
Knowledge Transfer for Learning Robot Models via Local Procrustes
Analysis

Ndivhuwo Makondo1 Benjamin Rosman2 Osamu Hasegawa1

Abstract— Learning of robot kinematic and dynamic models
from data has attracted much interest recently as an alternative
to manually defined models. However, the amount of data
required to learn these models becomes large when the number
of degrees of freedom increases and collecting it can be a time-
intensive process. We employ transfer learning techniques in
order to speed up learning of robot models, by using additional
data obtained from other robots. We propose a method for
approximating non-linear mappings between manifolds, which
we call Local Procrustes Analysis (LPA), by adopting and
extending the linear Procrustes Analysis method. Experimental
results indicate that the proposed method offers an accurate
transfer of data and significantly improves learning of the
forward kinematics model. Furthermore, it allows learning
a global mapping between two robots that can be used to
successfully transfer trajectories.

I. INTRODUCTION

Learning robot models from data is typically employed
as an alternative to manual programming when the physical
parameters of the robot are unknown or inaccurate. Unknown
non-linearities can be taken into account as the model is es-
timated directly from measured data, while they are typically
neglected by the standard physics-based modeling techniques
[1]. Furthermore, modern robot systems are complex to
model manually and are becoming increasing more diverse
and widespread. As a result, learning of robot kinematic
and dynamic models has attracted much interest and has
been used successfully in recent years [1]–[3]. However, this
requires a large amount of data as the number of degrees of
freedom (DoF) increases.

Collecting data samples to learn these models can be a
time-intensive process. This problem becomes considerably
worse when we have multiple robots, each with different
structural properties (link dimensions, DoFs, etc.), that have
to go through the same laborious process so as to learn
models. If at least one robot (source) has collected sufficient
data to learn its models it would be helpful to leverage this
so as to reduce the need and effort to collect data for every
other robot (target). In this case, knowledge transfer between
robots would be desirable.
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Fig. 1: Knowledge transfer process. The source robot has collected sufficient data
(blue) to learn its models, whereas the target robot has only sparse data (red). The
mapping function is learned using the corresponding training data (red) from both
robots. The light gray background in the target space is the workspace of the target
robot to be inferred. The dark cylinders are the joints – with the base at (0,0) –
connecting the two red links.

In this study, we investigate how to facilitate transfer of
kinematic and dynamic models between robots, in order to
improve the learning speed of these internal models, by using
data collected from other robots. We consider a scenario
where a source robot has collected sufficient data to learn
an accurate kinematic (or dynamic) model, whereas a target
robot has only a small set of training data, insufficient for
model learning, as shown in Fig. 1. Additionally, the source
robot might have learned several tasks and the target robot
is expected to learn these from the source robot. We are
interested in utilizing the “knowledge” gained by the source
robot when learning its internal models and tasks in order
to improve the learning speed of the internal models and the
tasks of the target robot.

Knowledge transfer in machine learning has been studied
under the concept of transfer learning [4]. The core idea
is that experience gained in learning to perform a task in
one domain can help improve learning performance of the
same or a similar task in a different but related domain. In
robotics it has mainly been used in a reinforcement learning
(RL) context – where knowledge from source tasks is used
to learn target tasks faster than if transfer was not used [5] –
and has recently been adopted for robot models [6]. We also
adopt transfer learning techniques in this work to facilitate
knowledge transfer for robot models.

The motivation behind transfer learning is the ability of
humans to retain and use knowledge acquired previously to
solve new tasks faster. Humans do not only learn from their
own past experiences but also from those of others by means
of knowledge sharing. For example, pupils use knowledge
gained from their teachers to enhance their skills in order to
solve problems. This intuition motivates our work.

The remainder of this paper is organized as follows: a
brief survey of robot model learning is given in Section I-A.



Then, we present a general introduction to transfer learning
in Section I-B, also highlighting related work. Section II lays
the framework of our approach and introduces an algorithm
adopted in this work, and in Section III we detail our
proposed algorithm. In Section IV we show experiments
where our proposed algorithm improves robot model learning
and compare to an existing algorithm, while conclusions and
future work are discussed in Section V.

A. Robot Model Learning

Robot model learning is the process whereby robots au-
tomatically generate internal models based on information
which is extracted from the data streams available to the
robot [1]. Based on these models, robots are able to interact
with and influence the environment around them. Typically
considered models are forward kinematics [7], inverse kine-
matics [2], [8], inverse dynamics [3], [7], [9] and operational
space control [10], [11]. These models are typically learned
by employing well known regression techniques; with an ex-
ception of inverse kinematics, which is an ill-posed problem
and requires specific solutions. For more information about
robot model learning, the reader is referred to a survey [1].

In order for these models to be effectively used much data
needs to be acquired. This process can be expensive, but a
number of techniques for dealing with this exist, including
goal babbling [12]. Typically in kinematics modeling the
models need to be defined everywhere in the robot domain. In
contrast, models for inverse dynamics and operational space
control may be only defined in the domain of the task to be
learned and that task may not necessarily cover the entire
robot domain. Thus, less data is required for these compared
to forward kinematics. In this paper, we primarily focus on
speeding up learning of models that are defined in the entire
domain of a robot such as forward and inverse kinematics,
but our method is applicable to the other models mentioned
above.

B. Transfer Learning

Transfer learning is applied in cases where the training and
test data are drawn from different feature spaces and different
distributions [4]. This is because standard machine learning
techniques would typically require new training data when
the distribution changes, which can be expensive to collect.
In this case, learning can be improved by supplementing
the new dataset with additional datasets from the same
or different domains. Transfer learning requires a source
task associated with the source domain and a target task
associated with the target domain. In our case of robot
learning, the domain could refer to the joint space and the
end-effector workspace of the robot, and the task could be
one of the models to be learned, e.g., inverse kinematics.
Several approaches have been developed including instance-
based transfer learning [13], feature-based transfer learning
[14], parameter sharing [9] and relational-knowledge-transfer
[15]. Transfer learning has been widely applied [4], with
applications including text categorization [16], Naive Bayes
classification [17], boosting [13] and WiFi localization [14].

There have been only a few attempts to apply transfer
learning for robot models. Bocsi et al. [6] recently proposed
a method to transfer robot models using the Procrustes
Analysis algorithm (PA) [18]. Their goal is to transfer a task
from the source robot to the target robot in order to speed
up learning of the target task, by using additional data from
the source task. This approach is similar to that of Pan et
al. [14] in that they use dimensionality reduction to find a
common latent feature space of the source and target data.
They then find a linear transformation between the source
and target in this latent space. This creates a bridge through
which data can be transferred between the two data spaces.

In this paper we adopt and extend the same framework.
However, instead of transferring knowledge about a single
task [6], we are interested in learning a global mapping
between the source robot domain and the target robot
domain, similar to the Heterogeneous Domain Adaptation
(HDA) framework for classification problems [19]. This will
allow all tasks that are learned in the source domain to be
automatically transferred to the target domain without having
to learn an independent mapping for each task. We show in
our experiments that applying a linear mapping function is
limited and we thus propose an extension to the Procrustes
Analysis algorithm, which we call Local Procrustes Analysis
(LPA), to approximate non-linear mappings.

II. KNOWLEDGE TRANSFER IN ROBOT LEARNING

The aim of our work is to transfer a model from a source
robot to a target robot in order to improve the learning
process of the target tasks. We assume the source and target
datasets, Ds = {θi,xi}Ns

i=1 and Dt = {θi,xi}Nt
i=1, are

samples from the source and target domains χs ∈ Rds+ms

and χt ∈ Rdt+mt , respectively; where Ns and Nt are the
sizes of the respective datasets, di is the number of DoFs
of robot i and mi is the corresponding number of variables
representing the end-effector pose. In each case, the vector θ
contains the joint angles and the vector x contains the end-
effector pose variables. For simplicity we present our work
for kinematic models, and specifically forward kinematics.
However, our method can be applied to the other models
described above. For models that track a specific trajectory
such as inverse dynamics and operational space control, the
datasets Ds and Dt represent the data collected in the
domain of the task and not the robot domains. Our objective
is to find a mapping f that enables us to map points from the
source domain χs to the target domain χt, i.e., f : χs 7→ χt,
using the samples in Ds and Dt.

We consider a case where the source robot has collected
sufficient data to learn its models whereas the target robot
has not, i.e., Nt � Ns, and we assume that we know
correspondences between a subset of Nt points of the source
data and all of the target data. In practice, this is not always
possible and some optimal matching of points is required1.
In general, the dimensions of Ds and Dt may not match

1This is related to the correspondence problem often encountered in the
programming by demonstration (PbD) framework [20].



due to the robots having different DoFs and different end–
effector workspace dimensions, i.e., ds 6= dt and ms 6= mt.
To overcome this problem, Bosci et al. [6] use dimensionality
reduction to find a low dimensional representation of the
datasets Ds and Dt with the same dimensionality and then
compute the linear mapping in this latent space. In our work
we assume that, if required, the datasets have already been
mapped into this latent space. Our goal is then to find a non-
linear mapping between the two datasets. We now present the
Procrustes Analysis algorithm [6], [18] for modeling linear
mappings, which we adapt in Section III to build our non-
linear mapping method.

A. Procrustes Analysis

In the Procrustes Analysis method, the goal is to learn a
mapping f that maps points between the source manifold Zs

and the target manifold Zt, where Zs ⊂ χs and Zt ⊂ χt.
The manifolds are assumed to be of the same dimension and
contain the same number of paired elements, i.e., zsi matches
zti for i = 1, . . . , Nt, and Zs = {zsi }

Nt
i and Zt = {zti}

Nt
i .

This method was developed by Wang and Mahadevan [18]
and was adopted by Bocsi et al. [6] for robot models. We
present it here as originally described [6] and then introduce
our extension to non-linear mappings in the next section.

First, the data is centered by subtracting the mean and
then it is whitened by dividing by the standard deviations as
follows,

s = Bs(zs − ωs), (1)

t = Bt(zt − ωt), (2)

where s ∈M s and t ∈M t are the standardized elements.
The values ωs = E{Zs} and ωt = E{Zt} are the means
of the data, where E{·} denotes the expectation operator.
Matrices Bs and Bt can be obtained using the Singular
Value Decomposition (SVD) of the covariance matrices of
Zs and Zt respectively, and are such that the data M s and
M t are whitened.

The manifold alignment function is modeled as a linear
mapping f : M s 7→ M t, with f(s) = As, where
AJ×J is a transformation matrix with J as the dimension
of the manifolds. Wang and Mahadevan [18] minimized
‖T − f(S)‖F where S and T are matrices formed from the
data of M s and M t, and ‖·‖F is the Frobenius norm. Bocsi
et al. [6] minimize the expected loss of the transformation
instead. We find the parameters A such that the expectation
of the error of the transformation L(A) is minimized, i.e.,

A = arg min
r

L(A) (3)

with
L(A) = E{(t−As)T (t−As)}

= tr(Σtt − 2ATΣts +ATΣssA)
(4)

where Σss, Σtt and Σts are covariance matrices and L
is a loss function. The minimization can be performed by
setting the derivative of L(A) to zero. After differentiation
we get 0 = −2Σts + 2ATΣss, giving

A = Σ−1
ss Σts. (5)

A new point s? = Bs(zs?−ωs) in the source manifold can
then be mapped using ẑt? = Bt−1

As?+ωt, where ẑt? is the
transferred point. This method works well for manifolds that
are linear transformations of each other. In the next section,
we detail our proposed method that extends to non-linear
manifold mapping.

III. LOCAL PROCRUSTES ANALYSIS

Our method, LPA, was inspired by locally weighted meth-
ods [3], [7], [21]. The core idea of these methods is that a
non-linear function is approximated by weighting the outputs
of locally linear functions. In practice, the data is clustered
online, such that each cluster is associated with a linear
model, and the prediction of a query point is a weighted sum
of the outputs of the M linear models that are closest to the
query point. The weights are computed using a similarity
measure between clusters and the query point based on the
Gaussian kernel [7]. The same idea could be applied with
local Gaussian Processes (GP) [3].

In this paper, we approximate a non-linear mapping be-
tween two manifolds by using locally linear mappings. We
apply the Procrustes Analysis method presented in Section
II-A to model each of our linear mappings. To this end, we
cluster the data into K clusters and compute the mapping
for each cluster. Algorithm 1 shows the LPA process. The
symbols will be discussed throughout the explanation in
the next section. In order to obtain meaningful clustering
information, we reduce the dimensionality of the datasets
to some latent space wherein the variance of the data is
maximized. This is because our data may be redundant, e.g.,
the end-effector workspace of a robot arm is related to the
joint space through kinematic equations. In our experiments
Principal Component Analysis (PCA) proved sufficient but
any dimensionality reduction technique can be used, as long
as it allows new points to be mapped onto the latent space.

A. Clustering and Mapping

The assumptions we make in LPA are that the domains are
locally continuous and smooth. This means that points in the
same local neighborhood in the source domain are mapped
to the same neighborhood in the target domain, and that they
share the same locally linear mapping. Our goal then is to
represent the two datasets Ds and Dt by a mixture of K

Algorithm 1 Local Procrustes Analysis

1: IN: Training set Zs and Zt

2: (Zs,Zt, fpca) ⇐ PCA(Zs, Zt)
3: (Π, K) ⇐ initEM(Zs, Zt) {see Section III-B}
4: Π ⇐ fitGMM(Zs, Π, K)
5: for each cluster k ∈ [1,K] do
6: Compute Bs

k, Bt
k, ωsk and ωtk from (1) and (2)

7: Compute Ak from (5) {see Section II-A}
8: end for
9: Θ = {Ak,B

s
k,B

t
k,ω

s
k,ω

t
k}

10: OUT: {Π, Θ, fpca}



regions where corresponding points in the datasets map to the
same region, as shown in Fig. 2. We select Nt corresponding
points, Zs ⊂ Ds and Zt ⊂ Dt, in both datasets as
our training data. We employ Gaussian Mixture Modeling
(GMM), where the Gaussian mixtures correspond to the local
regions, trained using the Expectation–Maximization (EM)
algorithm, because it enables us to naturally interpolate the
output of local mappings using component responsibilities
as weights.

A GMM is represented by three parameters: the mixing
coefficients πk, the mean vectors µk and the covariance
matrices Σk. The total probability density is then defined
as a superposition of K Gaussian densities of the form

p(x) =

K∑
k=1

πkN (x | µk,Σk), (6)

and the components’ responsibilities are defined as

γk =
πkN (x | µk,Σk)∑K
j=1 πjN (x | µj ,Σj)

, (7)

where N is a multivariate normal distribution. γk can be
viewed as the responsibility that component k takes for
explaining the point x.

We fit a GMM to the source domain in a latent space
defined by the function fpca and cluster the the projected
data Zs of Zs by assigning points to components with the
highest responsibilities. We use this clustering information to
cluster data in the target domain (Zt projected from Zt), i.e.,
points in the target domain that correspond to points in the
same cluster in the source domain are clustered together. This
means that the clustering is only done on the source domain
and then transferred to the target domain. When training a
GMM using the EM algorithm, we need to determine the
number K of components and initialize the parameters Π =
{πk,µk,Σk}. This is done by the function initEM in step
3 of Algorithm 1 and will be discussed in detail in the next
section.

We then use this information to compute mappings
for each cluster in the original dimensions. We represent
mappings of the set of clusters by the parameter Θ =
{Ak,B

s
k,B

t
k,ω

s
k,ω

t
k} where the transformation matrix Ak

is computed from (5), matrices Bs
k and Bt

k are computed
from (1) and (2), and mean vectors ωsk and ωtk are also
computed from (1) and (2).

Fig. 2: Illustration of LPA for K = 2. The orange arrows correspond to mappings
between Gaussian kernels in the two spaces and the green arrows correspond to the
kernels themselves.

B. Initialization of the GMM

The performance of the EM algorithm is dependent on
the initialization of its parameters. There are many ways
of initializing the EM algorithm and we do not put any
restrictions on the choice of method to employ. Here we
present our own initialization method that automatically
estimates the number K of Gaussian components required.

Algorithm 2 shows the pseudo-code of our initialization
method. It employs a hierarchical clustering scheme that
starts with one cluster and splits it into two if some con-
ditions are not met. This is repeated for all clusters at each
iteration until the conditions are satisfied. The datasets Zs
and Zt are projected from their corresponding datasets in
the original dimension in step 2 of Algorithm 1. The vector
h contains indices hn where hn = k indicates that ẑsn ∈ Zs
and ẑtn ∈ Zt belong to cluster k (1 ≤ n ≤ Nt). ck is the
mapping error of a cluster and is defined as follows

ck =
1

Nk

√√√√ Nk∑
n=1

‖Bt
k
−1
Aksn + ωtk − ẑtn‖2, (8)

where Nk is the number of points in the cluster, sn is
computed from ẑsn using (1), ẑsn and ẑtn are the latent
points in the cluster that are in correspondence with each
other in the source domain and target domain respectively.
If this mapping error is greater than some threshold cmin, the
cluster is split into two using the k–means algorithm in step
7, and if the number of points in the resulting clusters, NC1

and NC2
, are less than some threshold Nmin, the cluster is

not split.

Algorithm 2 Initialize GMM

1: IN: Training sets Zs,Zt
2: Initialize index vector h to ones and K = 1
3: while not terminated do
4: for each cluster k ∈ [1,K] do
5: Compute ck on data belonging to cluster k
6: if ck > cmin then
7: Split cluster Ck into two (Ck,1 and Ck,2)
8: if NCk,1

≥ Nmin and NCk,2
≥ Nmin then

9: Update index vector h
10: end if
11: end if
12: end for
13: Update number of clusters K
14: end while
15: OUT: K, h

The threshold cmin reflects the error that one is willing
to tolerate and in our experiments we set this to 0.001 m.
If one can tolerate large errors and one cluster is sufficient,
our algorithm is equivalent to the original PA. The threshold
Nmin ensures that in cases where we do not have enough
training data small clusters are not split. This value is set
to be at least the dimension of the original datasets, i.e.,
Nmin ≥ ds + ms. If a cluster is split the index vector h



is updated accordingly to reflect this. Finally, the number of
clusters K is updated according to how many clusters were
split. This procedure terminates when there are no further
clusters to split.

The output of this procedure is the number of clusters and
the assignment of points to clusters represented by the index
vector h. In practice, we run the initialization procedure
multiple times and choose parameters with the highest log-
likelihood estimate. This is performed by the function initEM
in step 3 of Algorithm 1. This result is then used in function
fitGMM in step 4 of Algorithm 1 to train the GMM. This is
repeated until the EM algorithm converges.

C. Prediction

Once the parameters {Π, Θ, fpca} of our model have
been learned, we can use the model to transfer points from
the source domain to the target domain. For a point ds? ∈Ds

in the source domain to be transferred to the target domain,
we map it onto the latent space by fpca to obtain point p?
and compute each Gaussian component’s weights using (7),

γk =
πkN (p? | µk,Σk)∑K
j=1 πjN (p? | µj ,Σj)

. (9)

Some components far from the query point will have zero
responsibilities and therefore will have no effect on the
mapping. To speed up the process for cases with many
clusters, one can first find M < K nearest components to
the query point p? and only use those in (9). Finally, we map
the query point ds? in the original dimensions as follows

dt? =

K∑
j=1

γk(Bt
k
−1
Akz

s
k? + ωtk), (10)

where zsk? = Bs
k(ds?−ωsk) from (1) and K can be replaced

by M when the M nearest components are used.

IV. EXPERIMENTS

We conducted experiments on 2 DoF and 3 DoF robots
to evaluate the models transferred with our method, and
compare against the linear PA [6]. We aim to evaluate the
performance of our mapping function and so use robots with
the same number of DoFs, although in general this need
not be the case. Robots were simulated using the Robotics
Toolbox [22] in order to generate the data.

A. 2-Link Planar Robots

In this experiment we evaluate the effectiveness of our
mapping algorithm on 2 DoF robots. Note that the visualiza-
tion is done in a 2D end-effector workspace and the actual
datasets are 4 dimensional, i.e., ds = dt = 2 and ms =
mt = 2. We compute a mapping between two 2-link planar
robots, from a small set of corresponding points, for speeding
up learning of forward kinematics on the target robot. For
both robots, the range of the first joint is {0, π2 } radians
and for the second joint is {0, π} radians. We performed
two experiments: in experiment 1, the source robot has link
lengths of 0.3 m and 0.25 m, respectively, and the target

robot has link lengths of 0.6 m and 0.2 m, respectively; and
in experiment 2, we varied the link lengths of the target
robot while keeping the links of the source robot fixed. We
find correspondences in the joint space by pairing together
points from both robots that correspond to the same joint
space position. We set the dimension of the latent space for
clustering to be 3 and Nmin = 7 for the two experiments.
Fig. 4 shows that the end-effector workspaces of the source
robot (Fig. 4a) and the target robot (Fig. 4b) for experiment
1 are not linearly transformable.

We use the LWPR [7] algorithm – one of the state-of-the-
art algorithms in robot model learning [3] – to learn forward
kinematics of the target robot as the ground-truth model
from 10 000 uniformly generated points (RMSE = 0.0061
m). Fig. 3 shows the performance comparison of the linear
method and our non-linear method for different training data
sizes for experiment 1. All results are averaged over 100
runs. This experiment shows that LPA offers a more accurate
transfer of data and, given enough training data, no further
learning for the target robot is required to obtain an accurate
model. We achieve convergence to the ground-truth model
with about 200 data points. Without transfer, this would not
have happened until well over 1000 points. Also, although
the linear method converges slightly faster, it does so to a
much poorer model.

Fig. 4 shows the error distribution in the source workspace
and the target workspace for an instance with 100 training
points. It also shows the Gaussian components fitted to
the training data, with the ellipses indicating one standard
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Fig. 3: Mapping and model errors as functions of training data size. (a) The error in
the mapping is measured by the RMSE of the transferred points on the ground-truth
data. (b) The error in the transferred model is measured by testing 10 000 random
samples from the target robot on the different forward kinematics models.



(a) Source workspace.

(b) Target workspace.

Fig. 4: Error distributions. The scale of the color bar is meters and for visualization
purposes, errors above 1 cm are capped at 1 cm. The ellipses indicate one standard
deviation of each Gaussian component.

deviation of each component. Large errors occur in regions
where there are either no points or the required transfor-
mation is extremely non-linear. In both cases, adding more
training data would reduce the mapping errors. Fig. 5 shows

(a) Local Procrustes Analysis.

(b) Procrustes Analysis.

Fig. 5: Modeled workspace regions using LPA and PA.
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Fig. 6: Mapping and model errors as functions of difference in robot links.

the transferred data of LPA and PA for a training set of
100 points, superimposed over the ground-truth data, to
highlight the resulting structures of the transferred data for
both methods.

Fig. 6 shows the results for experiment 2. We incremented
each link by 0.1 m from 0.1 to 1.5 m and again used
a training set of 100 points. The x- and y-axes are the
difference between the robots’ link 1 and link 2, respectively.
We observe that both methods have a zero error along a line
in the x-y plane. This occurs when the ratio between the
links is the same for both robots, i.e., Ls

1

Ls
2

=
Lt

1

Lt
2

where Lsi
and Lti indicate the i-th links of the source robot and target
robot, respectively. In this case, the underlying manifold of
the target robot is a scaled version of the source robot and
therefore the underlying relationship is linear. As this ratio
changes the error of the linear mapping increases, while
that of LPA stays relatively low. Furthermore, LPA still
manages to improve the learning of the target model when
the difference of the robots is significant and most of the
model errors are under 1 cm. Note that errors are high when
the ratios are very dissimilar but these can be reduced with
more training data.

B. Forward Kinematics of 3 DoF Robots

In this experiment we evaluate the effectiveness of our
mapping algorithm on 3 DoF robots. The datasets consists
of 3 joint variables, i.e., ds = dt = 3, and 3 end-effector
variables, i.e., ms = mt = 3 and the datasets are thus 6
dimensional. In this experiment, clustering the data in the
original 6 dimensional space proved sufficient and we set
Nmin = 10. We map data between two 3 DoF robots with



two links for speeding up learning forward kinematics on the
target robot as before. The links’ lengths of both robots are
the same as in the previous experiment and the joint limits
are as follows: θ1 ∈ {−π2 ,

π
2 } and θ2, θ3 ∈ {0, π2 }.

We compute the mappings for different training data sizes,
ranging from 500 to 10 000 and the size of the ground-truth
is 100 000. Results are averaged over 10 runs. As shown in
Fig. 7a, the error of our method decreases significantly with
more training data, confirming that it successfully captures
the non-linear relationship. The linear method converges to
a suboptimal transformation and cannot improve when given
more data. Fig. 7b shows the success rate of the mapping
functions, which is the percentage of points with total error
less than 1 cm. This shows the number of points which were
accurately mapped according to this threshold.

Transferring using LPA slightly improves learning of the
forward kinematics model on the target robot using LWPR,
as shown in Fig. 8a. The linear method fails to improve
learning of the model because a high percentage of points
are inaccurately mapped. Fig. 8b shows the success rate of
the models, which is the percentage of test points with error
less than 1 cm.

C. Trajectory Tracking Transfer

In this experiment, we also used two 3 DoF robots with
two links as in the previous experiment. The links of the
source robot are both 0.4 m and those of the target robot
are 0.3 and 0.6 m. The joint limits of both robots are as
follows: θ1 ∈ {−π2 ,

π
2 }, θ2 ∈ {0,

π
2 } and θ3 ∈ {0, −π2 }. The

models of the source and target robots are shown in Fig. 9
and Fig. 10, respectively, at the same end-effector position.
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Fig. 7: Mapping performance for varying training data sizes.
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Fig. 8: Model performance for varying training data sizes.

The goal of the experiment was to transfer a trajectory from
the source robot to the target robot accurately. We used a
numerical inverse kinematics method to collect training data
in the workspace common to both robots and then we used
the data to learn a global mapping between the two robots
offline, using both linear and non-linear methods. We then
tracked the trajectory – the blue line in both Fig. 9 and 10
– with the source robot in order to collect the joints data
corresponding to the workspace trajectory, and transfer it to
the target robot – black for the linear method and magenta
for our non-linear method. Our method accurately transfers
the trajectory to the target robot whereas the linear method,
as expected, is not as accurate.

V. DISCUSSION

Model learning has become prevalent in robot program-
ming. We are interested in reducing the time spent on

Fig. 9: 3D workspace visualization of the trajectories.



Fig. 10: 3D workspace visualization of the trajectories.

learning models of the kinematics of a target robot, by
transferring from a well-understood model from a source
robot. We have shown that the transformation needed to
transfer data from one robot space to another in general is
not linear and our experiments show that we can improve
transfer learning for kinematic models, from a small training
set, by using non-linear mappings. We have also shown
that given enough data our proposed method can accurately
transfer models such that no further learning of the target
task is required. Also, our method can learn a global mapping
between robots; this mapping can then be used to transfer
trajectories between the robots. Although our method worked
well for kinematic models and can be easily extended for
dynamic models, future work will explore extensions for
transferring dynamic models. The amount of training data
required in the 3 DoF case grew compared to the 2 DoF case
and we expect it grow fast with the number of dimensions.
However, we expect our method to be more data efficient
than other methods. This will also be examined in future
work. Combining this approach with goal babbling for high
dimensional cases is another avenue worth exploring.

The limitation of our algorithm is that it requires corre-
spondences between the datasets to be provided. An algo-
rithm that automatically finds correspondences would remove
the need for human supervision in the data collection stage.
Also, the current version works in a batch mode and this
can be restrictive in high dimensions. Modifying this to run
online and incrementally will enable users to build local
mappings on the fly in regions of interest and update them
as more data is acquired. The probabilistic nature of our
algorithm allows us to find regions with low confidence and
we can use this to provide more data in an active learning
fashion. Moreover, we can take actions against points with
low probabilities to avoid negative transfer of knowledge.
We plan to implement these features in the near future.
We will also focus on combining our method with suitable
dimensionality reduction techniques in order to apply it to
robots with different numbers of DoFs.
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