all possible RM transitions from the
current environment state. This is representative of approaches that leverage the compositional struc-
ture of RMs to learn optimal policies efficiently. (ii) Hierarchical RMs (HRM): The agent here uses
Q-learning to learn options to achieve each RM state-transition, and an option policy to select which
options to use at each RM state that are grounded in the environment states. This is representative
of option-based approaches that learn hierarchically-optimal policies. (iii) Reward-shaped variants
(QL-RS, CRM-RS, HRM-RS): The agent here uses the values obtained from value iteration over
the RMs for reward shaping, on top of the regular QL, CRM, HRM algorithms. This is representative
of approaches that leverage planning over the RM to speed up learning.
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Figure 2: Average returns over 60 independent runs during training in the Office Gridworld. The
shaded regions represent 1 standard deviation. For each training run, we evaluate the agent ϵ-greedily
(ϵ = 0.1) after every 1000 step and report the average total rewards obtained over each 40 consecutive
evaluation. The black dotted line indicate the point at which the baselines have trained for the same
number of time steps as the skill primitives pretraining.

In addition to learning all four tasks at once, we also experiment with Tasks 1, 3 and 4 in isolation.
In these single-task domains, the difference between the baselines and our approach should be more
pronounced, since QL, CRM and HRM now cannot leverage the shared experience across multiple
tasks. Thus, the comparison between multi-task and single-task learning in this setting will evaluate
the benefit of the compositionality afforded by SMs, given that the 11 skill primitives used by the
SMs here are pretrained only once for 1 × 105 time steps and used for all four experiments. For
fairness towards the baselines, we run each of the four experiments for 4× 105 time steps.

The results of these four experiments are shown in Figure 2. Regular Q-learning struggles to learn
Task 3 and completely fails to learn the hardest task (Task 4). Additionally, notice that while QL
and CRM can theoretically learn the tasks optimally given infinite time, only HRM, SM, and QL-SM
are able to learn hard long horizon tasks in practice (like task 4). This is because of the temporal
composition of skills leveraged in HRM, SM, and QL-SM. In addition, the skill machines are being
used to zero-shot generalise to the office tasks using skill primitives. Thus using the skill machines
alone (SM in Figure 2) may provide sub-optimal performance compared to the task-specific agents,
since the SMs have not been trained to optimality and are not specialised to the domain. Even under
these conditions, we observe that SMs perform near-optimally in terms of final performance, and
due to the amortised nature of learning the WVF will achieve its final rewards from the first epoch.

Finally, it is apparent from the results shown in Figure 2 that SMs paired with Q-learning (QL-SM)
achieve the best performance when the zero-shot performance is not already optimal (see Appendix
A4 for the trajectories of the agent with and without few-shot learning). Additionally, SMs with
Q-learning always begin with a significantly higher reward and converge on their final performance
faster than all baselines. The speed of learning is due to the compositionality of the skill primitives
with SMs, and the high final performance is due to the generality of the learned primitives being
paired with the domain-specific Q-learner. In sum, skill machines provide fast composition of skills
and achieve optimal performance compared to all benchmarks when paired with a learning algorithm.

4.2 ZERO-SHOT TRANSFER WITH FUNCTION APPROXIMATION

We now demonstrate our temporal logic composition approach in the Moving Targets domain where
function approximation is required. Figure 3 shows the average returns of the optimal policies and
SM policies for the four tasks described in Table 2 with a maximum of 50 steps per episode. Our
results show that even when using function approximation with sub-optimal skill primitives, the
zero-shot policies obtained from skill machines are very close to optimal on average. We also observe
that for very challenging tasks like Tasks 3 and 4 (where the agent must satisfy difficult temporal
constraints), the compounding effect of the sub-optimal policies sometimes leads to failures. Finally,
we provide a qualitative demonstration of our method’s applicability to continuous control tasks
using Safety Gym, a benchmark domain used for developing safe RL methods (Ray et al., 2019).
We define a set of increasingly complex tasks and visualise the resulting trajectories after composing
the agent’s learned primitive skills. Figure 1 illustrates the trajectory that satisfies the task requiring
the agent to navigate to a blue region, then to a red cylinder, and finally to another red cylinder while
avoiding blue regions. See Appendix A.5 for all task specifications and trajectory visualisations.
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Task Description — LTL
1 Pick up any object. Repeat this forever. —

F ( ∨ )
2 Pick up blue then purple objects, then ob-

jects that are neither blue nor purple. Re-
peat this forever. — F ( ∧ X(F ( ∧
X(F (( ∨ ) ∧ ¬( ∨ ))))))

3 Pick up blue objects or squares, but never
blue squares. Repeat this forever. —
(F ( ∨ )) ∧ (G ¬( ∧ ))

4 Pick up non-square blue objects, then non-
blue squares in that order. Repeat this for-
ever. — F ((¬ ∧ ) ∧X(F ( ∧ ¬ )))

Table 2: Tasks in the Moving Targets domain. To
repeat forever, the terminal states of the RMs gener-
ated from LTL are removed, and transitions to them
are looped back to the start state.

Figure 3: Average returns over 100 runs for
tasks in Table 2. The agent and object posi-
tions are randomised and objects respawn in
random positions when collected.

5 RELATED WORK

Regularisation has previously been used to achieve semantically meaningful disjunction (Todorov,
2009; Van Niekerk et al., 2019) or conjunction (Haarnoja et al., 2018; Hunt et al., 2019). Weighted
composition has also been demonstrated; for example, Peng et al. (2019) learn weights to compose
existing policies multiplicatively to solve new tasks. Approaches built on successor features (SF)
are capable of solving tasks defined by linear preferences over features (Barreto et al., 2020)., while
Alver & Precup (2022) show that an SF basis can be learned that is sufficient to span the space of
tasks under consideration. By contrast, our framework allows for both spatial composition (including
operators such as negation that others do not support) and temporal composition such as LTL.

A popular way of achieving temporal composition is through the options framework (Sutton et al.,
1999). Here, high-level skills are first discovered and then executed sequentially to solve a task
(Konidaris & Barto, 2009). Barreto et al. (2019) leverage the SF and options framework and learn
how to linearly combine skills, chaining them sequentially to solve temporal tasks. However, these
approaches offer a relatively simple form of temporal composition. By contrast, we are able to solve
tasks expressed through regular languages zero-shot, while providing soundness guarantees.

Approaches to defining tasks using human-readable logic operators also exist. Li et al. (2017) and
Littman et al. (2017) specify tasks using LTL, which is then used to generate a reward signal for an RL
agent. Camacho et al. (2019) perform reward shaping given LTL specifications, while Jothimurugan
et al. (2019) develop a formal language that encodes tasks as sequences, conjunctions and disjunctions
of subtasks. This is then used to obtain a shaped reward function that can be used for learning. These
approaches focus on how to improve learning given such specifications, but we show how an explicitly
compositional agent can immediately solve such tasks using WVFs without further learning.

6 CONCLUSION

We proposed skill machines—finite state machines that can be learned from reward machines—that
allow agents to solve extremely complex tasks involving temporal and spatial composition. We demon-
strated how skills can be learned and encoded in a specific form of goal-oriented value function that,
when combined with the learned skill machines, are sufficient for solving subsequent tasks without
further learning. Our approach guarantees that the resulting policy adheres to the logical task specifi-
cation, which provides assurances of safety and verifiability to the agent’s decision making, important
characteristics that are necessary if we are to ever deploy RL agents in the real world. While the
resulting behaviour is provably satisficing, empirical results demonstrate that the agent’s performance
is near optimal; further fine-tuning can be performed should optimality be required, which greatly im-
proves the sample efficiency. We see this approach as a step towards truly generally intelligent agents,
capable of immediately solving human-specifiable tasks in the real world with no further learning.
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A APPENDIX

A.1 PROOFS OF THEORETICAL RESULTS

Theorem A.1. Let π∗(s, u) be the optimal policy for a task MT specified by an RM RSA. Then
there exists a corresponding skill machine Q∗

SA such that

π∗(s, u) ∈ argmax
a∈A

δQ(u)(⟨s, c⟩, ⟨a, 0⟩).

Proof. Define the skill per SM state Q∗
u to be the Boolean composition of skill primitives that satisfy

the set of propositions g ∈ 2P∪C , where g is the set of propositions satisfied and constraints violated
when following π∗(s, u). Then π∗(s, u) ∈ argmaxa∈A δQ(u)(⟨s, c⟩, ⟨a, 0⟩) since Q∗

u is optimal
using Nangue Tasse et al. (2022b) and optimal policies maximise the probability reaching goals
(since the rewards are non-zero only at the desirable goal states, where they are 1).

Theorem A.2. Let RSA = ⟨U , u0, δu, δr⟩ be a satisfiable RM where all the Boolean expressions σ
defining its transitions are in negation normal form (NNF) (Robinson & Voronkov, 2001) and are
achievable from any state s ∈ S. Define the corresponding SM Q∗

SA = ⟨U , u0, δu, δQ⟩ with
δQ(u)(⟨s, c⟩, ⟨a, 0⟩) 7→ maxg∈G Q∗

(σP∧¬σC)
(⟨s, c⟩, g, ⟨a, 0⟩) where σP ← argmaxσ Q∗(u, σ),

σC ←
∨
{σ̂ | Q∗(u, σ) = 0}, and Q∗(u, σ) is the optimal Q-function for RSA. Then, π(s, u) ∈

argmaxa∈A δQ(u)(⟨s, c⟩, ⟨a, 0⟩) is satisficing.

Proof. This follows from the optimality of Boolean skill composition and the optimality of value
iteration, since each transition of the RM is satisfiable from any environment state.

12



Published as a conference paper at ICLR 2024

A.2 FULL PSEUDO-CODES OF FRAMEWORK

Algorithm 1: Q-learning for skill primitives
Input : S,A,P, C, γ, α,RMAX = 1, RMIN = 0
Initialise : QMAX(⟨s, c⟩, g, ⟨a, aτ ⟩) and QMIN (⟨s, c⟩, g, ⟨a, aτ ⟩), goal buffer G = {∅}

1 foreach episode do
2 Observe initial state s ∈ S and true propositions l ∈ 2P , sample c ∈ 2C and g ∈ G
3 while episode is not done do

4 ⟨a, aτ ⟩ ←

argmax
⟨a,aτ ⟩

QMAX(⟨s, c⟩, g, ⟨a, aτ ⟩) if Bernoulli(1− ϵ) = 1

sample ⟨a, aτ ⟩ ∈ A × {0, 1} otherwise
5 Execute a and observe next state s′ and true propositions l′

6 Get true constraints c′ ← c ∪ ((l̂ ⊕ l̂′) ∩ C)
7 if (aτ = 1) then G← G ∪ {l′ ∪ c}
8 foreach Q ∈ {QMAX ,QMIN} do
9 if (aτ ̸= 1) then r ← 0

10 if (aτ = 1 and Q = QMAX ) then r ← RMAX
11 if (aτ = 1 and Q = QMIN ) then r ← RMIN
12 foreach g′ ∈ G do
13 r̄ ← RMIN if (aτ = 1 and g′ ̸= l′ ∪ c) else r
14 if (s′ is terminal or aτ = 1) then
15 Q(⟨s, c⟩, g′, ⟨a, aτ ⟩)

α←− r̄
16 else
17 Q(⟨s, c⟩, g′, ⟨a, aτ ⟩)

α←−
[
r̄ + γmax⟨a′,a′

τ ⟩ Q(⟨s′, c′⟩, g′, ⟨a′, a′τ ⟩)
]

18 s← s′ and c← c′

19 if (aτ = 1) then terminate episode
20 QG ← ∅
21 foreach p ∈ P ∪ C do
22 Qp(⟨s, c⟩, g, ⟨a, aτ ⟩) := QMAX(⟨s, c⟩, g, ⟨a, aτ ⟩) if (p ∈ g) else QMIN (⟨s, c⟩, g, ⟨a, aτ ⟩)
23 QG ←QG ∪ {Qp}
24 return QG

Algorithm 2: Skill machine from reward machine
Input : QG , ⟨U , u0, δu, δr, ⟩, γ
Initialise :RM value function Q(u, σ), value iteration error ∆ = 1

1 Let B(u) := the set of Boolean expressions defining the RM transitions δu(u, ·)
/* Value iteration */

2 while ∆ > 0 do
3 ∆← 0
4 for u ∈ U do
5 for σ ∈ B(u) do
6 v′ ← δr(u, σ) + γmaxσ′ Q(δu(u, σ), σ

′)
7 ∆ = max{∆, |Q(u, σ)− v′|}
8 Q(u, σ)← v′

9

/* Skill machine’s skill function */
10 for u ∈ U do
11 σP , σC ← argmaxσ′ Q(u, σ′),

∨
{σ̂ | Q(u, σ) = 0}

12 QσP∧¬σC ← composition of QG as per the Boolean expression σP ∧ ¬σC
13 δQ(u)(⟨s, c⟩, ⟨a, 0⟩)← maxg∈G QσP∧¬σC (⟨s, c⟩, g, ⟨a, 0⟩)
14 return ⟨U , u0, δu, δQ⟩
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Algorithm 3: Zero-shot and Few-shot Q-learning with skill machines
Input : S,A,P, C, ⟨U , u0, δu, δQ⟩, γ, α
Initialise : Q(s, u, a)

1 foreach episode do
2 Observe initial state s ∈ S and propositions l ∈ 2P , RM state u← u0 and constraints c← ∅
3 while episode is not done do
4 if zero-shot then
5 a← argmax

a
δQ(u)(⟨s, c⟩, ⟨a, 0⟩)

6 else
/* Fewshot by using δQ in the behaviour policy */

7 a←{
argmax

a
(max{γQ(s, u, a), (1− γ)δQ(u)(⟨s, c⟩, ⟨a, 0⟩)}) if Bernoulli(1− ϵ) = 1

sample a ∈ A otherwise
8 Take action a and observe the next state s′ and true propositions l′

9 Get reward r ← δr(u)(s, a, s
′), true constraints c← c ∪ ((l̂ ⊕ l̂′) ∩ C),

10 and the next RM state u′ ← δu(u, l
′)

11 if u ̸= u′ then c← ∅
12 if s′ or u′ is terminal then
13 Q(s, u, a)

α←− r
14 else
15 Q(s, u, a)

α←−
[
r + γmax

a′
Q(s′, u′, a′)

]
16 s← s′ and u← u′

A.3 DETAILS OF EXPERIMENTAL SETTINGS

In this section we elaborate further on the hyper-parameters for the various experiments in Section 4.
We also describe the pretraining of WVFs for all of the experimental settings which corresponds to
learning the task primitives for each domain. The same hyper-parameters are used for all algorithms
in a particular experiment. This is to ensure that we evaluate the relative performance fairly and
consistently. The full list of hyper-parameters for the Office World, Moving Targets and SafeAI Gym
domain experiments are shown in Tables A1-A3 respectively.

Hyper-parameter Value

Timesteps 1e5

Training exploration (ϵ) 0.5
Per-episode evaluation exploration (ϵ) 0.1

Discount Factor (γ) 0.9

Table A1: Table of hyper-parameters used for Q-learning in the Office World experiments.

To use skill machines we require pre-trained WVFs. As mentioned above, all WVFs are trained
using the same hyper-parameters as any other training. Additionally, for all experiments the WVFs
are pre-trained on the base task primitives for the domain. For example, in the Office World
domain, the WVFs are trained on the |P ∪ C| base task primitives corresponding to achieving each
predicate, P = {A,B,C,D,✽,K,B, x,B+, x+} (reaching states the predicate is set to True),
with constraints C = {✽̂}. All other primitives in this domain can be obtained zero-shot through
value function composition. Similarly, for the moving targets domain (Figure A1), the WVFs are
pre-trained on the primitives corresponding to obtaining objects by shape or colour in the environment
separately, P = { , , , , }, with constraints C = P̂ . From here the value functions for finding
objects of particular colours or any more complex primitives can be composed zero-shot. Finally,
for the SafeAI Gym environment the base skill primitives correspond to going to a cylinder ( ), a
button ( ), and a blue region ( ): P = { , , }, trained with constraints C = {̂}.
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Hyper-parameter Value

Timesteps 1e6

Neural Network architecture CNN + MLP
CNN architecture Defaults of Mnih et al. (2015)

MLP hidden layers 1024× 1024× 1024
Start exploration (ϵ) 1
End exploration (ϵ) 0.1

Exploration decay duration (ϵ) 5e5

Discount Factor (γ) 0.99
Others Defaults of Mnih et al. (2015)

Table A2: Table of hyper-parameters used for Deep Q-learning in the Moving Targets experiments.

Hyper-parameter Value

Timesteps 1e6

Neural Network architecture MLP
MLP hidden layers 2024× 2024× 2024

Max episodes length 100
Target noise 0.2
Action noise 0.2

Discount Factor (γ) 0.99
Others Defaults of Achiam (2018)

Table A3: Table of hyper-parameters used for the TD3 in the SafeAI Gym experiments.

Figure A1: Moving Targets domain

A.4 OFFICE GRIDWORLD ADDITIONAL EXPERIMENTS AND FIGURES

We illustrate the environment and an example temporal logic task in it in Figure A2. In this environ-
ment, an agent (blue circle) can move to adjacent cells in any of the cardinal directions (|A| = 4) and
observe its (x, y) position (|S| = 120). Cells markedK,B, and x respectively represent the coffee,
mail, and office locations. Those marked ✽ indicate decorations that are broken if the agent collides
with them, and A–D indicate the corner rooms. The reward machines that specify tasks in this envi-
ronment are defined over 10 propositions: P = {A,B,C,D,✽,K,B, x,B+, x+}, where the first 8
propositions are true when the agent is at their respective locations,B+ is true when the agent is atB
and there is mail to be collected, and x+ is true when the agent is at x and there is someone in the office.
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(a) Office Gridworld (b) Reward Machine (c) Skill Machine
Figure A2: Illustration of (a) the office gridworld where the blue circle repre-
sents the agent; (b) the reward machine for the task “deliver coffee and mail
to the office without breaking any decoration”, given by the LTL specification((
F
(
K ∧X

(
F
(
B ∧X

(
Fx

)))))
∨
(
F
(
B ∧X

(
F
(
K ∧X

(
Fx

))))))
∧ (G¬✽); (c) the

skill machine obtained from the reward machine which can then be used to achieve the task
specification zero-shot—the red trajectory in (a). The nodes labeled t represent terminal states.

(a) Room A (b) Room B (c) Room C (d) Room D

(e) Decoration ✽ (f) CoffeeK (g) MailB (h) Office x

(i) Mails presentB+ (j) People present x+ (k) Decoration constraint ✽̂

Figure A3: The policies (arrows) and value functions (heat map) of the primitive tasks in the Office
Gridworld. These are obtained by maximising over the goals of the learned WVFs.

Figure A3 shows the skill primitives learned for each proposition in the environment, and Figure A4
shows the trajectories of our zero-shot agent (SM) and few-shot agent (QL-SM) for various tasks.
Finally, we run 2 experiments to demonstrate the performance of our zero-shot and few-shot approach
when the global reachability assumption does not hold.

1. When the reachability assumption is not satisfied in some initial states: In the first
experiment (Figure A5), the agent needs to solve task 1 of Table 1 ((F (K ∧X(F x))) ∧
(G ¬✽)), but we modify the environment such that one of the coffee locations is absorbing
(a sink environment state). This breaks the global reachability assumption since the agent
can no longer reach the office location after it reaches the absorbing coffee location. As
a result, we observe that the zero-shot agent (SM) is even more sub-optimal than before
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because it cannot satisfy the task when it starts at locations that are closer to the absorbing
coffee location. However, we can observe that the few-shot agent (QL-SM) is still able to
learn the optimal policy, starting with the same performance as the zero-shot agent. Note
that the hierarchical agent (HRM) also converges to the same performance as our zero-shot
agent because it also tries to reach the nearest coffee location.

2. When the reachability assumption is not satisfied in all initial states: In the second experi-
ment (Figure A6), the agent needs to solve the task with LTL specification (F x)∧(¬xUK)—
the environment is still modified such that one of the coffee locations is absorbing. Here, the
Boolean expressionK ∧ x is not satisfiable since there is no state where both propositions
(K and x) are true. Hence, this can be seen as the worst-case scenario for our approach
(without outright making the task unsatisfiable), since K ∧ x is the Boolean expression
greedily selected in the starting RM state. As a result, our zero-shot agent completely fails
to solve this task. Even in this case, we can observe that the few-shot agent is still able to
learn the optimal policy.

(a) Task 1 zero-shot (SM) (b) Task 1 few-shot (QL-SM)

(c) Task 2 zero-shot (SM) (d) Task 2 few-shot (QL-SM)

(e) Task 3 zero-shot (SM) (f) Task 3 few-shot (QL-SM)

Figure A4: Agent trajectories for various tasks in the Office Gridworld (Table 1) using the skill
machine without further learning (left) and with further learning (right).
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(a) Reward machine (b) Value iterated RM (c) Skill machine
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Figure A5: Results for the task with LTL specification (F (K∧X(F x)))∧ (G ¬✽) when the global
reachability assumption does not hold. Here, the Office Gridworld is modified such that the position of
the lower right coffee (the red cell) is made absorbing (the agent can not leave that state after reaching
it). We show: (a) the reward machine for the task, (b) the value iterated reward machine (using
γ = 0.9), (c) the resulting skill machine, (d) the resulting average returns compared to the baselines,
(e) sample trajectories of the zero-shot agent, and (f) sample trajectory of the few-shot agent.

(a) Reward machine (b) Value iterated RM (c) Skill machine
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Figure A6: Results for the task with LTL specification (F x)∧(¬x UK) where the global reachability
assumption is not satisfied. Here, the Office Gridworld is modified such that the position of the lower
right coffee (the red cell) is made absorbing. We show (a) the RM for the task, (b) the value iterated
RM (using γ = 0.9), (c) the resulting SM, (d) the resulting average returns compared to the baselines,
(e) sample trajectories of the zero-shot agent, and (f) sample trajectory of the few-shot agent.
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A.5 FUNCTION APPROXIMATION WITH CONTINUOUS ACTIONS AND STATES

We demonstrate our temporal logic composition approach in a Safety Gym domain (Ray et al., 2019)
which has a continuous state space (S = R60) and continuous action space (A = R2). The agent here
is a point mass that needs to navigate to various regions defined by 3 propositions (P = { , , })
corresponding to its 3 lidar sensors for the red cylinder ( ), the green buttons ( ), and the blue
regions ( ). The agent, 4 buttons and 2 blue regions are randomly placed on the plane. The cylinder
is randomly placed on one of the buttons. We first learn the 4 base skill primitives corresponding to
each predicate (with constraints C = {̂}), with goal-oriented Q-learning Nangue Tasse et al. (2020)
but using Twin Delayed DDPG (Fujimoto et al., 2018) to update the WVFs. Figure A10 shows the
trajectories of the SM policies for the six tasks described in Table A4. Our results shows that skill
primitives can be leveraged to achieve zero-shot temporal logics even in continuous domains.

(a) M



∧ ¬M ,

g = { , , ̂}, r = 1

(b) M



∧¬M ∧¬M̂ ,

g = { , }, r = 1

(c) M


∧M ∧ ¬M̂ ,

g = { , , }, r = 1

(d) M



∧¬M ∧¬M̂ ,

g = { , , ̂}, r = 0

Figure A7: Effect of constraints on primitives (C = {̂}). We show compositions of task primitives
(for example M



∧ ¬M where the agent needs to achieve  ∧ ¬ ), trajectories, goal reached

(g), and reward obtained (r) when following: (a-c) Optimal policies; and (d) a non-optimal policy.

(a) Skill machine (b) c = ∅, l = ∅, Qσu =
Q ∧ ¬Q ∧ ¬Q̂

(c) c=∅, l={ }, Qσu =
Q



∧ ¬Q ∧ ¬Q̂ (d) c = ∅, l = { , },
episode terminates

Figure A8: Execution of a skill machine in the Safety Gym domain. (a) An example skill machine;
(b) A snapshot of the environment at the initial state. In this state, no constraint has been reached
(c = ∅), no proposition is true (l = ∅), the SM is at state u = u0, and the composed skill outputted
by the SM is Qσu

= Q ∧ ¬Q ∧ ¬Q̂ (which the agent uses to act in the environment); (c)

The trajectory of the agent until it achieves ∧ ¬ ∧ ¬ ̂. In the current environment state, no
constraint has been reached (c = ∅), the agent is at a green button (l = { }), the SM transitions to
state u = u1, and the composed skill outputted by the SM is Qσu

= Q



∧ ¬Q ∧ ¬Q̂ (which

the agent uses to act in the environment); (d) The trajectory of the agent until the agent achieves

 ∧ ¬ ∧ ¬̂. In the current environment state, no constraint has been reached (c = ∅), the agent
is at the red cylinder and a green button (l = { , }), the SM transitions to the terminal state t, and
the episode terminates.
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(a) Reward machine (b) Value iterated RM (c) Skill machine

Figure A9: The reward machine, value iterated reward machine (using γ = 0.9) and skill machine for
the task with LTL specification (F ( ∧X(F )))∧(G ¬ ). The agent composes its skill primitives
to achieve σP ∧ ¬σC = ( ∧ ¬ ) ∧ ¬(̂) at u0 and σP ∧ ¬σC = (  ∧ ¬ ) ∧ ¬(̂) at u1.

Task Description — LTL

1 Navigate to a button and then to a cylinder. — (F ( ∧X(F )))
2 Navigate to a button and then to a cylinder while never entering blue regions

— (F ( ∧X(F ))) ∧ (G ¬ )
3 Navigate to a button, then to a cylinder without entering blue regions, then to a button

inside a blue region, and finally to a cylinder again.
— F ( ∧X(F ((  ∧ ¬ ) ∧X(F (( ∧ ) ∧X(F ))))))

4 Navigate to a button and then to a cylinder in a blue region. — (F ( ∧X(F  ∧ )))
5 Navigate to a cylinder, then to a button in a blue region, and finally to a cylinder again.

— (F (  ∧X(F (( ∧ ) ∧X( ))))
6 Navigate to a blue region, then to a button with a cylinder, and finally to a cylinder while

avoiding blue regions. — (F ( ∧X(F (( ∧ ) ∧X((F ) ∧ (G¬ ))))))

Table A4: Tasks in the Safety Gym domains. The RMs are generated from the LTL expressions.

(a) Task 1 (b) Task 2 (c) Task 3

(d) Task 4 (e) Task 5 (f) Task 6

Figure A10: Visualisations of the trajectories obtained by following the zero-shot composed policies
from the skill machine for tasks in Table A4.
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