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The Reinforcement Learning (RL) framework offers a general paradigm for constructing 
autonomous agents that can make effective decisions when solving tasks. An important area of 
study within the field of RL is transfer learning, where an agent utilizes knowledge gained from 
solving previous tasks to solve a new task more efficiently. While the notion of transfer learning is 
conceptually appealing, in practice, not all RL representations are amenable to transfer learning. 
Moreover, much of the research on transfer learning in RL is purely empirical. Previous research 
has shown that object-oriented representations are suitable for the purposes of transfer learning 
with theoretical efficiency guarantees. Such representations leverage the notion of object classes 
to learn lifted rules that apply to grounded object instantiations. In this paper, we extend previous 
research on object-oriented representations and introduce two formalisms: the first is based on 
deictic predicates, and is used to learn a transferable transition dynamics model; the second is 
based on propositions, and is used to learn a transferable reward dynamics model. In addition, 
we extend previously introduced efficient learning algorithms for object-oriented representations 
to our proposed formalisms. Our frameworks are then combined into a single efficient algorithm 
that learns transferable transition and reward dynamics models across a domain of related tasks. 
We illustrate our proposed algorithm empirically on an extended version of the Taxi domain, as 
well as the more difficult Sokoban domain, showing the benefits of our approach with regards to 
efficient learning and transfer.

1. Introduction

A longstanding goal in the field of Artificial Intelligence (AI) is the construction of autonomous agents that make effective 
decisions to complete given tasks. The Reinforcement Learning (RL) framework [1] offers a general paradigm for constructing 
autonomous agents with these capabilities. In the RL setting, an agent interacts with its environment with the aim of learning a 
policy that instructs the agent on which action to take in any given state to achieve an optimal payoff. For reasons of computational 
tractability, an RL task is typically modelled as a Markov Decision Process (MDP). Given an MDP description of an RL task, a set of 
fairly simple algorithms exist with convergence guarantees to optimal policies [1]. RL has had many successes, achieving master-level 
performance on a variety of complex tasks such as Backgammon, a suite of Atari 2600 games and chess [2–5].

An important area of study within RL is that of transfer learning [6]. In the transfer learning setting, an RL agent leverages prior 
knowledge learned from solving previous tasks to solve a new and related task more efficiently. Human cognition is known to transfer 
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vast amounts of prior knowledge gained from previous experiences when solving new tasks [7]. Therefore, it is natural to seek ways 
to imbue RL agents with similar capabilities so that they can solve new tasks as efficiently as humans do.

While the transfer learning approach has intuitive appeal, in practice it is a challenging research area with many open ques-

tions [6]. In particular, it is not always clear what, when or how to transfer in order to achieve improved learning performance. 
Furthermore, the research area of transfer learning has tended to rely more on empirical methods that lack theoretical foundations 
[6].

One concept that has shown much promise for effective transfer is based on relational representations in RL [8,9]. These repre-

sentations rely on expressing the components of an MDP in terms of logical statements over variables. Transfer is then achieved by 
expressing lifted rules about groups of variables, and then grounding these lifted rules for specific instantiations of variable values.

Object-oriented representations are a form of relational representation that draws inspiration from the structure of the physical 
world [10–15]. Object-oriented representations define a set of lifted object classes from which grounded objects are then instantiated 
for a particular task. Such representations aim to learn a set of lifted rules that apply to the object classes. These lifted rules then 
generalize to grounded instantiations of objects, and are therefore transferable between related tasks of a domain.

In particular, previous research introduced the Propositional Object-Oriented MDP (Propositional OO-MDP) framework [13,14]. 
Propositional OO-MDPs operate by formulating the transition dynamics of an MDP in terms of propositional preconditions over lifted 
object classes that map to effects over object class attributes. Since the preconditions and effects that represent the transition dynamics 
are fully lifted, they transfer across all tasks of a domain. Propositional OO-MDPs have limited expressive power because they require 
that all preconditions be propositional. However, they have the advantage that provably efficient learning algorithms exist under the 
formalism. In particular, the research that introduces Propositional OO-MDPs also introduces an algorithm called DOORMAX that 
operates under the Propositional OO-MDP formalism in domains with deterministic transition dynamics. The DOORMAX algorithm 
falls into the more general KWIK-𝑅max class of algorithms from the KWIK (knows what it knows) framework [16,17]. As a result, it 
has provably efficient learning bounds.

Unfortunately, the core restriction of Propositional OO-MDPs that the transition dynamics be described only in terms of proposi-

tional preconditions is a strong one, and precludes efficient learning for a large class of domains. Such domains include those where 
it is required to distinguish between different objects of the same object class for tasks of the domain. As a specific example of this, 
and further elaborated in subsection 3.2, consider the Sokoban domain where a person attempts to push a box but cannot do so if 
that box is adjacent to a wall. In this case, there is no way of tying the box that is adjacent to the person with the box that is adjacent 
to the wall with lifted propositions.

To accommodate this, our previous research introduced the Deictic Object-Oriented MDP (Deictic OO-MDP) framework [18]. 
Deictic OO-MDPs use deictic predicates for its preconditions. A deictic predicate is a predicate that is grounded only with respect 
to a central deictic object, therefore that object may relate itself to non-grounded object classes, but not to other grounded objects. 
Returning to the Sokoban domain, a deictic predicate over boxes allows a specific box to ascertain whether any wall is adjacent 
to it, but not whether a specific wall is adjacent to it. Deictic OO-MDPs are more general than Propositional OO-MDPs, and so are 
able to represent a larger class of domains. Furthermore, the research that introduces Deictic OO-MDPs extends DOORMAX with an 
algorithm called DOORMAX𝐷 so that efficient learning is possible under the Deictic OO-MDP framework as well [18].

Both previously introduced Propositional OO-MDP and Deictic OO-MDP settings assume known reward dynamics and focus on 
learning transition dynamics. In the most general model-based RL setting, the agent must learn both of these components. In this 
paper we combine Deictic OO-MDPs and Propositional OO-MDPs by leveraging the former to efficiently learn transferable transition 
dynamics and the latter to efficiently learn transferable reward dynamics. We then extend DOORMAX𝐷 to accommodate learning of 
both of these components.

We illustrate our framework empirically on the Taxi and Sokoban domains. The original Taxi task [19] takes place in a small 
5 × 5 gridworld. In this paper we demonstrate that we can learn transferable models of both the transition and reward dynamics 
from such small Taxi tasks, and then zero-shot transfer them to much larger 10 ×10 tasks, where the taxi also has to drop of multiple 
passengers.1 We further illustrate the flexibility of our framework on the Sokoban domain where we learn the dynamics from some 
small Sokoban tasks and then zero-shot transfer them to a larger task, that has an optimal solution depth of 209 steps, to obtain an 
optimal policy.

In summary, the contributions of this paper are as follows: 1) we extend the previously introduced Propositional OO-MDP 
formalism to a more general Deictic OO-MDP formalism for transition dynamics, providing significantly more detail compared 
to our previous work [18]; 2) we introduce a novel propositional object-oriented formalism for reward dynamics; 3) we extend the 
previously introduced KWIK-learnable DOORMAX algorithm for learning deterministic transition dynamics under the propositional 
setting to the DOORMAX𝐷 algorithm for learning deterministic transition dynamics under the deictic setting and stochastic reward 
dynamics under the propositional setting, and prove that our algorithm is also KWIK-learnable; 4) we demonstrate that once the 
dynamics are fully learned from a set of tasks of a given domain, they can be zero-shot transferred to a new task of the domain.

The rest of this paper is organized as follows: in section 2 we discuss background information for efficient learning and object-

oriented representations in RL; in section 3 we introduce the Deictic OO-MDP formalism and associated efficient learning algorithms; 
in section 4 we extend previous work on Propositional OO-MDPs to accommodate a formalism and associated efficient learning 

1 We call this the All-Passenger Any-Destination Taxi domain. Given a gridworld of size ℎ ×𝑤 with 𝑝 passengers and 𝑑 destinations, and a fixed wall configuration, 
one can generate ( ℎ𝑤

𝑝+𝑑

)
tasks, assuming passengers and destinations cannot overlap. This makes it considerably larger than the original Taxi domain that has 𝑝 = 1
2

and 𝑑 = 1 and therefore has only (ℎ𝑤
2

)
tasks.



Artificial Intelligence 329 (2024) 104079O. Marom and B. Rosman

algorithms for reward dynamics; in section 5 we introduce the complete DOORMAX𝐷 algorithm for learning transferable models of 
the transition and reward dynamics under the formalisms of sections 3 and 4 respectively; in section 6 we present a theorem for our 
algorithm’s efficiency; in section 7 we run experiments on the Taxi and Sokoban domains illustrating the benefits of our proposed 
framework; in section 8 we discuss directions for future research; and in section 9 we conclude with final remarks.

2. Background

2.1. Markov decision process

For reasons of computational tractability, an RL task is typically formulated as a Markov Decision Process (MDP) [1]. An MDP is 
described by a tuple  = ( , ,  , , 𝛾, 𝜌), where:

•  is a finite set of states called the state-space;

•  is a finite set of all actions called the action-space;

•  is the transition dynamics for which (𝑠′|𝑠, 𝑎) returns the transition probability for transitioning to state 𝑠′ ∈  conditional 
on the agent being in state 𝑠 and taking action 𝑎 ∈;

•  is the reward dynamics for which (𝑠, 𝑎, 𝑠′) returns the (stationary, finite variance) distribution that governs the reward 
signal that the agent receives when in state 𝑠, takes action 𝑎 and transitions to state 𝑠′;

• 𝛾 ∈ [0, 1) is a discount rate that controls the trade-off between the importance of immediate and future rewards; and

• 𝜌 is a distribution over start states for which 𝜌(𝑠0) returns the probability of a task starting in state 𝑠0 ∈  .

In this paper, we further restrict attention to episodic tasks, so that the MDP has a set of terminal states terminal and a task 
terminates when one of these states is reached.

In RL the agent has no control over the environment dynamics,  and . What the agent does control is the policy it follows in 
the environment. Formally, a policy is defined by 𝜋(𝑎|𝑠) and represents the probability of taking action 𝑎 conditional on the agent 
being in state 𝑠. The goal of an RL agent is to find an optimal policy 𝜋∗ that maximizes the expected future discounted rewards 
given any state 𝑠 ∈  . Broadly speaking, algorithms that learn an optimal policy for an MDP can be categorized into model-free 
and model-based methods. Model-free methods go straight from experience to a policy, and so do not learn models of  and ; 
model-based methods learn models of  and  in conjunction with learning an optimal policy. Given an MDP formulation of an RL 
task, a host of model-free and model-based algorithms exist with convergence guarantees to an optimal policy.

2.2. Efficient learning

Unfortunately, algorithms that only have convergence guarantees to an optimal policy are not sufficient. In practice, such algo-

rithms may run for an infeasible amount of time before convergence. Therefore, in addition to convergence guarantees, we also care 
about the performance of RL algorithms. In particular, we want algorithms to be sample efficient. Sample efficient algorithms learn 
an optimal policy in as few interactions as possible.

One well-known sample efficient RL algorithm is 𝑅max [20]. The 𝑅max algorithm is a model-based algorithm that operates under 
the optimism in the face of uncertainty principle. Under this principle, the agent initially assumes optimistic models of the dynamics, 
such that taking any action in any state leads to a terminal state with optimal payoff. The agent then applies an exact planning 
algorithm to obtain an optimal policy under these incorrect models. This optimal policy drives exploration to the parts of the 
environment where the agent expects to receive these optimal payoffs. From there, the agent learns the underlying truth and updates 
its models with this knowledge. By applying this methodology, the agent is able to construct iteratively more accurate models of 
the dynamics every time it interacts with its environment. As a result of this exploration strategy, it can be shown that 𝑅max has 
polynomial sample complexity with respect to || and || under the PAC (probably approximately correct) terms [21] – i.e. the 
policy produced by 𝑅max is near-optimal with high probability.

The 𝑅max algorithm was designed for the case of finite MDPs. Unfortunately, even with the polynomial sample complexity 
guarantees of 𝑅max, learning a near-optimal policy may be slow. This is because 𝑅max has to run an exact planning algorithm 
at every iteration and, when the state-space or action-space is large, such planning algorithms tend to have high computational 
complexity.

An alternative way to improve the sample efficiency of RL algorithms is with compact representations. Such representations 
do not learn the dynamics models in a tabular way, but rather use a representation that compresses the size of the state-space or 
action-space so that the models can be learned more efficiently.

The KWIK (knows what it knows) framework extends 𝑅max with the KWIK-𝑅max algorithm [16,17]. The KWIK-𝑅max algorithm 
generalizes 𝑅max so that it works with a broader range of representations on the condition that they respect the KWIK protocol. 
Under the KWIK protocol, when the agent is in some state 𝑠 and takes some action 𝑎, then rather than making a next-state prediction 
𝑠′ the agent may instead return ⊥, indicating that they are not yet able to make an accurate prediction with high probability. The 
KWIK protocol restricts the number of times that the agent may return ⊥, called the KWIK-bound, to be a polynomial bound. Under 
the restriction that the KWIK-bound is a polynomial bound, KWIK-𝑅max can be shown to have polynomial sample complexity under 
3

the PAC terms as well. We provide a formal definition of the KWIK-bound below:
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Fig. 1. The original Taxi task. Letters mark possible pickup and destination locations; marks the taxi; thicker lines mark walls.

Definition 1. Let 𝔄 be an algorithm that adheres to the KWIK protocol with 0 < 𝜖, 𝛿 < 1. Then the KWIK-bound of 𝔄, denoted (𝜖, 𝛿), 
is the number of times 𝔄 may return ⊥ before all predictions, 𝑦̂, made by 𝔄 are within 𝜖 of their true value, 𝑦, with probability at 
least 1 − 𝛿. That is 𝑃 (|𝑦̂− 𝑦| < 𝜖) ≥ 1 − 𝛿. We say that 𝔄 is KWIK-learnable with KWIK-bound (𝜖, 𝛿).

Examples of compact representations that have been used in conjunction with KWIK-𝑅max include dynamic Bayesian networks 
[22,23], linear models [24] and relations [13,14].

2.3. Object-oriented MDPs

Object-oriented MDPs (OO-MPDs) form part of the broader field of relational RL, and were first introduced under the Relational 
MDP framework for planning domains [10,11]. OO-MDPs view the state-space of an MDP in terms of objects, where each object 
belongs to some object class (or simply class) that has a set of attributes. The transition and reward dynamics are then expressed 
through the relational structure between object class attributes. The main advantage of object-oriented representations is that they 
allow for a compact description of an MDP that is fully lifted. Therefore, such an MDP can be used to describe an entire domain, 
rather than a specific task. Such a lifted MDP is called a schema, from which grounded MDPs can then be instantiated.

As a result, OO-MDPs are favourable for the purposes of transfer learning. In the transfer learning research problem, the agent 
aims to learn some knowledge from a set of source tasks that can then be used to accelerate solving a related target task [6]. Since 
with OO-MDPs knowledge is represented at the class-level, it is possible to learn some knowledge on source tasks of the schema and 
then transfer that knowledge to target tasks of the schema.

Formally, the state-space for such a schema consists of a set of object classes ℭ = {𝐶𝑖}
𝑁ℭ
𝑖=1 . Each object class 𝐶 ∈ ℭ has a set of 

attributes Att(𝐶) = {𝐶.𝛼𝑖}
𝑁𝐶

𝑖=1 and each attribute 𝐶.𝛼 ∈ Att(𝐶) of an object class has a domain of possible values Dom(𝐶.𝛼). Given a 
schema, a grounded state-space is instantiated by first selecting a grounded object set which consists of 𝑛 objects 𝑂 = {𝑜𝑖}𝑛𝑖=1 where 
each 𝑜 ∈ 𝑂 is an instance of some object class 𝐶 . The value of attribute 𝐶.𝛼 for object 𝑜 is denoted by 𝑜.𝛼. Then the grounded 
state-space, denoted 𝑂 , is an assignment of each 𝑜.𝛼 for all objects in 𝑂. The schema state-space, denoted  , is the set of all states 
for all possible object sets 𝑂.

To make the notion of a schema state-space concrete, consider the classical Taxi domain [19] as shown in Fig. 1. The original 
Taxi task takes place in a 5 × 5 gridworld where a taxi has to pick up a passenger that is at one of four pickup locations and drop 
them off at one of four destination locations. The possible pickup and destination locations as shown in Fig. 1 and are fixed upfront 
for the task.

The set of actions available to the agent are North, East, South and West, that control the taxi’s navigation in the gridworld, as 
well as Pickup and Dropoff. The action Pickup picks up the passenger if the taxi is at the pickup location and the passenger is not 
already in the taxi, while the action Dropoff drops off the passenger if the taxi has already picked up the passenger and the taxi is 
on the destination location. Walls in the gridworld limit the taxi’s movements. The reward dynamics for the Taxi task is −1 for each 
navigation step, −10 for applying the Pickup or Dropoff actions incorrectly and 20 for reaching a terminal state that drops off the 
passenger at the correct destination location.

Under an object-oriented representation, we would define the schema state-space with four object classes: Taxi, Wall, Passenger

and Destination. Each object class has attributes 𝑥 and 𝑦 for their location in the grid. Object class Wall has an additional attribute 
pos to mark one of four positions in a square, while Passenger has an additional Boolean attribute in-taxi to indicate if the passenger 
is in the taxi.

Given the schema state-space for this domain, we can then instantiate a set of grounded objects from the object classes and a 
resulting grounded state. For example, in Fig. 1 we can represent the taxi and its location by instantiating a grounded taxi object 
of class Taxi and setting 𝑡𝑎𝑥𝑖.𝑥 = 1 and 𝑡𝑎𝑥𝑖.𝑦 = 4.2 We could similarly represent each wall, passenger and destination in Fig. 1 by 
instantiating an object of the required object class and setting its attributes accordingly.

2 In this paper, we adopt the convention of using title case for object classes and lower case for grounded objects. For example, Taxi refers to the object class, while 
4

taxi refers to a grounded object of type Taxi.
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Table 1

Transition dynamics of the Taxi domain under the Propositional OO-MDP formalism. 
Under the formalism, any other assignment of truth values to the propositions leads to 
a global failure condition that leaves all object class attributes unchanged.

Action Precondition Effect

North Touch𝑁 (Taxi,Wall) = 0 Taxi.𝑦← Taxi.𝑦+ 1
East Touch𝐸 (Taxi,Wall) = 0 Taxi.𝑥← Taxi.𝑥+ 1
South Touch𝑆 (Taxi,Wall) = 0 Taxi.𝑦← Taxi.𝑦− 1
West Touch𝑊 (Taxi,Wall) = 0 Taxi.𝑥← Taxi.𝑥− 1
Pickup On(Taxi,Passenger) = 1 Passenger.in-taxi ← 1
Dropoff Passenger.in-taxi = 1 ∧ On(Taxi,Destination) = 1 Passenger.in-taxi ← 0

Fig. 2. Examples of full binary tree structures under the Propositional OO-MDP formalism. The leaf node ‘Failure’ refers to a failure condition. Right branches represent 
a truth value of 1.

2.4. Propositional OO-MDPs

OO-MDPs were first introduced under the Relational MDP framework to learn transferable class-level value functions for planning 
domains [10,11]. Thereafter, they were used conjunction with KWIK-𝑅max for model-based RL under the Propositional OO-MDP 
framework [13,14]. The key insight that underlies Propositional OO-MDPs is that, for certain domains, it is possible to compactly 
represent the transition dynamics with conjunctions of propositional statements over object classes that map to effects over object 
class attributes as illustrated in Table 1 for the Taxi domain. Formally, an effect is defined as a change in value to a class attribute 
belonging to some class.

For example, the statement

Touch𝐸 (Taxi,Wall) = 0 ⟹ Taxi.𝑥← Taxi.𝑥+ 1

for action East can be read as: if an object of class Taxi has an object of class Wall one square east of it is false, then all objects of class 
Taxi have their 𝑥 attributes increased by 1. The same logic applies to the Touch𝑁 , Touch𝑆 and Touch𝑊 expressions for the North, 
South and West actions respectively. The statement

On(Taxi,Passenger) = 1 ⟹ Passenger.in-taxi ← 1

for can be read as: if an object of class Taxi is on the same square as an object of class Passenger is true, then every object of class 
Passenger has its in-taxi attribute set to 1.

Since the preconditions in Table 1 only refer to object class attributes, the transition dynamics described in this way can be 
transferred to different Taxi tasks. For example, the dynamics described in this way transfer to a Taxi task with different gridworld 
dimensions, pickup, dropoff and wall locations.

An alternative view of transition dynamics under the Propositional OO-MDP formalism is through binary trees. For each action 𝑎
and attribute 𝐶.𝛼, we can represent the transition dynamics as a full binary tree with propositions at the non-leaf nodes and effects 
at the leaf nodes. This is shown in Fig. 2a for the action East and attribute Taxi.𝑥 and in Fig. 2b for the action Dropoff and attribute 
Passenger.in-taxi.

The Propositional OO-MDP framework also introduces a KWIK-𝑅max based algorithm called DOORMAX (Deterministic Object-

Oriented 𝑅max) [13,14]. The DOORMAX algorithm operations in domains with deterministic transition dynamics that are repre-
5

sentable under the formalism.
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Fig. 3. ‘P’ marks a passenger; ‘D’ marks a destination; ‘T’ marks a taxi; thicker lines mark walls. Five possible states from the All-Passenger Any-Destination Taxi 
domain schema.

The algorithm learns the binary trees that represent the transition dynamics as shown in Fig. 2. Under DOORMAX, for each action 
𝑎 and attribute 𝐶.𝛼, a set of propositions and an effect type are hypothesized. Formally, an effect type is a defined as a function that 
applies a transformation to some attribute 𝐶.𝛼. For example, the relative effect type is defined as: Rel𝑖(𝐶.𝛼) = 𝐶.𝛼+ 𝑖 for 𝑖 = 0, 1, 2, ..., 𝑛
and applies a shift of 𝑖 to the current value of 𝐶.𝛼. The algorithm then learns which conjunctions over the hypothesized propositions 
map to which effect of the effect type. The main assumption required for DOORMAX to be correct is that each effect of a given effect 
type can occur at most at one non-leaf node in the tree. All leaf nodes that do not produce a unique effect are mapped to a global 
failure condition that leaves the state unchanged.

A further assumption made under DOORMAX is that effects are invertible so that if attribute 𝐶.𝛼 has some value assignment in state 
𝑠 and we take action 𝑎 to subsequently observe a new value for 𝐶.𝛼 in 𝑠′ then, given an effect type, there is a unique effect that can 
cause this transformation. This assumption is required so that, during learning, we can infer for each attribute exactly which effect 
occurred when transitioning from 𝑠 to 𝑠′. As a practical example, consider state 𝑠 where Taxi.𝑥 = 1 and state 𝑠′ where Taxi.𝑥 = 2. 
Then under the relative effect type we have invertibility as there is only one effect, Rel1, that can cause this transformation.

The Propositional OO-MDP framework extends DOORMAX to allow for the learner to hypothesize 𝑁 > 0 effect types under the 
assumption that exactly one effect type is true and, furthermore, that the maximum number of effects per effect type is bounded by 
some 𝐾 > 0. Under these additional assumptions one can prove that DOORMAX has KWIK-bound 𝐾(𝐷+1) +1 to learn a single effect 
type for an action 𝑎 and attribute 𝐶.𝛼, while learning given 𝑁 effect types have KWIK-bound 𝑁(𝐾(𝐷+1) +1) + (𝑁 −1) [13]. These 
bounds exclude the learning of failure conditions, which are learned inefficiently through memorization [16,17]. The DOORMAX

algorithm assumes known reward dynamics and focuses on learning transition dynamics.

3. Transferable transition dynamics with deictic OO-MDPs

The Propositional OO-MDP formalism has the benefits of efficient learning, however, it lacks expressive power. In particular, 
Propositional OO-MDPs cannot compactly represent the transition dynamics of domains where it is required to distinguish between 
different objects of the same object class. To illustrate this, consider a simple extension to the Taxi domain which we call the All-

Passenger Any-Destination Taxi domain. This domain is similar to the original Taxi domain, except that the taxi is tasked to pick up 
multiple passengers and drop each of them off at one of any destination locations. The taxi can only pick up one passenger at a time, 
so if a passenger is already in the taxi and the Pickup action is taken while the taxi is at the pickup location of another passenger, 
the state does not change. The state-space of the schema for this domain under an object-oriented representation is identical to that 
of the original Taxi domain described in section 2.3 except that we add an additional Boolean attribute to the Passenger object class 
at-destination, to indicate if a passenger has already been dropped off at a destination. Fig. 3 shows sample states of the schema.

Propositions over object classes are insufficient to compactly represent the transition dynamics for this version of the Taxi domain. 
To see why, suppose we have a task with two passenger objects and the proposition On(Taxi, Passenger) with a truth value 1. This can 
be read as: an object of class Taxi is on the same square as an object of class Passenger is true. Clearly, this information is insufficient 
to determine which passenger object’s in-taxi attribute should change given the Pickup action. To overcome this ambiguity under a 
propositional approach, we must resort to propositions over the grounded passenger objects, passenger1 and passenger2, of the form 
On(Taxi, passenger1) and On(Taxi, passenger2). Note that while this resolves the ambiguity, the number of propositions needed for the 
precondition now changes as we change the number of passenger objects in the task. This complicates both learning and transfer 
procedures.

As a further example, consider the Sokoban domain where a warehouse keeper is tasked to push boxes to storage locations 
in a warehouse, but cannot do so if a box is against a wall or in front of another box.3 Suppose we have the propositions 
Touch𝑊 (Box, Person) and Touch𝐸 (Box, Wall) both with truth value 1. The first proposition can be read as: an object of class Box

has an object of class Person one square west of it is true, while the second can be read as: an object of class Box has an object of class 
Wall one square east of it is true. Then the conjunction Touch𝑊 (Box, Person) = 1 ∧ Touch𝐸 (Box, Wall) = 1 is insufficient to determine 
6

3 All Sokoban images in this paper are taken from JSoko: https://www .sokoban -online .de /jsoko /credits.

https://www.sokoban-online.de/jsoko/credits
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Fig. 4. For action East and the box adjacent to the warehouse keeper, in figure (4a) the effect is box.𝑥 ← box.𝑥 + 0; in figure (4b) the effect is box.𝑥 ← box.𝑥 + 1 while 
the conjunction Touch𝑊 (Box, Person) = 1 ∧ Touch𝐸 (Box, Wall) = 1 is true in both cases.

the transition dynamics of any box object’s 𝑥 attribute when taking action East since there is no way to know if the statements are 
referring to the same box. See Fig. 4 for an illustration. A similar example of ambiguity that is not resolvable under a propositional 
approach is also described by the original authors of the Propositional OO-MDP framework [14].

An example of a more expressive formalism that can be used to resolve this type of ambiguity is the First-Order MDP (FO MDP) 
[25] that can use first order predicates over grounded objects. Unfortunately, such an expressive formalism complicates efficient 
learning and transfer procedures.

In this section we introduce the Deictic Oject-Oriented MDP (Deictic OO-MDP) framework. Deictic OO-MDPs are more expressive 
than Propositional OO-MDPs, thus allowing for a broader range of domains to be represented under this formalism. While being 
less expressive than FO MDPs, Deictic OO-MDPs still have the provably efficient learning guarantees that underlies Propositional 
OO-MDPs and which are not held by FO MDPs.

The core idea behind the Deictic OO-MDP formalism is the notion of a deictic predicate. A deictic predicate is grounded only 
with respect to a single grounded reference object that must relate itself to non-grounded object classes. Therefore, deictic predicates 
are more expressive than propositions that may only depend on object classes, while being less expressive than first-order predicates 
that may depend on an arbitrary number of grounded objects.

3.1. Formalism

The Deictic OO-MDP framework uses the same schema state-space  as described in section 2.3 while deictic predicate precondi-

tions are used to define the schema transition dynamics as described below. Let  be a set of actions. Then for each attribute 𝐶.𝛼 of 
a class 𝐶 define a set of effects of size 𝐾𝐶.𝛼

4:

𝐶.𝛼 = {𝑒𝑖 ∶ Dom(𝐶.𝛼)→ Dom(𝐶.𝛼)}𝐾𝐶.𝛼

𝑖=1 ,

Define a set of deictic predicates of size 𝐷𝑎,𝐶.𝛼 :

𝑎,𝐶.𝛼 = {𝑓𝑖 ∶𝑂[𝐶] × 𝑆 →𝔅}𝐷𝑎,𝐶.𝛼

𝑖=1 ,

where 𝑂[𝐶] is a set that contains objects with all possible attribute value assignments that are instances of 𝐶 , and 𝔅 = {0, 1}.

Then the probabilistic transition dynamics for 𝑎 and 𝐶.𝛼 are defined by

𝑎,𝐶.𝛼 ∶𝔅𝐷𝑎,𝐶.𝛼 × 𝐶.𝛼 → [0,1].

The schema transition dynamics  is the set of transition dynamics for all actions and attributes,

 = {𝑎,𝐶.𝛼|𝑎 ∈,𝐶 ∈ℭ,𝐶.𝛼 ∈ Att(𝐶)}.

The schema reward dynamics are defined by

 ∶  × ×  → {𝑟 ∈ℝ|𝑟 ∼ 𝑝(⋅|𝑠, 𝑎, 𝑠′), 𝑠 ∈  , 𝑎 ∈, 𝑠′ ∈ },

where 𝑝(⋅|𝑠, 𝑎, 𝑠′) is a stationary reward distribution given 𝑠 ∈  , 𝑎 ∈ and 𝑠′ ∈  .

Given an object set 𝑂 we can instantiate a grounded MDP 𝑂,𝜌 = (𝑂, ,  , , 𝛾, 𝜌). Then if the agent is currently in state 𝑠 ∈ 𝑂

and takes action 𝑎, the transition dynamics for 𝑂,𝜌 operate as follows: for each object 𝑜 in 𝑠 that is an instance of 𝐶 and each 
attribute 𝐶.𝛼 we compute the Boolean truth values  = {𝑓𝑖(𝑜, 𝑠)}

𝐷𝑎,𝐶.𝛼

𝑖=1 for the deictic predicates in 𝑎,𝐶.𝛼 . Then for an effect 𝑒 ∈ 𝐶.𝛼

4 An effect set under the Deictic OO-MDP framework generalizes the notion of an effect type under the Propositional OO-MDP framework. For example, the relative 
7

effect type in section 2.4 can be written as an effect set 𝐶.𝛼 = {Rel0, Rel1, Rel2, ...Rel𝑛}.
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we compute 𝑎,𝐶.𝛼(, 𝑒) which returns the probability of 𝑒 occurring given . This implies a distribution over effects which in turn 
implies a distribution over the attribute values of 𝑜 by applying the effect to 𝑜.𝛼 in 𝑠 and obtaining 𝑒(𝑜.𝛼) = 𝑜.𝛼′ in 𝑠′.

As an example, consider attribute Taxi.𝑥 and action East for the All-Passenger Any-Destination Taxi domain. We can define a 
set of relative effects Rel𝑖(𝑥) = 𝑥 + 𝑖 that produce a shift of 𝑖 squares from the current location 𝑥, as well as a deictic predicate 
Touch𝐸 (taxi, 𝑠) that returns 1 if the taxi object has an object of class Wall one square east of it in 𝑠, otherwise 0. Then the transition 
dynamics can be described for any taxi object as

Touch𝐸 (taxi, 𝑠) = 1 ⟹ taxi.𝑥← Rel0(taxi.𝑥)

with probability one and

Touch𝐸 (taxi, 𝑠) = 0 ⟹ taxi.𝑥← Rel1(taxi.𝑥)

with probability one.

The key insight with Deictic OO-MDPs is that the parameters we pass to each deictic predicate in 𝑎,𝐶.𝛼 are a grounded deictic 
object 𝑜 that must be an instance of 𝐶 and 𝑠 which is a state of the schema, not a grounded state. As a result, these deictic predicates 
may not refer to specific objects in 𝑠; however, they may relate 𝑜 to object classes of the schema. For example, with Touch𝐸 (taxi, 𝑠)
as defined above only taxi is grounded while we never refer to a grounded object in 𝑠.

Note that the Deictic OO-MDP formalism is more general than the Propositional OO-MDP formalism since a deictic predicate 
that does not make reference to its deictic object is simply a proposition. Consequently, any domain that is representable under the 
Propositional OO-MDP formalism is also representable under the Deictic OO-MDP formalism.

3.2. Resolving the limitations of propositional OO-MDPs

Deictic OO-MDPs are more expressive than Propositional OO-MDPs allowing us to compactly represent the transition dynamics 
for the All-Passenger Any-Destination Taxi and Sokoban domains. In particular, define the following effect sets:

• for attributes Taxi.𝑥 and Taxi.𝑦: Rel𝑖(𝑥) = 𝑥 + 𝑖 for 𝑖 ∈ {−1, 0, 1} where 𝑥 is an integer for attributes.

• for attributes Passenger.in-taxi and Passenger.at-destination: SetBool𝑖(𝑥) = 𝑥1(𝑖 = 0) +(1 −𝑥)1(𝑖 = 1) for 𝑖 ∈ {0, 1} where 𝑥 ∈ {0, 1}, 
where 1 is the indicator function.5

Define the following deictic predicates6:

• AnyWallNorthOfTaxi(taxi, 𝑠): returns 1 if there is any object of class Wall one square north of taxi in 𝑠, and 0 otherwise. (𝑓1)

• AnyWallEastOfTaxi(taxi, 𝑠): returns 1 if there is any object of class Wall one square east of 𝑡𝑎𝑥𝑖 in 𝑠, and 0 otherwise. (𝑓2)

• AnyWallSouthOfTaxi(taxi, 𝑠): returns 1 if there is any object of class Wall one square south of 𝑡𝑎𝑥𝑖 in 𝑠, and 0 otherwise. (𝑓3)

• AnyWallWestOfTaxi(taxi, 𝑠): returns 1 if there is object of class Wall one square west of 𝑡𝑎𝑥𝑖 in 𝑠, and 0 otherwise. (𝑓4)

• AnyTaxiOnPassenger(passenger, 𝑠): returns 1 if there is any object of class Taxi on the same square as 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 in 𝑠, and 0
otherwise. (𝑓5)

• PassengerAtAnyDestination(passenger,s): returns 1 if passenger.at-destination is set to 1 in 𝑠, and 0 otherwise. (𝑓6)

• AnyPassengerInAnyTaxi(passenger, 𝑠): returns 1 if any object of class Passenger has its in-taxi attribute is set to 1 in 𝑠, and 0
otherwise. (𝑓7)

• PassengerInAnyTaxi(passenger, 𝑠): returns 1 if passenger.in-taxi is set to 1 in 𝑠, and 0 otherwise. (𝑓8)

• AnyTaxiOnAnyDestination(destination, 𝑠): returns 1 if any object of class Taxi is on the same square as any object of class Destination

in 𝑠, and 0 otherwise. (𝑓9)

Then Table 2 shows for each attribute and action the relevant preconditions and effects that describe the transition dynamics of 
the domain under the Deictic OO-MDP formalism.

Deictic OO-MDPs are also able to compactly represent the transition dynamics of the Sokoban domain without ambiguity. For a 
deictic person object there are four deictic predicates required when taking the action East that resolve the following questions: is 
there any object of class Box one square east of person? Is there any object of class Box two squares east of person? Is there any object 
of class Wall one square east of person? Is there any object of class Wall two squares east of person? Meanwhile for a deictic box object 
there are three deictic predicates required to resolve the questions: is there any object of class Person one square west of box? Is there 
any object of class Wall one square east of box? Is there any object of class Box one square east of box? More specifically, define the 
following deictic predicates:

5 Qualitatively, SetBool allows us to keep or flip a Boolean value. For example, if 𝑥 = 0 and we want to flip it to 1 we can call SetBool1(0) = (1 − 0)1(𝑖 = 1) = 1.
6 The statements AnyPassengerInAnyTaxi(passenger, 𝑠) and AnyTaxiOnAnyDestination(destination, 𝑠) are actually propositions as they do not refer to a grounded 

passenger object. We could simplify notation by writing, for example, AnyPassengerInAnyTaxi(𝑠). However, we include the passenger object to remain consistent with 
8

the notation described in section 3.1.
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Table 2

Preconditions and effects for each action and attribute in the All-Passenger 
Any-Destination Taxi domain. We exclude Wall attributes because they never 
change.

Action Attribute Precondition Effect

North Taxi.𝑦 𝑓1 = 0 Rel1
North Taxi.𝑦 𝑓1 = 1 Rel0
East Taxi.𝑥 𝑓2 = 0 Rel1
East Taxi.𝑥 𝑓2 = 1 Rel0
South Taxi.𝑦 𝑓3 = 0 Rel−1
South Taxi.𝑦 𝑓3 = 1 Rel0
West Taxi.𝑥 𝑓4 = 0 Rel−1
West Taxi.𝑥 𝑓4 = 1 Rel0
Pickup Passenger.in-taxi 𝑓5 = 1 ∧ 𝑓6 = 0 ∧ 𝑓7 = 0 SetBool1
Pickup Passenger.in-taxi 𝑓5 = 0 ∨ 𝑓6 = 1 ∨ 𝑓7 = 1 SetBool0
Dropoff Passenger.in-taxi 𝑓8 = 1 ∧ 𝑓9 = 1 SetBool1
Dropoff Passenger.in-taxi 𝑓8 = 0 ∨ 𝑓9 = 0 SetBool0
Dropoff Passenger.at-destination 𝑓8 = 1 ∧ 𝑓9 = 1 SetBool1
Dropoff Passenger.at-destination 𝑓8 = 0 ∨ 𝑓9 = 0 SetBool0

Table 3

Precondition and effects for action East and Reset in the Sokoban do-

main. We exclude Wall attributes since they cannot change.

Action Attribute Precondition Effect

East Person.𝑥 (𝑓1 = 0 ∧ 𝑓3 = 0) ∨ (𝑓3 = 1
∧𝑓2 = 0 ∧ 𝑓4 = 0)

Rel1

East Person.𝑥 𝑓1 = 1 ∨ (𝑓3 = 1 ∧ 𝑓4 = 1)
∨(𝑓3 = 1 ∧ 𝑓2 = 1)

Rel0

East Box.𝑥 𝑓5 = 1 ∧ 𝑓6 = 0 ∧ 𝑓7 = 0 Rel1
East Box.𝑥 𝑓5 = 0 ∨ 𝑓6 = 1 ∨ 𝑓7 = 1 Rel0
Reset Person.reset 𝑓8 = 1 SetBool1

• AnyWall1EastOfPerson(person, 𝑠): returns 1 if there is any object of class Wall one square east of person in state 𝑠, and 0 otherwise. 
(𝑓1)

• AnyWall2EastOfPerson(person, 𝑠): returns 1 if there is any object of class Wall two squares east of person in state 𝑠, and 0 otherwise. 
(𝑓2)

• AnyBox1EastOfPerson(person, 𝑠): returns 1 if there is any object of class Box one square east of person in state 𝑠, and 0 otherwise. 
(𝑓3)

• AnyBox2EastOfPerson(person, 𝑠): returns 1 if there is any object of class Box two squares east of person in state 𝑠, and 0 otherwise. 
(𝑓4)

• AnyPersonWestOfBox(box, 𝑠): returns 1 if there is any object of class Person one square west of box in 𝑠, and otherwise 0. (𝑓5)

• AnyBoxEastOfBox(box, 𝑠): returns 1 if there is any object of class Box one square east of 𝑏𝑜𝑥 in 𝑠, and otherwise 0. (𝑓6)

• AnyWallEastOfBox(box, 𝑠): returns 1 if there is any object of class Wall one square east of 𝑏𝑜𝑥 in 𝑠, and otherwise 0. (𝑓7)

Then Table 3 shows for each attribute and action the relevant preconditions and effects that describe the transition dynamics of 
the domain under the Deictic OO-MDP formalism for action East.

The actions North, South and West are analogous. In addition, we include a reset attribute for the Person class that activates when 
a Reset action is taken, along with the following deictic predicate.

• ResetActivated(person, 𝑠): returns 1 if person.reset = 1 in 𝑠, otherwise 0. (𝑓8).

The Reset action immediately terminates the task, and its inclusion is necessary because in Sokoban it is possible to reach a 
deadlock state from which the task is no longer solvable.

3.3. Learning

Given a set of 𝐷 deictic predicates we want to learn the transition dynamics for each action 𝑎 and attribute 𝐶.𝛼. If the transition 
dynamics are deterministic this can be done using memorization with 2𝐷 unique observations. However, this is prohibitive if 𝐷 is 
large. As discussed in section 2.4 Propositional OO-MDPs introduce a learning algorithm called DOORMAX for deterministic transition 
dynamics that, under certain assumptions, has a KWIK-bound that is linear in 𝐷.

For DOORMAX to be correct, the transition dynamics for each action and attribute must be representable as a full binary tree 
with propositions at the non-leaf nodes and effects at the leaf nodes. Furthermore, each possible effect of an effect type can occur at 
9

most at one leaf node of the tree, except for a special effect called a failure condition that may occur at multiple leaf nodes. A failure 
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Fig. 5. Full binary tree structure for the transition dynamics of 𝑇 𝑎𝑥𝑖.𝑥 attribute and action East. Right branches represent a truth value of 1.

condition implies that globally no attribute changes when an action was taken i.e. 𝑠 = 𝑠′ when 𝑎 is taken. See Fig. 5a for how this 
represented for the Taxi.𝑥 attribute with action East.

The intuition behind DOORMAX is that, in many cases, the number of propositions that an effect depends on is much smaller 
than 𝐷. Furthermore, since an effect can occur at most once in the tree, we can invalidate multiple propositions with a single 
observation. To illustrate the core learning mechanism of DOORMAX, consider the original Taxi domain with action East, attribute 
Taxi.𝑥 and effect type Rel𝑖. We can propose four propositional statements Touch𝑁 (Taxi, Wall), Touch𝐸 (Taxi, Wall), Touch𝑆 (Taxi, Wall)
and Touch𝑊 (Taxi, Wall). The aim of the KWIK-learner then is to learn that

Touch𝐸 (Taxi,Wall) = 0 ⟹ Taxi.𝑥← Taxi.𝑥+ 1

when action East is taken. Suppose that agent interacts with its environment and takes action East to observe the effect: Taxi.𝑥 + 1. 
Prior to taking the action East, the agent’s state determined the following assignments to the propositions:

Touch𝑁 (Taxi, Wall) = 0 ∧ Touch𝐸 (Taxi, Wall) = 0 ∧ Touch𝑆 (Taxi, Wall) = 0 ∧ Touch𝑊 (Taxi, Wall) = 0.

Suppose the next time the agent takes the action East and observes the effect Taxi.𝑥 +1 and the agent’s previous state determined 
the following assignments to the propositions:

Touch𝑁 (Taxi, Wall) = 1 ∧ Touch𝐸 (Taxi, Wall) = 0 ∧ Touch𝑆 (Taxi, Wall) = 1 ∧ Touch𝑊 (Taxi, Wall) = 1.

Since the DOORMAX algorithm assumes that each effect can occur at most once in the tree, we can infer that the propositions 
Touch𝑁 (Taxi, Wall), Touch𝑆 (Taxi, Wall) and Touch𝑊 (Taxi, Wall) are irrelevant to the precondition of the effect. As a result the agent 
has learned

Touch𝐸 (Taxi,Wall) = 0 ⟹ Taxi.𝑥← Taxi.𝑥+ 1

with only two unique observations. Of course, this is a best-case scenario. A worst-case scenario requires 4 unique observations. 
In general, given 𝐷 ≥ 0 propositions, learning requires at most 𝐷 + 1 unique observations.7 As failure conditions can occur at 
multiple leaf nodes, they do not benefit from this efficient learning procedure and are learned inefficiently through memorization in 
DOORMAX.

We adapt the DOORMAX algorithm to Deictic OO-MDPs, which we call DOORMAX𝐷 (Algorithm 7). The DOORMAX𝐷 algorithm 
requires two sub-algorithms for the transition dynamics: one to learn and one to make predictions. These sub-algorithms are presented 
in this section while the full DOORMAX𝐷 algorithm that calls these sub-algorithms is then presented in section 5. The main difference 
between DOORMAX𝐷 and DOORMAX is that we remove the notion of a global failure condition. Instead we require that all effects 
apply to a single attribute. See Fig. 5b for how this is represented for the Taxi.𝑥 attribute with action East.

To achieve this, we extend the notion of an effect type under Propositional OO-MDP framework to an effect group under Deictic 
OO-MDP framework that includes a partition function over an effect set that groups them into those that can occur at most at one 
leaf node and those that can occur at multiple leaf nodes. For example, as shown in Fig. 5b, the effects taxi.𝑥 ← taxi.𝑥 + 1 (Rel1) and 
taxi.𝑥 ← taxi.𝑥 + 0 (Rel0) are both unique in the tree. Therefore, by using an appropriate partition function, we can efficiently learn 
both these branches. Meanwhile, the design choice used by DOORMAX of a global failure conditions implies that Taxi.𝑥 ← Taxi.𝑥 +1
(Rel1) is efficiently learned, while Taxi.𝑥 ← Taxi.𝑥 + 0 (Rel0) is learned by memorization. A trade-off exists between these design 
choices. The DOORMAX𝐷 algorithm requires a partition function for each action, attribute and effect set that can improve learning 
efficiency. However, constructing such a partition function requires additional prior knowledge about a domain that is not required 
by DOORMAX. Similarly to DOORMAX, we require that all effects in an effect set are invertible under DOORMAX𝐷 .

In this section we introduce two algorithms that are called by DOORMAX𝐷 to KWIK-learn the transition dynamics of an MDP 
under the Deictic OO-MDP formalism:

• UpdateTree1 (Algorithm 1) updates the binary tree for action 𝑎 and attribute 𝐶.𝛼.

• Predict1 (Algorithm 2) makes a prediction for action 𝑎 and attribute 𝐶.𝛼.

Before introducing the algorithms, we require some definitions. Let  be a set of deictic predicates and  be a set of effects.
10

7 It is 𝐷 + 1 and not 𝐷 because an effect can depend on no propositions.
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Definition 2. A term is a tuple (𝑓, 𝑏) where 𝑓 ∈  and 𝑏 ∈𝔅. A set of terms is denoted by  . A set that contains sets of terms is 
denoted by 𝔗.

Definition 3. Term (𝑓1, 𝑏1) mismatches term (𝑓2, 𝑏2) if 𝑓1 = 𝑓2 and 𝑏1 ≠ 𝑏2.

Definition 4. Π ∶  →𝔅 is a binary partition function over  and assigns each effect in  to one of two partitions, 0 or 1. We call 
the tuple 𝑔 = ( , Π) an effect group. Denote by 𝐾𝑔

0 and 𝐾𝑔

1 the number of effects in partition 0 and 1 respectively. We use . notation 
to refer to an element in a tuple 𝑔, so for example 𝑔. refers to  in 𝑔. We denote sets of effect groups with .

Definition 5. Let 𝑔 be an effect group. Let 𝑀 > 1 be a constant. Then Tree(𝑔,  , 𝑀) is the set of all full binary trees such that non-leaf 
nodes are elements of  and leaf nodes are elements of 𝑔. . Furthermore, if 𝑔.Π assigns an effect in 𝑔.𝐸 to partition 1 then that 
effect can occur at most at one leaf node and we call that effect conjunctive, otherwise that effect may occur at most at 𝑀 leaf nodes 
and we call that effect disjunctive.

We now introduce the UpdateTree1 (Algorithm 1) and Predict1 (Algorithm 2) algorithms. The sets ̂ (𝑎, 𝐶.𝛼), ̂(𝑎, 𝐶.𝛼), 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼)

as well as 𝑀 are initialized globally in Algorithm 5 as part of the full DOORMAX𝐷 algorithm that calls these sub-algorithms. The ̂
notation for ̂ (𝑎, 𝐶.𝛼) and ̂(𝑎, 𝐶.𝛼) is used to emphasize that these sets are hypothesized upfront by the learner.

The set ̂ (𝑎, 𝐶.𝛼) is initialized with hypothesized deictic predicates for action 𝑎 and attribute 𝐶.𝛼, and does not change during 
learning. The set ̂(𝑎, 𝐶.𝛼) is initialized with hypothesized effect groups for action 𝑎 and attribute 𝐶.𝛼, and invalid effect groups are 
removed from this set during learning. The set 𝔗𝑔

𝑒 (𝑎, 𝐶.𝛼) is initialized with the empty set, and is updated during learning with sets 
of terms that map to effect 𝑒 of effect group 𝑔 for action 𝑎 and attribute 𝐶.𝛼.

Note that there are two equivalent views of the transition dynamics under DOORMAX𝐷 as the sets {𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼)}𝑒∈𝑔. , which 

are the data structures maintained in Algorithm 1, must at all times induce a valid binary tree in Tree(𝑔, ̂ (𝑎, 𝐶.𝛼), 𝑀). The exact 
conditions required for convergence of DOORMAX𝐷 is stated in Theorem 1.

At a high-level, the algorithm UpdateTree1 ensures that for all 𝑔 ∈ ̂(𝑎, 𝐶.𝛼) the constraint Tree(𝑔, ̂ (𝑎, 𝐶.𝛼), 𝑀) is maintained. 
That is, the set {𝔗𝑔

𝑒 (𝑎, 𝐶.𝛼)}𝑒∈𝑔. induces a binary tree subject to the constraints of the partition function 𝑔.Π. Each time we observe a 
set of terms  and an associated effect 𝑒 we update 𝔗𝑔

𝑒 (𝑎, 𝐶.𝛼), and in doing so may discover that the resulting set {𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼)}𝑒∈𝑔.

can no longer induce an appropriate binary tree at which point we remove 𝑔 from ̂(𝑎, 𝐶.𝛼).

Algorithm 1: UpdateTree1: update binary tree for action 𝑎 and attribute 𝐶.𝛼.

Input : 𝐶.𝛼 ∈ Att(𝐶), 𝑠 ∈  , 𝑜 ∈𝑂[𝐶], 𝑎 ∈ , 𝑜.𝛼′ ∈ Dom(𝐶.𝛼)
1 pass 𝑜 and 𝑠 to the deictic predicates in ̂(𝑎, 𝐶.𝛼) to retrieve a set of terms 
2 foreach 𝑔 ∈ ̂(𝑎, 𝐶.𝛼) do

3 foreach 𝑒 ∈ 𝑔. do

4 if 𝑒(𝑜.𝛼) = 𝑜.𝛼′ then

5 if 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼) = 𝜙 then

6 if ∃𝑒′ ∈ 𝑔. with 𝑒′ ∈𝔗𝑔

𝑒′
(𝑎, 𝐶.𝛼) such that 𝑒′ ⊆  then

7 remove 𝑔 from ̂(𝑎, 𝐶.𝛼)
8 else

9 add  to 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼)

10 end

11 else

12 if 𝑔.Π(𝑒) = 0 then

13 add  to 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼)

14 else

15 temp ← 

16  ← the only element in 𝔗𝑔
𝑒

17 remove from  any terms that mismatch terms in temp

18 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼) ← 𝜙

19 add  to 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼)

20 end

21 if (∃𝑒′ ∈ (𝑔. − {𝑒}) with 𝑒′ ∈𝔗𝑔

𝑒′
(𝑎, 𝐶.𝛼) such that ( ⊆ 𝑒′ or 𝑒′ ⊆  )) or |𝔗𝑔

𝑒 (𝑎, 𝐶.𝛼)| >𝑀 then

22 remove 𝑔 from ̂(𝑎, 𝐶.𝛼)
23 end

24 end

25 end

26 end

27 end

At the lower-level, the algorithm UpdateTree1 updates the binary tree for action 𝑎 and attribute 𝐶.𝛼 given an object 𝑜 from state 
𝑠 and the resulting attribute value 𝑜.𝛼′ in 𝑠′. The algorithm starts at line 1 where it computes  , the terms for ̂ (𝑎, 𝐶.𝛼). In lines 2-4

the algorithm iterates over each effect group 𝑔 ∈ ̂(𝑎, 𝐶.𝛼) and each effect 𝑒 ∈ 𝑔. where it checks if 𝑒 applied to 𝑜.𝛼 is equal to 𝑜.𝛼′. 
11

If it is, then it proceeds to update 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼) in lines 5-25.
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Fig. 6. Binary trees induced by 𝔗𝑒1
and 𝔗𝑒2

. Right branches represent a truth value of 1.

If 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼) is empty, then as per lines 5-11, the algorithm checks if  already maps to different effect in 𝑔. If it does, then the 

effect group 𝑔 is invalidated because adding  to 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼) would result in an invalid tree; otherwise,  is added to 𝔗𝑔

𝑒 (𝑎, 𝐶.𝛼).
If 𝔗𝑔

𝑒 (𝑎, 𝐶.𝛼) is not empty then, as per lines 12-20, it first checks if 𝑒 is disjunctive or conjunctive based on the partition function 
𝑔.Π. If 𝑒 is disjunctive then it adds  to 𝔗𝑔

𝑒 (𝑎, 𝐶.𝛼). If 𝑒 is conjunctive then it updates the existing element in 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼) by removing 

from it any terms that mismatch terms in  - this refines the set of terms that 𝑒 depends on in the tree, and is the core mechanism 
for efficient learning in DOORMAX𝐷 .

Finally, after the update to 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼), in lines 21-23 the algorithm checks if  maps to a different existing effect in 𝑔 or if the 

number of effects in 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼) exceeds the limit 𝑀 . In either of these cases, 𝑔 is invalidated.

Note that in DOORMAX𝐷 , only conjunctive effects are efficiently learned. Similar to failure conditions under DOORMAX, dis-

junctive effects are inefficiently learned through memorization. The parameter 𝑀 restricts number of allowed occurrences for a 
disjunctive effect in a binary tree. However, a valid value for 𝑀 in domains that require disjunctive effects under the Deictic OO-

MDP formalism grows exponentially in the number of deictic predicates in order for the tree can capture all permutations of terms 
that cause the effect. Given no prior knowledge, a valid upper bound is 𝑀 = 2𝐷𝑚𝑎𝑥 where

𝐷𝑚𝑎𝑥 = max
𝑎∈, 𝐶.𝛼∈Att(𝐶)

𝐷𝑎,𝐶.𝛼.

To provide a better intuition on the invalidation logic of the algorithm, consider a case where  = {𝑓1, 𝑓2, 𝑓3} and there are two 
effects  = {𝑒1, 𝑒2} where 𝑒1 is conjunctive and 𝑒2 is disjunctive. Consider the following examples:

• Fig. 6a: we currently have 𝑒1 = {(𝑓1, 1), (𝑓2, 1), (𝑓3, 1)} with 𝔗𝑒1
= {𝑒1} and 𝔗𝑒2

= 𝜙. Suppose we then observe 𝑒2 with  =
{(𝑓1, 1), (𝑓2, 1), (𝑓3, 1)}. Then 𝔗𝑒2

is empty and 𝑒1 ⊆  .

• Fig. 6b: we currently have 𝑒1 = {(𝑓1, 1), (𝑓2, 1), (𝑓3, 1)} with 𝔗𝑒1
= {𝑒1} and 𝑒2 = {(𝑓1, 1), (𝑓2, 1), (𝑓3, 0)} with 𝔗𝑒2

= {𝑒2}. Sup-

pose we then observe 𝑒1 with  = {(𝑓1, 1), (𝑓2, 0), (𝑓3, 0)}. As 𝑒1 is conjunctive and 𝔗𝑒1
is not empty we first remove mismatching 

terms. Then  = {(𝑓1, 1)} with 𝔗𝑒1
= { } and now  ⊆ 𝑒2

.

• Fig. 6c: we currently have 𝑒1 = {(𝑓1, 1)} with 𝔗𝑒1
= {𝑒1} and 𝑒2 = {(𝑓1, 0), (𝑓2, 0), (𝑓3, 0)} with 𝔗𝑒2

= {𝑒2}. Suppose we then 
observe 𝑒2 with  = {(𝑓1, 1), (𝑓2, 0), (𝑓3, 1)}. We add  to 𝔗𝑒2

and now 𝑒1 ⊆  .

In all the above cases, we conclude that the effect group is invalid since the observed data can no longer induce a binary tree 
subject to the specified constraints. Note that we do not place any restrictions on the order in which the preconditions may appear 
in the tree, but there is no reordering that can recover an appropriate binary tree given the data.

Next, we discuss the Predict1 algorithm. At a high-level the algorithm makes a prediction for attribute 𝐶.𝛼 of an object 𝑜 of class 
𝐶 given a schema state 𝑠 and action 𝑎. The algorithm requires that for each effect group 𝑔 ∈ ̂(𝑎, 𝐶.𝛼) a prediction is made that is 
not ⊥, and furthermore that all effect groups make the same prediction; otherwise the algorithm returns ⊥. This ensures that the 
algorithm only makes a correct prediction if it does not return ⊥. Once the transition dynamics are learned, then given a state 𝑠
and action 𝑎 the resulting state 𝑠′ can be determined by calling Predict1 for each object attribute 𝑜.𝛼 in 𝑠 to obtain 𝑜.𝛼′ in 𝑠′. This 
algorithm is analogous to that used in DOORMAX.

In line 2 of the algorithm it computes  , the terms for ̂ (𝑎, 𝐶.𝛼). In line 3 the algorithm iterates over the effect groups 𝑔 ∈
̂(𝑎, 𝐶.𝛼). In lines 4-10 the algorithm checks whether any effect 𝑒 ∈ 𝑔. is mapped to by  in 𝔗𝑔

𝑒 (𝑎, 𝐶.𝛼). If it is, then the prediction 
𝑒(𝑜.𝛼) is recorded and added to a set  in line 14; otherwise the algorithm returns ⊥ in line 12. In lines 15-17 the algorithm checks 
if || > 1. If it is, then there are two effect groups that make different predictions for 𝑜.𝛼 and the algorithm returns ⊥; otherwise, all 
effect groups record the same prediction for 𝑜.𝛼 and the algorithm returns this prediction in line 20.

4. Transferable reward dynamics with propositional OO-MDPs

Propositional OO-MDPs introduce a KWIK-learning algorithm to learn the transition dynamics of a domain, while assuming known 
reward dynamics [13,14]. In this section we introduce an algorithm to KWIK-learn a family of reward dynamics under a propositional 
12

object-oriented approach.
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Algorithm 2: Predict1: prediction procedure for action 𝑎 and attribute 𝐶.𝛼.

Input : 𝐶.𝛼 ∈ Att(𝐶), 𝑠 ∈ 𝑆 , 𝑜 ∈𝑂[𝐶], 𝑎 ∈

1 initialize an empty set ⟨Dom(𝐶.𝛼)⟩
2 pass 𝑜 and 𝑠 to the deictic predicates in ̂(𝑎, 𝐶.𝛼) to retrieve a set of terms 
3 foreach 𝑔 ∈ ̂(𝑎, 𝐶.𝛼) do

4 pred ← ⊥

5 foreach 𝑒 ∈ 𝑔. do

6 if ∃𝑒 ∈𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼) such that 𝑒 ⊆  then

7 pred ← 𝑒(𝑜.𝛼)
8 exit loop

9 end

10 end

11 if pred = ⊥ then

12 return ⊥
13 else

14 add 𝑝𝑟𝑒𝑑 to 
15 if || > 1 then

16 return ⊥
17 end

18 end

19 end

20 return only element in 

This family consists of reward dynamics whereby for most transitions the agent receives a default reward signal, while a small 
number of transition groups lead to different reward signals. An example of a domain that exhibits such reward dynamics is the Taxi 
domain. In the Taxi domain, the agent receives a default reward of −1 for all transitions except for the groups of transitions that: 
apply an illegal pickup operation, which produce a reward signal of −10; apply an illegal dropoff operation, which produce a reward 
signal of −10; or lead to terminal state, which produces a reward signal of 20 [19]. Furthermore, it is required that these groups can 
be described under an object-oriented approach through propositional statements over object class attributes.

We note it is straightforward to extend the propositional formalism described in this section to a deictic formalism. However, it 
is not required for the domains considered in this paper.

4.1. Refactoring reward dynamics

We note that for any finite MDP, the reward dynamics can be refactored as a sum of 𝐿 + 1 terms:

(𝑠, 𝑎, 𝑠′) =
𝐿∑
𝑖=1

𝑧𝑖(𝑠, 𝑎, 𝑠′)𝑈𝑖 + (1 −
𝐿∑
𝑖=1

𝑧𝑖(𝑠, 𝑎, 𝑠′))𝑈𝐿+1, (1)

where the 𝑧𝑖(𝑠, 𝑎, 𝑠′) ∈𝔅 are indicator variables such that 
∑𝐿

𝑖=1 𝑧𝑖(𝑠, 𝑎, 𝑠
′) ∈𝔅 - that is, for any (𝑠, 𝑎, 𝑠′) at most one 𝑧𝑖 has value one 

and all others have value zero - and 𝑈𝑖 is a reward token that maps to a stationary reward distribution (or a scalar in the case of 
deterministic reward dynamics). We call 𝑈𝐿+1 the default reward token.

Rewriting the reward dynamics in this way does not sacrifice generality since any arbitrary reward dynamics can be mapped to 
equation (1) by setting 𝐿 = ||2|| − 1 and mapping each (𝑠, 𝑎, 𝑠′) to some 𝑈𝑖 where 𝑖 ∈ [1 ∶𝐿 + 1]

However, for many tasks we can group transitions together and therefore define the reward dynamics with 𝐿 ≪ ||2|| −1. This 
is particularly evident in tasks with sparse rewards where the agent gets a constant default reward for almost all transitions in an 
MDP. For example, consider the original Taxi task. In this task the agent gets a default reward of −1 for all steps except for an illegal 
Pickup action, an illegal Dropoff action or for reaching a terminal state. Therefore, we can represent the reward dynamics for the 
entire Taxi domain with 𝐿 = 3 given the following propositions as per Table 4:

• 𝑃𝑎: (𝑠, 𝑎, 𝑠′) is a transition where the Pickup action is applied illegally.

• 𝑃𝑏: (𝑠, 𝑎, 𝑠′) is a transition where the Dropoff action is applied illegally.

• 𝑃𝑐 : (𝑠, 𝑎, 𝑠′) is a transition which reaches a terminal state.

Furthermore, under an object-oriented approach, each of the propositions 𝑃𝑎, 𝑃𝑏 and 𝑃𝑐 can be constructed from propositions 
over object class attributes as shown below:8

• 𝑃𝑎: Pickup action with On(Taxi, Passenger) = 0 ∨On(Taxi, Passenger) = 1 ∧ Passenger.in-taxi = 1.

• 𝑃𝑏: Dropoff action with Passenger.in-taxi = 0 ∨ Passenger.in-taxi = 1 ∧On(Taxi, Destination) = 0.

8 These propositions are extracted from the state 𝑠 of the transition tuple (𝑠, 𝑎, 𝑠′). In general, the propositional statements for the reward dynamics can be extracted 
13

from 𝑠′ as well. However, for this domain only (𝑠, 𝑎) is needed to capture the reward dynamics.
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Table 4

Expressing the reward dynamics for the Taxi domain 
as per equation (1) with 𝐿 = 3.

Proposition 𝑧1 𝑧2 𝑧3 Reward token

𝑃𝑎 = 1 1 0 0 𝑈1 = −10
𝑃𝑏 = 1 0 1 0 𝑈2 = −10
𝑃𝑐 = 1 0 0 1 𝑈3 = 20
Default 0 0 0 𝑈4 = −1

• 𝑃𝑐 : Dropoff action with On(Taxi, Destination) = 1 ∧ Passenger.in-taxi = 1.

4.2. Formalism

We enhance the Propositional OO-MDP formalism to include the representation of reward dynamics under equation (1). Given 
𝐿 ∈ℕ, 𝑎 ∈ and 𝑖 ∈ [1 ∶𝐿], define a set of propositions of size 𝐷𝑎,𝑖:

𝑎,𝑖 = {𝑓𝑎,𝑖 ∶ 𝑆 ×𝑆 →𝔅}𝐷𝑎,𝑖

𝑖=1 ,

and a binary mapping function that is used determine whether reward token mapped to index 𝑖 triggers given the truth values of the 
propositions in 𝑎,𝑖:

𝑎,𝑖 ∶𝔅𝐷𝑎,𝑖 →𝔅.

Define a set of 𝐿 + 1 reward tokens:

 = {𝑈𝑗}𝐿+1𝑗=1 .

Then the schema reward dynamics are defined by the set:

 = {𝑎,𝑖,𝑎,𝑖,𝑈𝑗 |𝑗 ∈ [1 ∶𝐿+ 1], 𝑖 ∈ [1 ∶𝐿], 𝑎 ∈}.

Then given a grounded MDP 𝑂,𝜌 = (𝑂, ,  , , 𝛾, 𝜌) the reward dynamics operate as follows: the agent is currently in state 
𝑠 ∈ 𝑂 , takes action 𝑎 and transitions to state 𝑠′ ∈ 𝑂 . For each 𝑖 ∈ [1 ∶ 𝐿] compute the set of truth values for the propositional 
statements in 𝑎,𝑖 to get a set of binary values 𝑖 = {𝑓𝑘(𝑠, 𝑠′)}

𝐷𝑎,𝑖

𝑘=1 . Compute 𝑎,𝑖(𝑖) to obtain some indicator variable 𝑧𝑖. The set 
of indicator variables is then  = {𝑧𝑖}𝐿𝑖=1. The elements in the sets  and  are then passed to equation (1) to compute a reward. 
Recall that equation (1) is restricted so that 

∑𝐿

𝑖=1 𝑧𝑖 ∈𝔅. Therefore, if 
∑𝐿

𝑖=1 𝑧𝑖 = 1 then the agent receives a reward generated from 
whichever reward token 𝑈𝑗 is activated by 𝑧𝑗 = 1, and if 

∑𝐿

𝑖=1 𝑧𝑖 = 0 then the agent receives a reward generated from the default 
reward token 𝑈𝐿+1.

As a practical example of the formalism, consider the action Dropoff with  = {𝑈1, 𝑈2, 𝑈3, 𝑈4} as described in Table 4. Suppose 
we have

Dropoff,2 = Dropoff,3 = {AnyTaxiOnAnyDestination(𝑠, 𝑠′),AnyPassengerInAnyTaxi(𝑠, 𝑠′)}

that are defined as:9

• AnyTaxiOnAnyDestination(𝑠, 𝑠′): returns 1 if any objects of class Taxi is on the same square as any object of class Destination in 𝑠, 
and otherwise 0.

• AnyPassengerInAnyTaxi(𝑠, 𝑠′): returns 1 if any objects of class Passenger has their in-taxi attribute set to 1 in 𝑠, and otherwise 0.

Given assignments {𝑏1, 𝑏2} to these propositional statements the mapping functions would be defined as:

• Dropoff,2: return 1 if (𝑏2 = 0) or (𝑏2 = 1 and 𝑏1 = 0), else return 0.

• Dropoff,3: return 1 if (𝑏1 = 1 and 𝑏2 = 1), else return 0.

Note that we would simply define Dropoff,1 = 𝜙 and Dropoff,1 would always return a value of 0. This is because an illegal pickup 
is not possible when the action Dropoff is taken.

Suppose that the agent is currently in state 𝑠, takes action Dropoff and the resulting state is 𝑠′. The states 𝑠 and 𝑠′ are passed 
to AnyTaxiOnAnyDestination(𝑠, 𝑠′) and AnyPassengerInAnyTaxi(𝑠, 𝑠′) to obtain their respective truth values. Suppose that the resulting 
truth values are:

9 We can actually simplify AnyTaxiOnAnyDestination(𝑠, 𝑠′) and AnyPassengerInAnyTaxi(𝑠, 𝑠′) to AnyTaxiOnAnyDestination(𝑠) and AnyPassengerInAnyTaxi(𝑠) respec-
14

tively because these propositions do not depend on 𝑠′ . However, we include 𝑠′ to remain consistent with the notation of the formalism.
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Table 5

Reward tokens that activate for each action and precon-

dition in the All-Passenger Any-Destination Taxi domain. 
Any other combination leads to the default reward token 
𝑈̄4 = −1.

Action Precondition Reward token

Pickup 𝑝1 = 0 ∨ (𝑝1 = 1 ∧ 𝑝2 = 1) 𝑈̄1 = −10
Dropoff 𝑝2 = 0 ∨ (𝑝2 = 1 ∧ 𝑝3 = 0) 𝑈̄2 = −10
Dropoff 𝑝4 = 1 𝑈̄3 = 0

Table 6

Reward tokens that activate for each action 
and precondition in the Sokoban domain. Any 
other combination leads to the default reward 
token 𝑈́3 = −1.

Action Precondition Reward token

North 𝑝́1 = 1 𝑈́1 = 300
East 𝑝́1 = 1 𝑈́1 = 300
South 𝑝́1 = 1 𝑈́1 = 300
West 𝑝́1 = 1 𝑈́1 = 300
Reset 𝑝́2 = 1 𝑈́2 − 1

• {1, 0}: then 𝑧2 = 1 and 𝑧3 = 0, so the agent receives a reward from the reward token 𝑈2 = −10.

• {1, 1}: then 𝑧2 = 0 and 𝑧3 = 1, so the agent receives a reward from the reward token 𝑈3 = 20.

4.3. Examples

The reward dynamics for the All-Passenger Any-Destination Taxi domain require 𝐿 = 3 reward tokens in addition to the default 
reward token. Define the following propositions:

• AnyTaxiOnAnyPassenger(𝑠, 𝑠′): returns 1 if any objects of class Taxi is on the same square as any object of class Passenger in 𝑠, 
and otherwise 0. (𝑝1)

• AnyPassengerInAnyTaxi(𝑠, 𝑠′): returns 1 if any objects of class Passenger has their in-taxi attribute set to 1 in 𝑠, and otherwise 0. 
(𝑝2)

• AnyTaxiOnAnyDestination(𝑠, 𝑠′): returns 1 if any objects of class Taxi is on the same square as any object of class Destination in 𝑠, 
and otherwise 0. (𝑝3)

• AllPassenagersAtAnyDestination(𝑠, 𝑠′): returns 1 if all objects of class Passenger have their at-destination attributes set to 1 in 𝑠′, 
and otherwise 0. (𝑝4)

Then Table 5 shows the reward token that activates for each action and precondition.

For the Sokoban domain we set 𝐿 = 2 and define the following propositions:

• AllBoxesAtAnyStorage(𝑠, 𝑠′): returns 1 if all objects of class Box is on the same square as any object of class Storage in 𝑠′, and 
otherwise 0. (𝑝́1)

• ResetActivated(𝑠, 𝑠′): returns 1 if any object of class Person has their reset attribute set to 1 in 𝑠′, otherwise 0. (𝑝́2)

Then Table 6 shows the reward token that activates for each action and precondition.10

4.4. Learning

In this section we propose an algorithm to KWIK-learn the mapping functions 𝑎,𝑖 described in section 4.2 given a set of propo-

sitions 𝑎,𝑖 for 𝑖 ∈ [1 ∶ 𝐿]. The procedure for learning these mapping functions is analogous to learning transition dynamics as 
described in section 3.3.

When learning transition dynamics, we use a full binary tree structure for each action and attribute with logical statements at the 
leaf nodes and effects at the non-leaf nodes. For learning the mapping functions, we will also use a full binary tree structure with 
logical statements, in the form of propositions, at the leaf nodes; but now the non-leaf nodes are binary indicators. Each such tree is 

10 These reward dynamics encourage the agent to get all boxes to a storage location in as few steps as possible. The high reward of 300 for achieving this is necessary 
15

so that the agent does not learn an optimal policy that applies the Reset action prematurely.
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used to indicate if a particular reward token is activated for a given transition. Therefore, we learn a full binary tree for each action 
𝑎 ∈ and 𝑖 ∈ [1 ∶𝐿].

Learning the mapping functions no longer requires the notion of an effect group, since the trees have binary leaf nodes. Therefore, 
in this setting, the partition function is Π ∶𝔅 →𝔅 that maps which of the binary indicator values is conjunctive and disjunctive in 
the tree. In a similar way to learning transition dynamics, the key to achieving efficiency under this framework is through the notion 
of conjunctive and disjunctive indicator values. That is, if an indicator value for action 𝑎 and index 𝑖 is known to occur at most at 
one non-leaf node in a tree then that branch can be KWIK-learned with at most 𝐷𝑎,𝑖 + 1 unique observations.

Returning to the example of the Taxi task with reward dynamics as described in Table 4, 𝑧3 = 1 can be efficiently learned because 
the precondition that maps to the activation of 𝑈3 is the conjunction: On(Taxi, Destination) = 1 ∧ Passenger.in-taxi = 1. Meanwhile, 
𝑧1 = 1 and 𝑧2 = 1 must be learned through memorization because they occur at two leaf nodes in the tree. However, 𝑧1 = 0 and 
𝑧2 = 0 can be efficiently learned since they occur when

On(Taxi,Passenger) = 1 ∧ Passenger.in-taxi = 0

and

On(Taxi,Destination) = 1 ∧ Passenger.in-taxi = 1

respectively.

We further assume that each 𝑈𝑗 is KWIK-learnable with KWIK-bound 𝐵𝑗 for 𝑗 ∈ [1 ∶ 𝐿 + 1]. Under this assumption we can then 
KWIK-learn the complete reward dynamics with the algorithms described in this section. We introduce two algorithms that are 
called by the DOORMAX𝐷 algorithm presented in section 5 to KWIK-learn the reward dynamics for an MDP under the Propositional 
OO-MDP formalism.

• UpdateTree2 (Algorithm 3) updates the binary tree for action 𝑎 and reward token mapped to index 𝑖.
• Predict2 (Algorithm 4) makes a binary prediction for action 𝑎 and reward token mapped to index 𝑖.

The sets ̂ (𝑎, 𝑖), 𝔗𝑏(𝑎, 𝑖) as well as Π(𝑎, 𝑖) are initialized globally in Algorithm 5 as part of the full DOORMAX𝐷 algorithm. The set 
̂ (𝑎, 𝑖) is initialized with hypothesized propositions for action 𝑎 and reward token mapped to index 𝑖, and does not change during 
learning. The set 𝔗𝑏(𝑎, 𝑖) is initialized with the empty set, and is updated during learning with sets of terms that map to the binary 
indicator value 𝑏 for action 𝑎 and reward token mapped to index 𝑖. Meanwhile, Π(𝑎, 𝑖) is initialized as a partition function for action 
𝑎 and reward token mapped to index 𝑖 that determines if an indicator value is conjunctive or disjunctive in the tree induced by 
{𝔗𝑏(𝑎, 𝑖)}𝑏∈𝔅.

The algorithm UpdateTree2 operates in an analogous manner to the UpdateTree1 algorithm presented in section 3.3. At a high-

level, the algorithm ensures that the set {𝔗𝑔

𝑏
(𝑎, 𝑖)}𝑏∈𝔅 at all times induces a binary tree subject to the constraints of the partition 

function Π(𝑎, 𝑖). Each time it observes a set of terms  and an associated indicator value 𝑧 it updates 𝔗𝑔
𝑧(𝑎, 𝑖) to refine tree.

At the lower-level the algorithm UpdateTree2 updates the binary tree for action 𝑎 and reward token mapped on index 𝑖 given a 
schema state 𝑠, a resulting schema state 𝑠′ and a binary indicator value 𝑧. The algorithm starts at line 1 where it computes  , the 
terms for ̂ (𝑎, 𝑖). In lines 2-3 the algorithm checks if 𝔗𝑧(𝑎, 𝑖) is empty, and if it is it adds  to 𝔗𝑧(𝑎, 𝑖). If 𝔗𝑧 is not empty then, as 
per lines 5-13, it checks if 𝑧 is disjunctive or conjunctive based on the partition function Π(𝑎, 𝑖). If 𝑧 is disjunctive then it adds 
to 𝔗𝑧(𝑎, 𝑖); otherwise, if 𝑧 is conjunctive then it updates the only element in 𝔗𝑧(𝑎, 𝑖) by removing from it any terms that mismatch 
terms in  .

Algorithm 3: UpdateTree2: update binary tree for action 𝑎 and reward token mapped to index 𝑖.
Input : 𝑖 ∈ [1 ∶𝐿], 𝑠 ∈  , 𝑎 ∈, 𝑠′ ∈  , 𝑧 ∈𝔅

1 pass 𝑠 and 𝑠′ to the propositions in ̂ (𝑎, 𝑖) to retrieve a set of terms 
2 if 𝔗𝑧(𝑎, 𝑖) = 𝜙 then

3 add  to 𝔗𝑧(𝑎, 𝑖)
4 else

5 if Π(𝑎, 𝑖)(𝑧) = 0 then

6 add  to 𝔗𝑧(𝑎, 𝑖)
7 else

8 temp ← 

9  ← the only element in 𝔗𝑧(𝑎, 𝑖)
10 remove from  any terms that mismatch terms in temp

11 𝔗𝑧(𝑎, 𝑖) ← 𝜙

12 add  to 𝔗𝑧(𝑎, 𝑖)
13 end

14 end

The algorithm Predict2 takes as input a reward token index 𝑖, schema state 𝑠, action 𝑎 and resulting schema state 𝑠′. The algorithm 
then returns a binary value indicating if the reward token mapped to index 𝑖 activates, or ⊥ if the algorithm cannot yet make an 
16

accurate prediction. Once the reward dynamics are learned, then given a state 𝑠, action 𝑎 and resulting state 𝑠′, the reward token 
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that activates can be determined by calling Predict2 for each 𝑖 ∈ [1 ∶𝐿] and observing which of these returns a value of 1, or if they 
are all 0 then activating the default reward token. In line 1 the algorithm computes  , the terms for ̂ (𝑎, 𝑖). In lines 2-6 it checks 
whether any binary indicator value 𝑏 is mapped to by  in 𝔗𝑏(𝑎, 𝑖). If it is, then 𝑏 is returned; otherwise, the algorithm returns ⊥ in 
line 7.

Algorithm 4: Predict2: prediction procedure for action 𝑎 and reward token mapped to index 𝑖.
Input : 𝑖 ∈ [1 ∶𝐿], 𝑠 ∈ 𝑆 , 𝑎 ∈, 𝑠′ ∈ 𝑆

1 pass 𝑠 and 𝑠′ to the propositions in ̂ (𝑎, 𝑖) to retrieve a set of terms 
2 foreach 𝑏 ∈𝔅 do

3 if ∃𝑏 ∈𝔗𝑏(𝑎, 𝑖) such that 𝑏 ⊆  then

4 return 𝑏
5 end

6 end

7 return ⊥

An important point to emphasize with regards to the UpdateTree2 and Predict2 algorithms is that they take the index of reward 
token 𝑖 as one of their inputs. This information is assumed to come from the environment that the agent interacts with as per line 9 of 
the DOORMAX𝐷 algorithm in section 5. This additional knowledge is uncharacteristic of standard RL, where the agent only receives 
a scalar reward at each timestep. This assumption is necessary because the algorithm needs to know which of the trees to update 
with an indicator value of 1 and 0 when learning reward dynamics.

This additional knowledge inherently assumes that the agent has a built-in notion of ‘reward categorization’. The idea of expand-

ing the environment reward in RL to more than just a scalar has previously been introduced and shown to have benefits both in 
terms of learning performance and interpretability [26–28]. For example, by assuming that the agent receives a reward vector from 
its environment, where each element in the vector represents a reward type that encourages a specific behaviour (such as speed or 
safety), it is possible for an RL agent to learn a multi-dimensional policy that can execute any of the desired behaviours [26]. Such an 
approach assumes that the agent can categorize rewards, as it is able to perceive a reward vector that comprises of different reward 
types from its environment.

5. The DOORMAX
𝑫

algorithm

In this section we combine the algorithms in sections 3 and 4 to present the full DOORMAX𝐷 algorithm, while also providing 
formal guarantees of DOORMAX𝐷 efficiency for the algorithm.

5.1. Algorithms

This section introduces the following algorithms / procedures:

• InitializeGlobal (Algorithm 5) initializes the global data structures needed by the procedures called by DOORMAX𝐷 .

• BuildFullModels (Algorithm 6) builds the models model and model.

• DOORMAX𝐷 (Algorithm 7) is the full DOORMAX𝐷 algorithm.

Note that the inputs to DOORMAX𝐷 are assumed to be globally accessible to all the procedures called by the main algorithm.

The procedure InitializeGlobal initializes the data structures and variables required by DOORMAX𝐷 . In lines 1-8 the procedure 
initializes the ̂ (𝑎, 𝐶.𝛼), ̂(𝑎, 𝐶.𝛼) and 𝔗𝑔

𝑒 (𝑎, 𝐶.𝛼) data structures as well as the variable 𝑀 required for learning transition dynamics. 
In lines 9-14 it initializes the ̂ (𝑎, 𝑖) and 𝔗𝑏(𝑎, 𝑖) data structures as well as the partition functions Π(𝑎, 𝑖) and reward tokens 𝑈̂𝑗 for 
learning reward dynamics.

The algorithm BuildFullModels builds the full models model and model. The algorithm starts at lines 1-2 where it initializes the 
models to the most optimistic case where every transition returns 𝑟max. In line 3 the algorithm iterates over all tuples (𝑠, 𝑎) ∈ 𝑂 ×

of the grounded MDP. In lines 4-15 the algorithms call Predict1 for every object attribute value 𝑜.𝛼 in 𝑠 and checks whether it can 
accurately predict the object attribute value 𝑜.𝛼′ when taking action 𝑎 in order to construct the next state 𝑠′. If it can, then the 
algorithm proceeds to lines 16-25 where it calls Predict2 on the tuple (𝑠, 𝑎, 𝑠′) for every reward token index 𝑖 ∈ [1 ∶𝐿]. The algorithm 
checks if it can make an accurate prediction for every 𝑖 ∈ [1 ∶𝐿]. If it can, the algorithm proceeds to lines 26-31 where it selects the 
activated reward token 𝑈𝑗 . If 𝑈𝑗 has been KWIK-learned, then the algorithm sets model(𝑠, 𝑎) to 𝑠′ and model(𝑠, 𝑎, 𝑠′) to 𝑈̂𝑗 .

The DOORMAX𝐷 algorithm is the root algorithm of this paper. In line 1 it calls InitializeGlobal to initialize the required data 
structures and variables. A start state 𝑠 of the MDP is initialized in line 3 and the agent-environment interaction starts at line 4 with 
a while loop that ends when a terminal state is reached. In line 5 the models model and model are built by calling BuildFullModels. 
In line 6 the algorithm constructs an MDP 𝑀̂ with transition dynamics model and reward dynamics model. In line 7 the algorithm 
computes an optimal policy 𝜋̂∗ for 𝑀̂ by running an exact planning algorithm. In lines 8-9 the algorithm selects an action from 𝜋̂∗
to observe a next state 𝑠′, reward 𝑟 and reward token index 𝑗 from the environment. In lines 10-15 the algorithm calls UpdateTree1
17

to update the appropriate binary trees for every 𝑜.𝛼′ in 𝑠′. In lines 16-22 the algorithm calls UpdateTree2 to update the appropriate 
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Algorithm 5: InitializeGlobal: initialize global variables and data structures required for DOORMAX𝐷 .

1 foreach 𝐶 ∈ℭ do

2 foreach (𝑎, 𝐶.𝛼) ∈ × Att(𝐶) do

3 initialize ̂ (𝑎, 𝐶.𝛼) ← {𝑓1 , 𝑓2, ..., 𝑓𝐷𝑎,𝐶.𝛼
} globally for action 𝑎 and attribute 𝐶.𝛼 where each 𝑓 ∈ ̂ (𝑎, 𝐶.𝛼) is an hypothesized deictic predicates

4 initialize ̂(𝑎, 𝐶.𝛼) ← {𝑔1, 𝑔2, ..., 𝑔𝑁𝑎,𝐶.𝛼
} globally for action 𝑎 and attribute 𝐶.𝛼 where each 𝑔 ∈ ̂(𝑎, 𝐶.𝛼) is an hypothesized effect group; each effect 

group 𝑔 = ( , Π) is initialized with i) an effect set  ← {𝑒1 , 𝑒2, ...𝑒𝐾𝐶.𝛼
} where each 𝑒 ∈  is an effect and ii) a binary partition function Π

5 foreach 𝑔 ∈ ̂(𝑎, 𝐶.𝛼) do

6 foreach 𝑒 ∈ 𝑔. do

7 initialize 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼) ← 𝜙 globally as the set of sets for action 𝑎, attribute 𝐶.𝛼 and effect 𝑒

8 initialize 𝑀 > 1 such that 𝑀 is the maximum number of elements allowed in any set 𝔗𝑔
𝑒 (𝑎, 𝐶.𝛼)

9 foreach (𝑎, 𝑖) ∈ × [1 ∶𝐿] do

10 initialize ̂ (𝑎, 𝑖) ← {𝑝1, 𝑝2, ...𝑝𝐷𝑎,𝑖
} globally for action 𝑎 and index 𝑖 mapped to 𝑧𝑖 where each 𝑝 ∈ ̂ (𝑎, 𝑖) is an hypothesized proposition

11 initialize 𝔗𝑏(𝑎, 𝑖) ← 𝜙 globally as the set of sets for action 𝑎, index 𝑖 mapped to 𝑧𝑖 and Boolean 𝑏
12 initialize Π(𝑎, 𝑖) globally as a binary partition function for action 𝑎 and index 𝑖 mapped to 𝑧𝑖
13 foreach 𝑗 ∈ [1 ∶𝐿 + 1] do

14 initialize 𝑈̂𝑗 globally as the estimated reward token mapped to index 𝑗

Algorithm 6: BuildFullModels: build model and model for DOORMAX𝐷 .

1 initialize model(𝑠, 𝑎) ← ⊥ for all (𝑠, 𝑎) ∈ 𝑂 ×

2 initialize model ← 𝑟max for all (𝑠, 𝑎, 𝑠′) ∈ 𝑂 × × 𝑂

3 foreach (𝑠, 𝑎) ∈ 𝑂 × do

4 𝑠′ ← 𝑠

5 allPredKnown1 ← 1
6 foreach object 𝑜 in 𝑠′ do

7 foreach attribute 𝐶.𝛼 ∈ Att(𝐶) from the class 𝐶 of object 𝑜 do

8 pred ← Predict1(𝐶.𝛼, 𝑠, 𝑜, 𝑎)
9 if pred = ⊥ then

10 allPredKnown1 ← 0
11 else

12 replace attribute 𝐶.𝛼 of object 𝑜 in 𝑠′ with pred

13 end

14 end

15 end

16 if allPredKnown1 = 1 then

17 allPredKnown2 ← 1
18 𝑗 ←𝐿 + 1
19 foreach 𝑖 ∈ [1 ∶𝐿] do

20 pred ← Predict2(𝑖, 𝑠, 𝑎, 𝑠′)
21 if pred = ⊥ then

22 allPredKnown2 ← 0
23 else if pred = 1 then

24 𝑗 ← 𝑖

25 end

26 if allPredKnown2 = 1 then

27 if 𝑈̂𝑗 with KWIK-bound 𝐵𝑗 has been KWIK-learned then

28 model(𝑠, 𝑎) ← 𝑠′

29 model(𝑠, 𝑎, 𝑠′) ← 𝑈̂𝑗

30 end

31 end

32 end

33 end

34 return (model , model)

binary trees for every reward token index 𝑖 ∈ [1 ∶ 𝐿]. In lines 23-25 the algorithm updates 𝑈̂𝑗 with 𝑟 if 𝑈̂𝑗 is not yet KWIK-learned. 
The loop ends after line 26 by setting the current state 𝑠 to the next state 𝑠′ for the start of the next iteration.

Note that while the formalisms presented in sections 3.1 and 4.2 allows for stochastic transition and reward dynamics, for 
DOORMAX𝐷 to be correct we require transition dynamics to be deterministic and reward dynamics that may be stochastic, so long 
as they are KWIK-learnable. We provide a summary of all prior knowledge and assumptions required for DOORMAX𝐷 to be correct 
18

in Appendix A.
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Algorithm 7: DOORMAX𝐷 : the DOORMAX𝐷 algorithm for episodic tasks.

Input : ℭ, 𝐿, 𝑂 , , 𝛾 , 𝑟max , 𝜌
1 InitializeGlobal()
2 repeat

3 start episode at initial state 𝑠 ∈ 𝑂 sampled from 𝜌
4 while 𝑠 ∉ terminal do

5 (model, model) ← BuildFullModels()
6 initialize an MDP 𝑀̂ = (𝑂, , model , model, 𝛾)
7 compute an optimal policy 𝜋̂∗ for 𝑀̂ using exact planning algorithm

8 choose action 𝑎 ∈(𝑠) from 𝜋̂∗
9 observe some next state 𝑠′ and reward 𝑟 generated from reward token 𝑗

10 foreach object 𝑜 in 𝑠 do

11 foreach attribute 𝐶.𝛼 ∈ Att(𝐶) from the class 𝐶 of object 𝑜 do

12 𝑜.𝛼′ ← value of attribute 𝐶.𝛼 for object 𝑜 in 𝑠′
13 UpdateTree1(𝐶.𝛼, 𝑠, 𝑜, 𝑎, 𝑜.𝛼′)
14 end

15 end

16 foreach 𝑖 ∈ [1 ∶𝐿] do

17 𝑧 ← 0
18 if 𝑖 = 𝑗 then

19 𝑧 ← 1
20 end

21 UpdateTree2(𝑖, 𝑠, 𝑎, 𝑠′ , 𝑧)
22 end

23 if 𝑈̂𝑗 with KWIK-bound 𝐵𝑗 has not been KWIK-learned then

24 update 𝑈̂𝑗 with 𝑟
25 end

26 𝑠 ← 𝑠′

27 end

28 until forever

6. Theory

In this section we present a theorem that the learning algorithm presented in section 3.3 KWIK-learns the transition dynamics for 
action 𝑎 and attribute 𝐶.𝛼, and give the resulting KWIK-bound. The proof of the theorem is analogous to that of DOORMAX [13,14]

and is left in Appendix B.

Theorem 1 (KWIK-bound under DOORMAX𝐷). For action 𝑎 and attribute 𝐶.𝛼 let 𝐹 be a set of size 𝐷 that contains hypothesized deictic 
predicate preconditions on which the transition dynamics of 𝐶.𝛼 when taking action 𝑎 may depend. Let ̂ = {𝑔𝑖}𝑁𝑖=1 be a set of size 𝑁
that contains hypothesized effect groups where each 𝑒 ∈ 𝑔𝑖.𝐸 has domain 𝐷𝑜𝑚(𝐶.𝛼). Let 𝐾0 = max

𝑔∈̂𝐾
𝑔

0 and 𝐾1 = max
𝑔∈̂𝐾

𝑔

1 . Let 
 = {𝑇 𝑟𝑒𝑒(𝑔, 𝐹 , 𝑀)|𝑔 ∈ ̂} for some constant 𝑀 > 1. Then if some ℎ∗ ∈ is true, the transition dynamics for 𝑎 and 𝐶.𝛼 can be KWIK-

learned under the DOORMAX𝐷 algorithm with KWIK-bound 𝑁(𝐾0𝑀 +𝐾1(𝐷 + 1) + 1) +𝑁 − 1.

The algorithm learns the true transition dynamics, ℎ∗, represented as a binary tree for action 𝑎 and attribute 𝐶.𝛼. Since this the 
schema transition dynamics, it can be zero-shot transferred across all tasks of the schema once fully learned.

7. Experiments

In this section we conduct experiments to illustrate the benefits of the object-oriented frameworks presented in this paper. In 
section 7.1 we conduct experiments on the All-Passenger Any-Destination Taxi domain to efficiently learn transition dynamics, under 
the assumption of known reward dynamics. In section 7.2 we conduct experiments on the All-Passenger Any-Destination Taxi domain 
to efficiently learn reward dynamics, under the assumption of known transition dynamics. In section 7.3 we demonstrate that the 
reward dynamics and transition dynamics can be efficiently learned together for the Sokoban domain. In all our experiments we 
assume no prior knowledge of 𝑀 and set 𝑀 = 2𝐷𝑚𝑎𝑥 . As our experiments are run on domains with deterministic reward dynamics, 
we have 𝐵𝑗 = 1 for 𝑗 ∈ [1 ∶𝐿 + 1].

7.1. All-Passenger Any-Destination Taxi domain: learning transition dynamics

We conduct two sets of experiments on the All-Passenger Any-Destination Taxi domain under the assumption that reward dynam-

ics are known while transition dynamics need to be learned.11 In the first set of experiments we have one destination and we fix the 
19

11 The source code for our implementation is available on GitHub [https://github .com /OfirMarom /DeicticOOMDPs].

https://github.com/OfirMarom/DeicticOOMDPs


Artificial Intelligence 329 (2024) 104079O. Marom and B. Rosman

Table 7

Hypothesized deictic predicates / propositions for each action and attribute as 
well as conjunctive effects. Any other action and attribute uses the hypothesis 
{𝑃1, 𝑃2, 𝑃3, 𝑃4 , 𝑃5, 𝑃6, 𝑃7} with all effects being conjunctive. Integer attributes use 
Rel effects while Boolean attributes use SetBool effects.

Action Attribute Hypothesis (̂ (𝑎,𝐶.𝛼)) Conjunctive

Any Taxi.𝑥 {𝑓1, 𝑓2 , 𝑓3, 𝑓4 , 𝑃5, 𝑃6, 𝑃7} {−1,0,1}
Any Taxi.𝑦 {𝑓1, 𝑓2 , 𝑓3, 𝑓4 , 𝑃5, 𝑃6, 𝑃7} {−1,0,1}
Pickup Passenger.in-taxi {𝑓5, 𝑓6 , 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃7} {1}
Dropoff Passenger.in-taxi {𝑓8, 𝑃1 , 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6} {1}
Dropoff Passenger.at-destination {𝑓8, 𝑃1 , 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6} {1}

number of passengers, 𝑛. We generate a grounded MDP with an initial state by randomly sampling 𝑛 passenger locations and one 
destination location from one of six pre-specified locations and we also sample a random taxi start location together with one of four 
wall configurations as shown in Fig. 3a.

We apply 20 independent runs of the following procedure: we sample 10 test MDPs with random initial states. We then randomly 
sample a training MDP and run DOORMAX𝐷 on it for one episode until we reach a terminal state. Upon termination, we test 
performance by running DOORMAX𝐷 for one episode on each of the 10 test MDPs, stopping an episode early if we exceed 500 steps. 
We repeat this for 100 training MDPs. Since all the MDPs come from the same schema we can share transition dynamics between 
our MDPs - but we only update the transition dynamics on training MDPs.

In our experiments we start with 𝑛 = 1 passenger and incrementally increase to 𝑛 = 4 passengers. We run our experiments for 
Propositional OO-MDPs and two versions of Deictic OO-MDPs. In the first, without transfer, we relearn the transition dynamics for 
each 𝑛 while for the second, with transfer, we transfer the previously learned transition dynamics each time we increase 𝑛. We 
report results in Fig. 7 that averages over the 20 independent runs the average number of steps for the 10 test MDPs with error bars 
included.

We use the hypothesis space as per Table 7 in our experiments, where 𝑃1, 𝑃2, 𝑃3, 𝑃4 and 𝑃5 are propositions as defined as below. 
This hypothesis space is chosen so as to mimic the experimental setup of Propositional OO-MDPs on the original Taxi domain as 
closely as possible [13].

• Touch𝑁 (Taxi, Wall): returns 1 if any object of class Taxi has an object of class Wall one square north of it, and 0 otherwise. (𝑃1)

• Touch𝐸 (Taxi, Wall): returns 1 if any object of class Taxi has an object of class Wall one square east of i, and 0 otherwise. (𝑃2)

• Touch𝑆 (Taxi, Wall): returns 1 if any object of class Taxi has an object of class Wall one square south of it, and 0 otherwise. (𝑃3)

• Touch𝑊 (Taxi, Wall): returns 1 if any object of class Taxi has an object of class Wall one square west of it, and 0 otherwise. (𝑃4)

• On(Taxi, Passenger): returns 1 if any object of class Taxi is on the same square as any object of class Passenger, and 0 otherwise. 
(𝑃5)

• On(Taxi, Destination): returns 1 if any object of class Taxi is on the same square as any object of class Destination, and 0 otherwise. 
(𝑃6 = 𝑓9)

• InTaxi(Passenger): returns 1 if any object of class Passenger has its in-taxi attribute set to 1, and 0 otherwise. (𝑃7 = 𝑓7)

We see from the results that for this domain, Deictic OO-MDPs outperform Propositional OO-MDPs as we increase the number 
of passengers. This is because with Propositional OO-MDPs we need to add more propositions to the preconditions as we increase 
the number of passengers - in fact the propositional representation is unable to learn the task when 𝑛 = 4 even after 100 training 
episodes.

In particular, the classical Taxi domain with a single passenger and destination requires 7 propositions {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7}
[13]. Under a propositional approach, the All-Passenger Any-Destination Taxi Domain requires an additional proposition: Passenger-

AtDestination (𝑃8) that returns 1 if any object of class Passenger is on the same square as any object of class Destination. Furthermore, 
𝑃5, 𝑃7 and 𝑃8 need to be grounded for each object of class Passenger in order to avoid ambiguity, as further discussed in section 3.2. 
Therefore, in totality the All-Passenger Any-Destination Taxi Domain requires 5 + 3 × 𝑛 propositions for a task of 𝑛 passengers.

Note that, since the number of propositions is increasing per task, it is not possible to transfer the transition dynamics between 
tasks under the Propositional OO-MDP framework. Meanwhile, the Deictic OO-MPD framework requires 8 deictic predicates for any 
task of the domain. Furthermore, as the MDPs belong to the same schema it is beneficial to transfer the previous transition dynamics 
under the deictic representation.

We observe from Fig. 7 that using the deictic representation without transfer is actually learning slightly faster as we add more 
passengers. This is somewhat misleading. What is actually happening is that as the tasks become more complex, the agent is able to 
learn more about the transition dynamics over a single training episode, but that episode will require many more steps to complete. 
To illustrate this, and also highlight the robustness of the deictic representation with transfer methodology, we conduct a second set 
of experiments. These experiments are similar to those conducted for the first set but we now use a larger 10 ×10 gridworld with five 
passengers and three destinations as in Fig. 3b. In these experiments we stop after 100 steps for each episode of the training MDPs. 
Furthermore, for the deictic representation with transfer we simply transfer the learned transition dynamics of 𝑛 = 4 passengers and 
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do no additional learning on the new larger gridworld.
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Fig. 7. Experimental results for learning transitions dynamics in the All-Passenger Any-Destination Taxi domain with different number of passengers.

Fig. 8. Average number of steps relative to optimal number of steps as we add more passengers - for 𝑛 = 5 we also increase the gridworld size and add more 
destinations hence it is marked with a ∗. The 𝑦 axis is capped at 10 to make the graph more readable.

In Fig. 8 we plot for all the experiments run the average number of steps relative to optimal number of steps. We can see that once 
we get to 𝑛 = 4 passengers, the transition dynamics we transfer from the 𝑛 = 3 experiment are the fully learned schema transition 
dynamics and we have zero-shot transfer.12 We also see that the deictic representation with transfer is able to solve the larger 
gridworld optimally with no additional learning of the transition dynamics. Meanwhile the deictic representation with no transfer, 
which was decreasing up to 𝑛 = 4, now has a jump between at 𝑛 = 5 because the agent does not have the benefit of learning for a 
full training episode. We cap the graph’s 𝑦 axis at 10 to make it more readable, but remark that Propositional OO-MDPs exhibits 
exponentially worse performance relative to optimal as the tasks become more complex.

To provide more intuition on how efficient learning is achieved with conjunctive effects, consider Tables 8 and 9. In these tables 
we show results from a simulation of running DOORMAX𝐷 for action East, attribute Taxi.𝑥 and effect Rel1 as well as action Pickup, 
attribute Passenger.in-taxi and effect SetBool1 respectively.

For example, in Table 8 the first time we observe the effect Rel1 for action East and attribute Taxi.𝑥 the following assignment to 
the truth values are observed: {𝑓1 = 0, 𝑓2 = 0, 𝑓3 = 0, 𝑓4 = 1, 𝑃5 = 0, 𝑃6 = 0, 𝑃7 = 0} (row 1). The next time, the following assignment 
to the truth values are observed: {𝑓1 = 1, 𝑓2 = 0, 𝑓3 = 0, 𝑓4 = 1, 𝑃5 = 0, 𝑃6 = 1, 𝑃7 = 0} (row 2). Since the effect is conjunctive, 𝑓1 and 
𝑃6 can be invalidated. As a result, the remaining possible deictic predicates that make up the precondition is {𝑓2, 𝑓3, 𝑓4, 𝑃5, 𝑃7}. This 
process continues until the true precondition is learned in line 7 i.e. 𝑓2 = 0. Note that in Table 8 we are able to learn the correct 
precondition with only 7 observations, whereas learning by memorization would require 26 unique observations.

12 It is worth pointing out that, while in this experiment we zero-shot transfer at 𝑛 = 4, the conditions for zero-shot transfer depend on the KWIK-bound in Theorem 1, 
21

not the number of tasks the agent learns from.
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Table 8

Learning the precondition for action East, attribute Taxi.𝑥 and 
effect Rel1 in the All-Passenger Any-Destination Taxi domain.

Observation 𝑓1 𝑓2 𝑓3 𝑓4 𝑃5 𝑃6 𝑃7

1 0 0 0 1 0 0 0
2 - 0 0 1 0 - 0
3 - 0 0 - 0 - 0
4 - 0 0 - 0 - -

5 - 0 0 - 0 - -

6 - 0 0 - 0 - -

7 - 0 - - - - -

Table 9

Learning the precondition for action Pickup, attribute 
Passenger.in-taxi and effect SetBool1 in the All-Passenger Any-

Destination Taxi domain.

Observation 𝑃1 𝑃2 𝑃3 𝑃4 𝑓5 𝑓6 𝑃7

1 0 1 1 0 1 0 0

2 - 1 - 0 1 0 0

3 - - - - 1 0 0

Table 10

Hypothesized propositions for each action and reward token as well as their 
conjunctive indicator values. All other actions and reward token pairs use the 
hypothesis {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8} with conjunctive indicators {0, 1}. The 
default reward token is 𝑈̄4 .

Action Reward token Hypothesis (̂ (𝑎, 𝑖)) Conjunctive

Pickup 𝑈̄1 {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8} {0}
Dropoff 𝑈̄2 {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8} {0}
Dropoff 𝑈̄3 {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8} {0,1}

Fig. 9. Experimental results for learning reward dynamics in the All-Passenger Any-Destination Taxi domain with transfer and different number of passengers.

7.2. All-Passenger Any-Destination Taxi domain: learning reward dynamics

In this section, we run a similar experiment to that of section 7.1, but we now assume known transition dynamics and focus on 
learning and transfer of reward dynamics. In addition to 𝑝1, 𝑝2, 𝑝3 and 𝑝4 defined in section 4.3 we define:

• AnyWallNorthOfAnyTaxi(𝑠, 𝑠′): returns 1 if any objects of class Taxi has an object of class Wall one square north of it in 𝑠′, and 
otherwise 0. (𝑝5)

• AnyWallEastOfAnyTaxi(𝑠, 𝑠′): returns 1 if any objects of class Taxi has an object of class Wall one square east of it in 𝑠′, and 
otherwise 0. (𝑝6)

• AnyWallSouthOfAnyTaxi(𝑠, 𝑠′): returns 1 if any objects of class Taxi has an object of class Wall one square south of it in 𝑠′, and 
otherwise 0. (𝑝7)

• AnyWallWestOfAnyTaxi(𝑠, 𝑠′): returns 1 if any objects of class Taxi has an object of class Wall one square west of it in 𝑠′, and 
otherwise 0. (𝑝8)
22

Then in our experiments we use the hypothesis space as per Table 10.
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Fig. 10. Training tasks and test task for Sokoban.

In Fig. 9 we see that, as in the case of learning transition dynamics, we can transfer the model of the reward dynamics between 
tasks of the domain as more passengers are added. The reward dynamics are completely learned after completing the 𝑛 = 2 passenger 
MDPs.13 From there, the reward dynamics are zero-shot transferred to the 𝑛 = 3 passenger MDPs. In fact, the model of the reward 
dynamics can be zero-shot transferred to any MDP of the All-Passenger Any-Destination Taxi domain schema after learning on the 
𝑛 = 2 passenger MDPs.14

7.3. Sokoban domain

To demonstrate the benefits of the object-oriented frameworks presented in this paper, we conduct an experiment on a more 
challenging Sokoban domain. In this experiment we first learn both the transition dynamics and reward dynamics by randomly 
sampling MDPs with start states as shown in Fig. 10a.

As it turns out, these four simple MDPs, each with approximately 8000 states, are enough to completely learn the schema transition 
and reward dynamics of this domain. This is because they exhibit all possible game scenarios, such as the person adjacent to a box 
with that box being adjacent to another box, or the person adjacent to a box with that box being adjacent to a wall, etc.

We continue to learn on these simple MDPs until we have no ⊥ predictions, thus having fully learned the complete schema 
dynamics. Once learned, we zero-shot transfer the dynamics to a more complex Sokoban task as shown in 10b. This task comes from 
the ‘Micro-Cosmos’ level pack and has approximately 106 states while the optimal number of steps to solve this task 209.

With no additional learning we run value iteration and solve for an optimal policy. Note that the ability to transfer here is 
critical. The larger MDP has approximately 125 times more states than the toy MDPs. Running 𝑅max based algorithms directly on the 
larger MDP is very slow because at each step it is required to compute a policy with an exact planning algorithm and this has high 
computational complexity. By transferring the transition dynamics learned in the toy MDPs we can solve the larger MDP with only 
a single run of value iteration.

8. Future research

In this paper we have demonstrated the advantages of our proposed object-oriented frameworks. Theoretically we have shown 
that, under certain assumptions, our frameworks are provably efficient and guarantee zero-shot transfer. Empirically, we have 
demonstrated that our approach can zero-shot transfer the dynamics models learned from simple tasks to solve much more complex 
tasks with a single run of an exact planning algorithm, such as value iteration. However, there is much scope for future research.

As per Appendix A, our proposed method relies on certain assumptions to hold. Finding ways to relax these assumptions would 
make the proposed frameworks more practically applicable. For example, the most general RL setting allows for stochastic transition 
dynamics, while our approach is limited to deterministic transition dynamics. For the Propositional OO-MDP setting previous research 
has already shown that efficient learning of transition dynamics can be achieved for a family of stochastic dynamics [14]. Extending 
this to the Deictic OO-MDP setting and also extending the scope of permissible dynamics is an area of future research.

13 While it appears from the figure that the reward dynamics are completely learned after 𝑛 = 1, there is a small amount of learning required for 𝑛 = 2 as the agent 
needs to learn the dynamics when picking up a passenger while another passenger is already in the taxi. One can see small error bars at the beginning of that portion 
of the plot indicating this.
14 Note that as we add more passengers the optimal number of steps needed to complete a task increases, which is why you see a jump in Fig. 9 between the end of 
23

𝑛 = 2 and the start of 𝑛 = 3.
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Other assumptions that future work could look at relaxing, possibly by incorporating existing research, include: learning a 
schema’s object classes and their corresponding attributes rather than having them be given [29–31]; learning the set of hypothe-

sized propositions and deictic predicates rather than having them be given [32]; learning the dynamics models from preconditions 
to effects using function approximations rather than binary trees [33]; and combining object-oriented representations with value 
function approximations for planning in domains with large state-spaces where tabular methods used by exact planning algorithms, 
like value iteration, become computationally intractable [34].

The DOORMAX𝐷 algorithm works best in RL settings where effects can be represented as conjunctions over terms, as this allows 
the algorithm to invalidate multiple terms with few observations. However, many RL settings have effects that can only be captured 
with disjunctions, and DOORMAX𝐷 then requires 2𝐷𝑚𝑎𝑥 unique observations to learn such effects without prior knowledge. This 
becomes prohibitive when the number of deictic predicates is large. An important area of future research is therefore to find more 
efficient ways to learn disjunctions.

In this paper we have combined object-oriented and deictic representations to compactly represent the dynamics models of an 
RL agent that transfer across related tasks of a domain. Both these representations have been leveraged in other components of 
RL such as policy learning [35], planning [10–12] and learning options [36,37] with the goal of improving learning efficiency 
and generalization. Research focused on combining multiple techniques into a unified framework could lead to enhanced RL agent 
capabilities in these areas.

Lastly, deep learning methods have shown much success in scaling RL to solve larger, real-world tasks [4,5,3] and recent work 
has investigated deep learning in the context of zero-shot transfer [38,39]. Existing research has demonstrated that deep learning 
can be used in conjunction with object-oriented representations to achieve improved transfer and generalization properties [40–42]. 
Research focusing on combining ideas from structured approaches, such as those presented in this paper, with deep learning could 
lead to novel methods that both generalize effectively and scale to larger, real-world tasks.

9. Conclusion

This paper has introduced and integrated two object-oriented frameworks for efficient model-based RL: Deictic OO-MDPs for 
transition dynamics and Propositional OO-MDPs for reward dynamics. These frameworks apply to a domain as described by a 
schema, and so generalize across all instantiated tasks from the schema.

The Deictic OO-MDP framework is based on deictic predicates. A deictic predicate is a predicate that is grounded with respect to 
a single reference object that relates itself to lifted object classes, and can be used to compactly represent the transition dynamics 
of domains not possible under a propositional approach. The Propositional OO-MDP framework extends previous work that focuses 
only on learning transition dynamics under a propositional approach to the case of learning reward dynamics.

Both of these frameworks are then combined into a KWIK-𝑅max based algorithm called DOORMAX𝐷 that efficiently learns the 
full dynamics models. Since the models are schema-based, they transfer across all tasks of the domains. To illustrate the benefits 
of our proposed frameworks we run experiments on a modified version of the Taxi domain, the All-Passenger Any-Destination Taxi 
domain, as well as the Sokoban domain. In both these domains we illustrate that the dynamics models can be learned on a simple 
set of source task from the domain and then zero-shot transferred to a more complex target task of the domain for efficient RL.

Our proposed framework requires more prior knowledge and assumptions than other approaches, such as Deep Learning. 
However, it does have the advantage of having provably efficient learning bounds and guarantees of zero-shot transfer. Stronger 
theoretical analysis has been identified as an important research direction in the area of transfer learning for Reinforcement Learn-

ing. This paper takes a step in this direction by extending previous research to produce a more general formalism that still fit into 
the KWIK framework.
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Appendix A. DOORMAX
𝑫

assumptions

Assumption 1. A schema representation of a domain is given with a fixed set of object classes, object class attributes and actions.
24

Assumption 2. Transition dynamics are deterministic.
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Assumption 3. Prior knowledge of the deictic predicates required to represent the schema transition dynamics for each action and attribute.

Assumption 4. A set of effect groups is hypothesized, where each effect group consists of an effect set and a partition function that maps 
each effect in the effect set as either disjunctive or conjunctive. One of the hypothesized effect groups must be correct.

Assumption 5. All effects in an effect set are invertible.

Assumption 6. A constant 𝑀 , which represents the maximum number of times that a disjunctive effect may occur in any binary tree, is 
known. However, we do provide a no-prior value 𝑀 = 2𝐷𝑚𝑎𝑥 as well.

Assumption 7. Reward dynamics may be stochastic, as long as they are KWIK-learnable.

Assumption 8. A known decomposition of the reward dynamics into 𝐿 reward tokens, as well as a default reward token.

Assumption 9. A partition function for each action and non-default reward token index that maps the binary indicator values associated to 
the activation of that reward token as either disjunctive or conjunctive.

Assumption 10. An exact planning algorithm is used to compute an optimal policy under the

Appendix B. Proof of Theorem 1

Proof. Consider an effect group 𝑔 ∈ ̂. If this is the correct effect group then it can be learned with KWIK bounds 𝐾𝑔

0𝑀 +𝐾
𝑔

1 (𝐷+1). 
This is because the 𝐾𝑔

1 conjunctive effects require at most 𝐷+1 observations each to learn the terms they depend on while the terms 
for the 𝐾𝑔

0 disjunctive effects can be memorized 𝑀 times each. If we then consider all 𝑁 effect groups in ̂, an upper bound on the 
number of observations required so that all effect groups are either removed or return some prediction is 𝑁(𝐾0𝑀 +𝐾1(𝐷 + 1) + 1).

Now when we call Predict1 if two effect groups provide a prediction that is not the same we remove one of them on the subsequent 
run of the UpdateTree1 procedure and this can occur at most 𝑁 − 1 times. This gives a total KWIK-bound of 𝑁(𝐾0𝑀 +𝐾1(𝐷 + 1) +
1) +𝑁 − 1. □

An analogous proof can be constructed for the learning algorithm of reward dynamics presented in section 4.4 showing that if a 
binary value occurs at most once in the tree for action 𝑎 and index 𝑖 mapped to 𝑧𝑖, then that branch can be learned with KWIK-bound 
𝐷𝑎,𝑖 + 1.
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