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Abstract
Patients with semantic dementia (SD) present with remark-
ably consistent atrophy of neurons in the anterior temporal
lobe and behavioural impairments, such as graded loss of
category knowledge. While relearning of lost knowledge
has been shown in acute brain injuries such as stroke, it
has not been widely supported in chronic cognitive dis-
eases such as SD. Previous research has shown that deep
linear artificial neural networks exhibit stages of seman-
tic learning akin to humans. Here, we use a deep linear
network to test the hypothesis that relearning during dis-
ease progression rather than particular atrophy cause the
specific behavioural patterns associated with SD. After
training the network to generate the common semantic fea-
tures of various hierarchically organised objects, neurons
are successively deleted to mimic atrophy while retraining
the model. The model with relearning and deleted neurons
reproduced errors specific to SD, including prototyping
errors and cross-category confusions. This suggests that
relearning is necessary for artificial neural networks to
reproduce the behavioural patterns associated with SD in
the absence of output non-linearities. Our results support
a theory of SD progression that results from continuous
relearning of lost information. Future research should
revisit the role of relearning as a contributing factor to
cognitive diseases.

Keywords: Semantic Dementia, Linear Neural Networks, Re-
learning, Anterior Temporal Lobes, Representation Learning

Introduction
Patients with semantic dementia (SD) show a particular pro-
gression of behavioural impairments which result from the
disease (Hodges et al., 1995) (examples shown in Figure 1(b)).
Specifically, in SD errors of hierarchically organised seman-
tic knowledge occurs first for fine grained distinctions at the
bottom of a hierarchy (termed category coordinate errors) and
progresses upwards until errors are made for more semanti-
cally distinct objects (cross-category errors) and fine grained
distinctions are forgotten (superordinate errors) (Jefferies &
Lambon Ralph, 2006). There is also a distinct typicality effect
where patients are better able to identify frequently seen ob-
jects of a category with very typical features. This results in
prototyping, where all objects of a category are named as the
most stereotypical object in the category. SD has been linked
to bilateral atrophy of the anterior temporal lobe (ATL). This find-
ing in conjunction with converging evidence from brain imaging
(Devlin et al., 2000; Visser et al., 2010) has led to the region be-
ing regarded as an amodal semantic hub (Jackson et al., 2021).

In this work, we explore the ability of simple linear neural
network models to reproduce the pattern of behavioural
impairment from SD. Such a model has been used successfully
in the past to reproduce regularities in the development of
semantic cognition during early childhood (Saxe et al., 2019).
The networks hidden layer can be thought to represent the
ATL. We test the hypothesis that disruption (atrophy) to the
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Figure 1: As with a patient with SD ((b) taken from Hodges
et al. (1995)), the model (a) makes category coordinate errors
first and progresses to cross-category and superordinate
errors. Additionally, if odd data points are shown twice as often
during relearning (Ŷrelearn- f req) then the more frequently seen
features will dominate the representations. As a result, the
less frequent objects are mistaken for the prototypical ones
when making category coordinate and cross-category errors.
Thus, a linear network with relearning reproduces the pattern
of errors and prototyping effect associated with SD in humans.

hidden layer itself is not sufficient as a model of SD, but that
progression of impairment is better explained by a combination
of atrophy and relearning.

Methods

Model We trained a linear neural network to describe the fea-
tures of an object in a semantically hierarchical dataset, where
features are shared based on how close objects are in the
hierarchy. In contrast to prior approaches (Rogers et al., 2004),
we do not rely on output non-linearities (specifically thresh-
olding) to reproduce SD with our model. Instead, our network
outputs real values representing the network’s confidence in
the presence of each feature. This allows for more direct com-
parison with human behavioural tasks with fine-grained actions
or responses, such as picture selection tasks (Jefferies & Lam-
bon Ralph, 2006) or object drawing tasks (Bozeat et al., 2003).

Training regime We first trained the network to convergence
using (full-batch) gradient descent from small initial weights.
This results in the network learning weights which identify the
hierarchical nature of the input and map each distinction in
the hierarchy to a corresponding set of output features. After
convergence we deleted neurons in the hidden layer to model
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Figure 2: Setup and Primary Results: The linear network (W 2W 1) learns to map hierarchically structured data
(X ) to the corresponding features (Ytrue). We model SD by deleting hidden neurons after training is complete. We
compare two models: one with no relearning (Ŷbase) and one with relearning (Ŷrelearn). A model with no relearning
loses information across all levels of the hierarchy at once, contradicting the patterns associated to SD. A model
with relearning loses specific feature information before general features, consistent with what is expected of SD.

Model Level 1 Error
(Percentage)

Level 4 Error
(Percentage)

Linear; n = 0 58.25 79.88
Linear; n = 200 0.0 62.50

ReLU; n = 0 51.50 84.50
ReLU; n = 200 2.75 62.50

Table 1: Relearning is necessary for models with linear and
ReLU activations on the hidden layer to lose fine grained
features before higher-level features due to atrophy in the
hidden layer. Note that the output layer is still linear for
all models (error is as a percentage compared to a naive
model to aid comparison between hierarchy layers).

atrophy and retrained the model for n epochs after each dele-
tion. This was repeated until no hidden neurons remained. A
summary of the hierarchical dataset, network and findings are
shown in Figure 2.

Results
The behavioural impacts of atrophy depends on how informa-
tion is distributed in the hidden neurons and are represented
by the errors made by the network. Our results show that a
linear network is unable to reproduce the behaviour patterns
of SD without relearning (n = 0) as the loss of semantic
knowledge occurs for all levels of the hierarchy at once (see
Ŷbase in Figure 1(a) and the first row of Table 1). However,
if relearning is used (n > 0) the network reproduces these
patterns (see Ŷrelearn in Figure 1(a) and the second row of
Table 1). Table 1 also shows that the same effect can be seen
when non-linearity is used on the hidden layer of the network.

Specifically, the network makes errors on the fine grained

semantic features after fewer neurons are deleted (less
atrophy) than for higher-level semantic features. Thus, cate-
gory coordinate errors occur first. As the atrophy increases
the network makes errors on semantic features for higher
levels of the hierarchy (cross-category errors) and produces
near 0 output for fine grained features which are forgotten
(superordinate errors). An example of the pattern of errors from
the model is shown in Figure 1(a) and can be compared to the
example progression of the human patient from Hodges et al.
(1995). Finally, Figure 1(a) also demonstrates that our model
is sensitive to the frequency that it encounters features with.
The model more rapidly forgets the semantic features which
are encountered less often and makes errors by providing the
features for the most stereotypical object at a given level of the
hierarchy. Thus, our model also reproduces the prototyping
effect observed in human SD patients (Bozeat et al., 2003).

Discussion

We have demonstrated that the typical progression of be-
haviour impairment from SD: category coordinate errors lead-
ing to cross category and superordinate errors; only emerges
with relearning in an artificial neural network with linear out-
put producing semantic features for hierarchically structured
objects. Our results suggest that it is relearning after atrophy
– the brain’s attempt to adapt to the disease – rather than at-
rophy itself which causes patterns of memory degradation in
SD. A similar role of relearning has been established in herpes
simplex virus encephalitis (Ralph et al., 2007), but remains
unexamined in other chronic cognitive diseases. Our results
call for consideration of the role of relearning as a primary
cause of the known behavioural patterns in these diseases.
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