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Abstract—This paper investigates the improvement of learning
sensorimotor models for developmental robots, in particular
robot arm kinematics models, with inter-robot knowledge trans-
fer. Developmental robots progressively learn through embodied
interaction with the physical environment. In the single-robot
case, exploration in the world is performed in isolation and
the robot explores its own capabilities. In a multi-robot case,
with one or more experienced robots, we argue that it may be
beneficial for the robots to be able to share the knowledge they
have acquired through their individual exploration. We explore
knowledge transfer in the context of learning arm kinematics
models, where an experienced robot shares its kinematic data
with a new robot that is autonomously exploring its environment.
We show that the sensorimotor models of the new robot can be
bootstrapped by the shared knowledge, converge faster and also
achieve a better asymptotic performance compared to individual
exploration from scratch. We perform an analysis of knowledge
transfer in simulation, ranging from simple two-link planar
robots to redundant systems.

Index Terms—Model learning, Transfer learning, Robot kine-
matics, Robot learning, Developmental robots

I. INTRODUCTION

In robot behavior modeling and control, kinematics mod-
eling plays an important role. It enables, for example, a
robot to make quick predictions about whether it can reach
for objects in the surrounding environment using its end-
effectors. Moreover, for motions decribed in the task space,
or the sensory space, of the robot, a robot kinematics model
is required to map them into the joint space, or the motor
space, where control typically takes place.

Conventionally, robot kinematics models are designed an-
alytically by an engineer, using parameters of the robot re-
leased by the manufacturer, such as link dimensions, num-
ber of degrees-of-freedom (DoFs), the configuration of the
joints and the connections of the links. If these parameters
are not available the engineer must estimate them through
analysis of the robot’s structure, which can cause modeling
errors, requiring further calibration [1]. In such cases, machine
learning techniques are employed as an alternative, where

robot kinematics models are learned from data generated by
the robot through its sensors and actuators. Unknown non-
linearities can be taken into account as the model is estimated
directly from measured data, while they are typically neglected
by the standard analytical modeling techniques [2]. As a result,
learning of robot models has attracted much interest and has
been used successfully in recent years [2], [3].

In particular, developmental robotics aims to incrementally
learn models progressively via embodied interaction with the
physical world. Here, a robot is equipped with an exploration
mechanism with which it can autonomously explore its sur-
rounding environment in order to collect data from which to
learn its kinematics models.

However, to successfully learn robot models, in this case
kinematics models, a large amount of data must be collected
from the robots, and this can be a time-intensive process for
manipulators and humanoids with high DoFs and large state
spaces. This is considerably worse in a multi-robot case, where
each robot must learn its own models from scratch. In this
paper we investigate the improvement of incremental learning
of kinematics models for developmental robots in the multi-
robot setting using knowledge transfer, where kinematic data
generated by pre-existing robots is used to accelerate learning
for new robots.

II. PROBLEM STATEMENT

We consider the relation between the motor commands qqq ∈
Q ⊂ <d and their consequences in the sensory space xxx ∈ X ⊂
<m (e.g., the position of the hand), where d is the number of
DoFs (or the dimensionality of the joint space) and m is the
dimension of the sensory space (e.g., m = 3 for the 3D spatial
position of the hand). The forward kinematics function L(qqq) =
xxx describes the unique mapping from the motor space to the
sensory space. It can be used to predict the consequences xxx? of
setting the joints to some configuration qqq?. For robot control,
an inverse function L−1(xxx) = qqq is required to predict the
control command qqq? required to place the robot end-effector at
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Fig. 1: An illustration of a goal babbling framework. Based on
an environmental context c, a high-level learning architecture
decides the next goal xxxg that a learning agent must attempt
to reach (randomly in our case). Without prior knowledge of
the inverse model L−1, the agent explores its environment
by executing random motor commands qqq and observing the
consequences xxx, and uses the generated data {qqq,xxx} to update
its models, L and L−1.

some desired position xxx?, which is complex and not uniquely
defined if the number of DoFs d exceeds the dimension of the
sensory space m (m < d).

The two functions model the sensorimotor mappings of
the agent, and in developmental robotics they are referred
to as sensorimotor models. The robotic agent learns its sen-
sorimotor models by collecting samples (qqq(i),xxx(i)) through
its interaction with the environment, i.e., by executing motor
commands qqq and observing the sensory consequences xxx (see
Figure 1). One of the challenges in learning L and L−1 from
autonomous robot exploration is that since Q and X can be
high-dimensional, exploration can be a long process. In the
next section we briefly review work in accelerating kinematics
learning for autonomous robots, after which we present our
knowledge transfer approach.

III. RELATED WORK

Kinematics learning has been approached from mainly two
angles that compliment each other. In model learning the
focus is on developing machine learning algorithms that can
learn regression models from large amounts of data in high-
dimensional spaces, used to represent the sensorimotor map-
pings L and L−1. Online and incremental learning algorithms
are highly desired as they allow the robot to adapt to changes
in the environment and/or the robot itself. Developmental
robotics on the other hand attempts to study robotics from
the perspective of building capabilities progressively via em-
bodied interaction with the physical world. The focus here has
been on designing exploration mechanisms that equip robots
with the capability to autonomously explore their surrounding
environment in order to collect data from which to learn the
sensorimotor mappings.

Combining the two approaches equips individual robots
with the capabilities for autonomous exploration and learning
of their sensorimotor mappings. Key to this is exposure to
good quality data in abundance sufficiently early, as long
explorations risk damaging the robot and from wear and tear.
A robot can achieve this internally, through implementation
of efficient exploration mechanisms, or through some external
guidance, using techniques from learning from demonstration
and transfer learning. We discuss the two approaches below.

A. Curiosity-driven Exploration

Work in developmental robotics for kinematics learning has
led to several mechanisms for internal exploration, ranging
from exploration in motor space Q, referred to as motor
babbling [4] (e.g., exploring the joint space of a robot), to
exploration in sensory space X , referred to as goal babbling
[5] (e.g., exploring in end-effector space of a robot). Robots
can explore these spaces randomly – random motor babbling
and random goal babbling – or they can explore actively,
making use of the so-called interest models to explore in such
a way that maximizes some measure of progress – active motor
babbling [6] and active goal babbling [7].

It has been shown that goal babbling can learn inverse
models for redundant systems more efficiently, compared to
motor babbling, since the sensory space is usually of much
lower dimensionality than the motor space for manipulators
[5], [7], [8]. Furthermore, efficiency in exploration has been
shown to further improve when employing curiosity-driven
techniques, where the robot explores in such a way as to max-
imize some measure of learning progress [7], [8]. However, in
a multi-robot setting, these strategies do not take advantage of
potential prior knowledge generated by other robots, and so
learn from scratch for every agent.

B. Socially-guided Exploration

Alternatively, exploration and learning can be accelerated
by an external agent, which can take a form of another robot
or a human trainer. These techniques are typically studied
under transfer learning, social robotics and learning from
demonstration, in which some form of prior knowledge is
transferred between agents. However, very little work attempts
to transfer knowledge across robots for accelerating learning
of kinematics models.

In [9], Procrustes Analysis (PA) was employed to transfer
knowledge for learning forward kinematics, where data was
generated using analytical models of the robots. In a later
study, it was shown that PA is limited to robots with similar
kinematics, as it assumes a linear relationship between robotic
domains; and that in general non-linear mappings are required
between robot kinematic domains [10]. As a result, Local
Procrustes Analysis (LPA) was developed and shown to be
superior to PA for learning forward kinematics in an offline
setting [10].

Here, we provide experiments analyzing knowledge transfer
for inverse kinematics in an online setting, in which we
employ PA and LPA. These transfer learning models have
been successfully applied in other learning settings, such as
for learning dynamics models [11], in robot learning from
demonstrations [12], [13] and human activity recognition [14].

In [15], an approach for transferring skills from human
demonstrations for learning inverse kinematics of a soft-tendon
driven manipulator was proposed. Their targeted application
was minimally invasive surgical tasks. Work related to ours
in this area is in social robotics, where robots interact and
learn from humans [16] or socially interact with each other
[17]. However, none of the work in social robotics has been



applied to transfer knowledge for learning kinematics models.
Thus in this paper we present, to the best of our knowledge,
the first attempt to transfer knowledge across developmentally
learning robots for learning kinematics models.

We aim to transfer knowledge across developmental learn-
ing robots. Developmental learning for robots has attracted
much interest recently and has shown success in enabling
robots to progressively learn their sensorimotor mappings
through embodied interaction with the sorrounding environ-
ment. However, much of the work for learning kinematics
models has focused on single-robot cases, and this typically
involves long training times.

IV. GUIDED EXPLORATION WITH KNOWLEDGE TRANSFER

In this work we investigate accelerating exploration and
learning with knowledge transfer, where an experienced source
robot Ωs, with its sensorimotor models, Ls and L−1

s , shares
its kinematics data with a new, inexperienced target robot Ωt,
that is to learn its own sensorimotor models Lt and L−1

t .
Our aim is to utilize source agent data ξs = {qqq(i)s ,xxx

(i)
s }Ti=1,

generated from source agent sensorimotor models to initialize
the parameters of the target agent sensorimotor models, so as
to accelerate learning of the target agent.

In general, the source and target agents have different em-
bodiments, resulting in differing motor and/or sensory spaces,
i.e., ds 6= dt and ms 6= mt, and different data distributions.
Thus, to effectively transfer the source data into the target
agent domain, the source data must be configured such that it
is useful to the target agent. This can be achieved by learning
a domain mapping f from samples of correspondences Xs

and Xt generated by the robots, which is then used to transfer
source agent data ξs into the target agent domain to obtain
estimated target agent data ξ̂t, which is subsequently used
to initialize the parameters of the target agent sensorimotor
models Lt and L−1

t .
In this study we analyze transfer in the case of robots having

different data distributions, but with the same dimensionality
of their motor and sensory spaces, in order to analyze the
possibility and benefit of knowledge transfer. Next, we discuss
how to collect correspondences Xs and Xt in Section IV-A,
followed by a treatment of how to learn the mapping f used
to transfer source robot data ξs into target robot data ξ̂t in
Section IV-B.

A. Collecting Correspondences

To collect correspondences Xs and Xt, we propose an
algorithm for guiding exploration of the target robot with
motor commands generated by the source robot. Similar
transfer approaches have been proposed in other learning
domains, such as those based on ideas from adaptive control
for accelerating learning of dynamic models [18], where they
assume the source and target agents have similar motor and/or
sensory spaces (i.e., ds = dt and/or ms = mt).

We assume we know correspondences qqq(i)s , qqq
(i)
t ∈ Q ⊂ <d

between the motor spaces of the robots. The correspondences

Algorithm 1 Guided exploration

1: IN: A sequence of corresponding Ωt motor commands
{qqq(i)s }Tguided

i=1

2: Xs = {}
3: for i ∈ [1, Tguided] do
4: Execute motor command qqq(i)s on Ωs

5: Xs = Xs ∪ {qqq(i)s ,xxx
(i)
s }

6: end for
7: OUT: Source correspondence samples Xs

are easy to determine manually for the robots used in our ex-
periments. For exploration we employ a goal babbling strategy
illustrated in Figure 1, however any strategy is applicable. In
this strategy, the robot randomly explores its sensory space
X , by choosing random goals xxxg , and employs the current
estimate L̂−1 of the inverse model to predict the command
q̂qqg required to reach xxxg with its end-effector. The robot then
executes the predicted command and observes the sensory
consequences, generating the training pair (qqq(i),xxx(i)). The
reader is referred to [5] for more details about this strategy.

Typically, a learning algorithm is embedded in the system
that incrementally learns L̂−1 as the robot explores and
generates data, and also guides exploration by predicting the
motor input for the next selected target to be explored. In this
study, we use a simple weighted nearest neighbor regression
model for learning L−1. A forward model L̂ can also be
learned if needed from the generated data, but is not required
by the goal babbling strategy.

In our proposed guided exploration algorithm, the target
agent explores its environment for some period Tguided, using
for example the goal babbling strategy illustrated in Figure
1, to collect Xt = {qqq(i)t ,xxx

(i)
t }

Tguided

i=1 . The source agent
Ωs then executes the sequence of corresponding commands
{qqq(i)s }Tguided

i=1 to collect Xs = {qqq(i)s ,xxx
(i)
s }Tguided

i=1 corresponding
to Xt, using Alg. 1. The domain mapping f can then be
learned from Xs and Xt discussed in Section IV-B. The source
agent experience, or synthesized, data ξs is then transferred
to the target agent domain to obtain estimated target agent
data ξ̂t, which is subsequently used to initialize target agent
sensorimotor models Lt and L−1

t . The target agent then con-
tinues exploring autonomously using standard goal babbling
as illustrated in Figure 1.

B. Learning the Transfer Model

Given the samples of correspondences
{{qqq(i)s ,xxx

(i)
s }Tguided

i=1 , {qqq(i)t ,xxx
(i)
t }

Tguided

i=1 } with the same
dimensionality d+m, the domain mapping f thus learns the
(non-linear) transformation of sensory signals xxx(i)s and xxx

(i)
t

given correspondences in the motor space Q. One approach to
learning f is using standard regression techniques. However,
this would require to collect the same amount of data, if
not more, than needed to learn the target robot sensorimotor
models Lt and L−1

t without knowledge transfer, which
defeats the purpose of transferring knowledge.



Another approach is to use manifold alignment techniques,
which allow for knowledge transfer between two seemingly
disparate data sets, by aligning their underlying manifolds
[19]. Furthermore, they represent the mapping f as an align-
ment function which they are able to learn from as few samples
as possible. In this work we employ Procrustes Analysis and
Local procrustes Analysis, as they have proved to be sample
efficient when learning f [11].

Procrustes Analysis Learning the mapping f with PA is
as follows. First the data Xs and Xt is preprocessed by sub-
tracting the mean and whitening it, obtaining the preprocessed
samples sss ∈ Ms and ttt ∈ Mt, using sss = Bs(xxxs − ωωωs) and
ttt = Bt(xxxt − ωωωt). The values ωωωs = E{Xs} and ωωωt = E{Xt}
are the means of the data, where E{·} denotes the expectation
operator. Matrices Bs and Bt are obtained such that Xs and
Xt are whitened, respectively.

The alignment function is then modeled as a linear mapping
f : Ms 7→ Mt, with f(sss) = Asss where Ad×d is a transforma-
tion matrix. The expression for A was derived in [9], and is
given as A = Σ−1

ss Σts, where Σss is the covariance matrix of
the source matrix Ms and Σts is the covariance between the
source and target matrices Ms and Mt. The reader is referred
to [9] for a full derivation.

A new point sss? = Bs(xxx
?
s −ωωωs) from the source robot can

then be mapped to the target robot using x̂xx?t = Bt
#Asss? +ωωωt,

where x̂xx?t is the transferred point and B# is the Moore-Penrose
inverse of B.

Local Procrustes Analysis LPA extends PA to handle
non-linear mappings, by approximating a global non-linear
manifold alignment with locally linear functions [10]. To
achieve this, LPA first clusters the two data sets Xs and Xt

into K local clusters. Then a linear mapping for each cluster
is computed using PA. A new data point from the source robot
can then be mapped to the target robot by a weighted sum of
the linear mappings.

In LPA, clustering is typically performed in the input space
of one of the robot domains (the source in our experiments)
using Gaussian Mixture Modeling (GMM), and the clusters
are transferred to the target domain using correspondence
information. Clustering in input space ensures we obtain
efficient clusters, because the input and output spaces of the
data sets are expected to be correlated. In our case the motor
space of the robot qqq is correlated with the sensory effect xxx
through kinematics of the robot, so clustering is performed
in the motor space. The reader is referred to [10] for more
information about training and knowledge transfer with LPA.

V. EXPERIMENTS

We present an analysis of knowledge transfer for accel-
erating learning of inverse kinematics using two sets of
experiments. In Section V-A we present results for transfer
between two-link planar robots, to illustrate our approach and
to compare transfer with PA and LPA. In Section V-B we
analyze knowledge transfer in a more complex scenario, where
we transfer knowledge between three-link redundant robots.

(a) Source robot. (b) Target robot.

Fig. 2: 2D task spaces of the robots.

All robots were simulated using Peter Corke’s Matlab Robotics
Toolbox [20].

We assume knowledge of source agent sensorimotor models
and that we can synthesize experience data from them. To
evaluate knowledge transfer, we compare the time taken by
the target robot to learn from scratch and the time taken to
learn when provided with prior knowledge transferred from
the source robot. We only conduct experiments for learning
inverse kinematics, since learning forward kinematics is easier
and the same procedure for transfer is applicable.

For all learning setups, we evaluate the learning progress
by testing the learned target sensorimotor model at evenly
spaced time intervals on some test data evenly distributed in
the target robot’s task space. We use one measure of progress:
the reaching rate. We calculate the error of reaching all the
test points and calculate the reaching rate as the ratio of the
points reached within some error threshold – 0.01 m in all
experiments. All the experimental results are averaged over
10 runs.

A. Simple Two-link Planar Robots

In this experiment we analyze knowledge transfer between
two 2-link planar robots with differing link lengths, in order
to illustrate our knowledge transfer method. The kinematic
parameters of the two robots are as follows: Link 1 and 2 of
the source are both 0.5 m long and those of the target are 0.7
and 0.4 respectively, and the joint limits of both robots are
[−π/2, 0] and [0.4, 2.9] for Motor 1 and 2 respectively. The
dimensionality of the motor and sensory spaces of both robots
is 2, i.e., qqqs, qqqt,xxxs,xxxt ∈ <2, and thus Xs, Xt, ξs, ξt ∈ <4. The
two robots share the same motor space, so correspondences are
easily defined in their original motor spaces.

Figure 2 illustrates the differences in distributions of the
sensory spaces of the two robots due to the differences in their
link lengths. This makes direct transfer of ξs into the target
domain infeasible. We employ PA and LPA to transfer ξs to
the target to obtain ξ̂t to initialize the target robot sensorimotor
model. For learning the target robot sensorimotor model from
scratch, we perform goal babbling for 1000 seconds.

To evaluate knowledge transfer, we perform guided explo-
ration using Alg. 1 for 60, 120, 180 and 240 seconds and
analyze the effect of transfer in the early stages as well as in
later stages of learning. After performing guided exploration
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(b) Local Procrustes Analysis.

Fig. 3: Transfer results for two-link robots.

and transfer from the source robot, the target robot continues to
explore for the remainder of the time. For all learning setups,
we evaluate the learning progress by testing the sensorimotor
model on test points evenly distributed in the task space, at
60 seconds intervals.

Figure 3a and 3b show the average results of knowledge
transfer with PA and LPA, respectively, measured in terms
the reaching rate. The black curve indicates the progress of
the target robot learning from scratch, and the other curves
indicate learning with knowledge transfer where the transfer
model was learned and transfer applied at different intervals.
We observe that the learning progress is boosted instantly
when the knowledge is transferred using LPA, and the target
robot achieves higher learning rates compared to learning
from scratch. However, transfer is beneficial with respect to
the final learning performance when applied at 180 seconds
and beyond. This is because at 180 seconds there is enough
correspondence data collected by the target robot and LPA
achieves a better transfer accuracy when given more data [10];
otherwise negative transfer can occur.

Procrustes Analysis on the other hand fails to accelerate
learning, with only a slight boost in progress when transfer
is applied early. This is due to the linear mapping failing to
capture the complex non-linear relationship between the robot
kinematic spaces. These results here confirm those of [10].
Although the target robot continues to explore on its own
after transfer, the negative transfer caused by the limited linear
mappings of PA significantly degrades the learned nearest
neighbor-based sensorimotor model.

B. Redundant Planar Robots

In this experiment we analyze knowledge transfer in a more
complex scenario with two 3-link rendundant planar robots
with kinematic parameters as follows: Link 1 of the source
is 0.4 m long, and Link 2 and 3 are 0.3 m, whereas Link 1
and 3 of the target are 0.5 m long and Link 2 is 0.25 m. The
joint limits of both robots are [−π/2, π/2] for Motor 1 and
3 and [0, π/2] for Motor 2. The redundancy in the systems
results in more complex mappings between the joint and task
spaces, and the mappings required between the robots is also
more complex. This is particularly due to the many joint angle
configurations mapping to the same points in the task space.
Figure 4a shows the task spaces of the source and target robots.

(a) Three link robot spaces.

(b) Three link transfer.

Fig. 4: Transfer with LPA for three link robots.

Due to the high dimensionality of the motor space and a
larger sensory space, learning sensorimotor models requires
more exploration; and thus we perform goal babbling for
5000 seconds to learn from scratch, and apply transfer at
900 seconds. Figure 4b shows the results of transfer using
LPA, in which there is an instant performance boost; however,
this degrades after 1800 seconds, indicating the occurance of
negative transfer. This is in contrast with the simple, non-
redundant case in Section V-A, in which no negative transfer
occured when transfer was applied at 180 seconds and beyond.

We noticed that LPA achieves a transfer accuracy of about
92.75% on a threshold of 0.01 m. Due to the use of an
instance-based sensorimotor model (the nearest neighbor re-
gression model), the 7.25% of the transferred data is inaccurate
and thus negatively impacts the prediction of the sensorimotor
model.

We illustrate this further in Figure 5, in which we apply
transfer for different transfer thresholds based on the ground-
truth target robot data. Here, we only use points in the target
domain whose transfer errors, as compared to the ground-truth,
is below some threshold. We consider thresholds between
0.001 m and 0.05 m.

Results in Figure 5a show that for the threshold of 0.001
there is only a small improvement when transfer is applied, be-
cause only a few points could be transferred with an accurancy
within the threshold, resulting in very little knowledge being
transferred – about 32.1% of source knowledge. For thresholds
of 0.005 and 0.01 there is a bigger improvement – with
82.6% and 92.75% of source knowledge reused respectively,
with the former leading to a better convergence rate. Finally,
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Fig. 5: Transfer analysis for three-link robots.

thresholds of 0.02 and 0.05 have a slightly worse performance
boost than 0.005 and 0.01 and their asymptotic performance
suffers from negative transfer, with 98.25% and 99.79% of
source knowledge reused. This is because bigger thresholds
allow more erroneous points to be reused by the target robot,
therefore degrading the performance.

Figure 5b shows transfer for different thresholds evaluated
at different time steps, indicated by the percentages of the
total time it takes to learn from scratch. In all evaluations,
transfer achieves the best performance at the threshold of
0.005, and the benefit of transfer is maximum in the early
stages of learning, and over time the target robot eventually
learns an accurate sensorimotor model. These results show that
transfer with LPA in this case is beneficial in the early stages
of learning, but negative transfer degrades the asymptotic
performance of the target robot.

We suspect this is due to the use of instance based nearest
neighbor regression model for learning the sensorimotor mod-
els, since it stores and uses all the data in memory, including
points that were inaccurately transferred even though it obtains
more useful data as it continues learning.

VI. CONCLUSIONS

This paper investigated the improvement of incremental
learning of kinematics models for manipulators in a de-
velopmental robotics context. Our results demonstrated the
possibility and benefit of knowledge transfer, and discovered
that in more complex scenarios with redundant robots negative
transfer occurs which degrades the learning performance of the
target robot.

As future work, we suggest weighting transferred data less,
especially since the target robot generates new data as it
continues to explore. Alternatively, parameterized model rep-
resentations can be used, such as neural networks, polynomial
regression, etc., whose parameters are updated when new
data is generated. This has the potential that the parameters
initialized with knowledge transfer may be good enough in the
early stages of learning, compared to learning from scratch,
and will be updated by new data and quickly adapt, thereby
forgetting the inaccurately transferred knowledge.
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