
Creating Diverse Play-Style-Centric Agents through Behavioural Cloning

Branden Ingram, Clint van Alten, Richard Klein, Benjamin Rosman
School of Computer Science and Applied Mathematics

University of the Witwatersrand
Johannesburg, South Africa

{branden.ingram, clint.vanalten, richard.klein, benjamin.rosman1}@wits.ac.za

Abstract

Developing diverse and realistic agents in terms of behaviour
and skill is crucial for game developers to enhance player sat-
isfaction and immersion. Traditional game design approaches
involve hand-crafted solutions, while learning game-playing
agents often focuses on optimizing for a single objective, or
play-style. These processes typically lack intuitiveness, fail to
resemble realistic behaviour, and do not encompass a diverse
spectrum of play-styles at varying levels of skill. To this end,
our goal is to learn a set of policies that exhibit diverse be-
haviours or styles while also demonstrating diversity in skill
level. In this paper, we propose a novel pipeline, called PCPG
(Play-style-Centric Policy Generation), which combines un-
supervised play-style identification and policy learning tech-
niques to generate a diverse set of play-style-centric agents.
The agents generated by the pipeline can effectively capture
the richness and diversity of gameplay experiences in multi-
ple video game domains, showcasing identifiable and diverse
play-styles at varying levels of proficiency.

Introduction
The development of diverse and realistic agents has become
an important goal for game developers required to ensure
the game world feels more immersive and believable, which
can enhance player satisfaction and enjoyment. Traditional
techniques in game design tend to involve hand-crafted so-
lutions while in recent years approaches for learning game-
playing agents often focus on optimising for a single ob-
jective, such as maximising the score or winning the game
(Berner et al. 2019). While these agents may perform well
in specific scenarios, they often lack the ability to represent
the full range of play-styles that human players exhibit, such
as “speed-runner”, “completionist”, or unpredictable play-
styles (Drachen, Canossa, and Yannakakis 2009). In partic-
ular, these types of play-styles could be advantageous to de-
signers by serving as a form of play-testing, either indepen-
dently or in conjunction with human players. Such an ap-
proach would enable a more informative development cycle
by providing a deeper understanding of how the player base
could react to various design decisions. In terms of players,
utilising human-like agents maintains a level of realism and

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fairness not awarded by an optimal agent. There is some em-
pirical evidence indicating that human players prefer playing
with and against human-like agents (Arrabales et al. 2012).
Therefore, the question becomes not how can we learn an
optimal policy but rather how can we learn a set of policies
which exhibits diverse behaviours or styles.

Despite the significant success achieved in developing
singular optimal policies for multiple video game domains
(Berner et al. 2019), there has been considerably less re-
search focused on creating sets of agents exhibiting diverse
behaviours. Alternative approaches that aim to replicate ob-
served behaviours have demonstrated their effectiveness in
generating human-like behaviours (Pearce and Zhu 2022).
In the context of either of these approaches, learning varied
policies relies on either designing or automatically identi-
fying sets of characteristics from which similar behavioural
policies can be learned. To design a policy, we could de-
fine relevant features that describe the desired play-style,
and then learn a policy that maps these features to actions
(Arzate Cruz and Ramirez Uresti 2018). Alternatively, we
can automatically extract relevant play-style features from
data using techniques like clustering or dimensionality re-
duction and then learn a policy from those (Ingram et al.
2022). In both cases, the goal is to learn a set of play-style-
centric agents whose behaviour matches that of either a de-
signed or identified play-style.

Creating such a set of play-style-centric agents that play
according to a certain style can have several potential bene-
fits. Firstly by generating a group of agents who play accord-
ing to different styles we can provide players with a more di-
verse and varied gaming experience, as they will be playing
against opponents with different strengths and weaknesses.
Moreover, such a technique that generates a set of agents
that adhere to a particular gameplay style can offer a cost-
efficient alternative for supplying a greater quantity of ad-
versaries for players to confront, in contrast to the conven-
tional design methodology. Many studies have demonstrated
that defining appropriate reward functions for complex tasks
can be highly challenging and often requires expert knowl-
edge or extensive trial-and-error iteration (Amodei et al.
2016). In contrast, our proposed data-based approach of-
fers a potentially more straightforward and efficient alterna-
tive. Lastly, play-style-centric agents can be useful for play-
ers who want to learn more about a particular strategy or

Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

255

play-style, as they can observe the agents in action and anal-
yse their decision-making processes. For example, a player
might find enjoyment in being able to play against an oppo-
nent of a particular style.

We propose a novel pipeline which aims to generate a di-
verse set of play-style-centric agents dubbed PCPG (Play-
style-Centric Policy Generation). This pipeline consists of
a combination of unsupervised play-style identification and
policy learning techniques. Through the unsupervised iden-
tification process, the demonstrations are divided into sub-
sets based on identifiable behaviours. The policy learning
method is then applied to train agents that can mimic a par-
ticular play-style. The ultimate goal is to create a diverse set
of agents that can accurately represent various play-styles
in the game at varying degrees of proficiency. We evaluate
the efficacy of our proposed approach in two synthetic do-
mains (GridWorlds, MiniDungeons) and one natural domain
(Mario). Demonstrating that the agents generated by our
pipeline can effectively capture the richness and diversity
of gameplay experiences. Our results show that our agents
learn policy with a high degree of accuracy while showcas-
ing identifiable and diverse play-styles.

Related Work
The research on learning to generate policies which exhibit
human-like behaviour can be roughly categorized into two
groups based on whether they are reward-centric or data-
centric. The reward-centric approaches rely on reward shap-
ing which an RL algorithm such as Q-learning can use for
optimisation. The most straightforward data-based approach
is Imitation Learning (IL), which uses supervised learning to
predict and perform actions with the highest predicted prob-
ability.

Reward Shaping
With reward shaping, the agent’s standard reward function is
modified with additional “shaping rewards” that come from
a deterministic function F : S × A× S → R to aid in con-
vergence towards a desired behaviour where S is the finite
set of states, and A is is the finite set of all actions (Marom
and Rosman 2018). This idea of reward shaping has been
used to train a set of human-like agents with differing styles
(Arzate Cruz and Ramirez Uresti 2018). Here the standard
reward function R was augmented (“shaped”) to resemble
R′ = R+F where F encouraged the play-style-specific be-
haviours they desired. This resulted in agents with 3 varying
styles in the game of Street Fighter 5. Halina and Guzdial
(2022) focused on using the same approach of designed re-
wards to generate a set of diverse agents with a focus on
multi-dimensional difficulty. Similarly, Khalifa et al. (2016)
demonstrated an approach to encouraging agents to act in a
certain style by augmenting the standard Monte Carlo Tree
Search algorithm. Here an additional term was added to
the Upper Confidence Bound equation which governs which
nodes are explored, to select more human-like actions. The
difficulty in accurately representing behaviours through re-
ward functions makes it uncertain whether these approaches
will produce desired results. Sephton (2016) explored an al-
ternate design-based approach using several techniques of

modifying Monte Carlo Tree Search (MCTS) to create dif-
ferent styles of play. These could then be used to change the
experience of human opponents playing against them. They
also investigate methods of improving the artificial agent’s
strength, including parallelizing MCTS and using Associa-
tion Rule Mining to predict opponent choices, thus improv-
ing their ability to play well against them. Nonetheless, it
was still necessary to utilise substantial domain knowledge
to design the heuristics required for MCTS.

Imitation Learning

Imitation learning is a powerful yet simple technique for
training a network to imitate a desired behaviour, be it
from another algorithm or a human expert (Hussein et al.
2017). During the imitation learning process, the algorithm
observes the expert’s actions and tries to learn a mapping
between the inputs (such as the state of the environment)
and the corresponding outputs (such as the expert’s actions).
This mapping can then be used to make decisions in sim-
ilar situations. Imitation learning is often used in robotics
(Lopes, Melo, and Montesano 2007) and autonomous driv-
ing (Abbeel and Ng 2004), where it is difficult to program
explicit rules and behaviours for the agents. By learning
from expert demonstrations, the agents can acquire com-
plex behaviours and skills that would be difficult to engineer
manually. Silver et al. (2016) demonstrate the effectiveness
of this approach by training an agent to play the game of Go
at superhuman performance levels. This is achieved by util-
ising Imitation learning as a pre-training step before utilising
traditional RL. Q-Learning from demonstrations is another
bootstrapping approach which used demonstrations in Atari
to bootstrap reinforcement learning against a known reward
function rather than learning the reward function from the
demonstrations (Hester et al. 2018). A drawback to using
IL is that the agent’s performance is limited to that of the
demonstrator and in practice due to it being an approxima-
tion may even perform worse (Ross, Gordon, and Bagnell
2011). Additionally, depending on the scope and variety of
the observations the entirety of the state space may be un-
explored. If an agent finds itself in a region of uncertainty
due to either error or the dynamic nature of the environ-
ment, it is unlikely for it to recover. This approach, there-
fore, requires a large number of expert examples to be effec-
tive. Obtaining these expert samples, however, can be diffi-
cult in terms of both time and cost, especially when work-
ing with human data. An online learning approach called
DAGGER looked to mitigate the problem of overfitting by
iteratively updating policies by requesting additional feed-
back from an expert (Ross, Gordon, and Bagnell 2011). This
may be impractical for complex tasks with long training
runs as the expert needs to be available throughout. Harmer
et al. (2018) also acknowledged the difficulties of obtain-
ing large amounts of expert data and instead applied imi-
tation learning as a form of regulariser for a temporal dif-
ference RL agent. This allowed for improved performance
and generalisability demonstrated in an in-house 3D game.
Recently, impressive results in creating human-like agents
have been demonstrated in the popular video game Counter-

256

Strike GO1 (Pearce and Zhu 2022). Here, Pearce and Zhu
(2022) utilised a supervised learning variant of IL called Be-
havioural Cloning (BC). Vinyals et al. (2019) also used su-
pervised learning along with population-based techniques to
learn a set of StarCraft 2 behaviours from demonstrations.

It has been shown that the combination of IL and RL
alleviates some of the issues outlined. Such examples of
these are Approximate Policy Iteration with Demonstra-
tion (APID) and Inverse Reinforcement Learning (IRL). For
APID, linear constraints are defined using the expert trajec-
tories utilised by the optimisation process of a Policy Iter-
ation algorithm (Kim et al. 2013). The benefit of IRL ap-
proaches is the ability to learn a policy which can outper-
form the expert that it learnt from. Early IRL approaches as-
sumed optimal demonstrations and a reward function that is
linear in a known set of features. Here the key issue was that
many differing reward functions could legitimately have led
to a given optimal policy for some MDP. This led to Abbeel
and Ng (2004) developing a method where both the recov-
ered policy and expert, obtain the same reward on the origi-
nal MDP. This, however, did not allow for the policy to sur-
pass the expert in performance. Since we look to learn poli-
cies which mimic observed behaviours, we do not require
our policies to exceed the experts. Bayesian IRL embraced
the idea of the existence of multiple valid reward functions
by inferring a posterior distribution over rewards rather than
committing to a single one (Ramachandran and Amir 2007).
By contrast, Maximum Entropy IRL returns a reward func-
tion that matches the expected feature counts, favouring re-
wards that lead to a higher-entropy stochastic policy (Ziebart
et al. 2008). These two techniques both allow for the learnt
policy to outperform the expert-demonstrated policy. Ran-
chod, Rosman, and Konidaris (2015) utilised both Bayesian
and Maximum Entropy IRL to segment a set of unstructured
demonstrations into a set of reusable “skills”. Specifically,
in video games, there has been limited success in employ-
ing IRL. Uchibe (2018) looked to firstly train a classifier
which could identify expert versus non-expert state transi-
tions. This classifier was then used as a reward function
to train a deep RL algorithm however, their model rarely
outperformed a BC baseline method. More recently an ap-
proach which looked to jointly learn the policy and reward
function in an adversarial manner showed some promise in
the Atari domain. However, they concluded that they still
performed substantially worse than expert-level games war-
ranting more work (Tucker, Gleave, and Russell 2018).

Unsupervised Clustering
Historically play-style clustering has been conducted on
metadata statistics of gameplay experiences using Self Or-
ganising Maps (Drachen, Canossa, and Yannakakis 2009)
or Kmeans (Bauckhage, Drachen, and Sifa 2014). More re-
cently Justesen et al. (2020) also performed an initial cluster-
ing step prior to training behavioural models on StarCraft 2
build order data. However, all these approaches fail to incor-
porate the temporal aspect present in gameplay experiences
or how play-style changes over time or across a level. Alter-

1https://blog.counter-strike.net/

natively, play-style identification has been attempted tem-
porally on play-through segments (Valls-Vargas, Ontanón,
and Zhu 2015). However, Ingram et al. (2022) were able
to separate multi-dimensional gameplay trajectories of vary-
ing lengths with respect to play-style on both complete and
partial trajectories without the need for segmentation. This
approach was built off Xie, Girshick, and Farhadi (2016)
who implemented an LSTM-autoencoder which is capable
of handling time-series data effectively. Although the spe-
cific method for clustering trajectories is independent of our
methodology we applied this model which jointly optimises
for both reconstruction loss as well as a clustering loss in an
unsupervised fashion.

Behavioural Cloning
Behaviour Cloning (BC) has been utilised for different video
game environments using datasets of demonstrations (Gor-
man and Humphrys 2007; Harmer et al. 2018; Jacob et al.
2022) and is a form of imitation learning. Here an agent
learns to exhibit a demonstrated behaviour by mimicking ac-
tions a ∈ A, the set of all actions. The idea is to use an expert
to demonstrate desired behaviour instead of using a domain
expert to design fined-grained rewards which can be difficult
and time-consuming. By utilising an expert to demonstrate
the desired behaviour, the process of designing the reward
signal can be made simpler since the feedback is provided in
the form of a demonstration. This approach is useful when
the reward function is difficult to specify or the environment
is complex and dynamic. The network is then left to learn
how to change its policy to match the actions represented in
the expert’s behaviour.

These are the actions an expert demonstrator would take
given an observed state s ∈ T where T is the entire trajec-
tory. For our models, a trajectory is defined as a sequence
of states {s0, s1, . . . , sN} where N is the length of the
trajectory. Learning, therefore, requires a dataset ((D) =
{X0, X1, . . . , Xh} where h is the number of trajectories)
of demonstrated behaviour (policy-π). A loss function is
utilised for behavioural cloning, these include cross-entropy
or mean squared error to measure the distance between the
predicted and demonstrated actions. The model can then be
trained by optimising the following equation:

π = argmin
π

N∑
i

l(ai, a
′
i;π) (1)

Here l denotes the loss function, ai represents the ex-
pected action as seen in the expert demonstration and a′i
represents the predicted action of the model. According to
Bakker, Kuniyoshi et al. (1996), learning sequential action
sequences becomes a highly efficient supervised learning
task by using labelled examples to train the model and re-
ceive clear feedback on prediction accuracy. This enables
the model to learn from mistakes and improve performance
quickly.

Methodology
We aim to solve the following problem: given a set of trajec-
tories (D) can we separate them into k distinct subsets (Hk)

257

Figure 1: Overall PCPG system; initially the set of trajectories is clustered in step A into subsets Hk, each subset is then rank-
ordered in step B indicated by the colour gradient, and finally the top performing trajectories are thresholded (Hk,p) and used
to train the play-style-centric agent in step C.

from which we can generate a policy (πk) which exhibits
the behaviour identified for each subset k? Furthermore, can
we subdivide Hk based on a skill level p such that we can
generate a policy (πk,p) which exhibits both the identified
behaviour k at the appropriate skill level p?

Play-Style-Centric Policy Generation (PCPG)
Our PCPG system as depicted in Figure 1 is based on three
key steps. In step A, we use a clustering technique to sepa-
rate our observations, or in this case our multi-dimensional
trajectory data, according to different identifiable play-styles
(Ingram et al. 2022). Step B, we order the trajectories based
on a ranking function such that we can filter our separated
observations based upon a particular skill range. Step C is
then to train individual BC models on this filtered selection
of observations for each of the generated subsets. Since each
of these selections contains data associated with a specific
behaviour, it is expected that the learned policies would dis-
play similarities to that behaviour and skill level. Therefore,
these models trained using behavioural cloning are referred
to as play-style-centric models.

Trajectory Clustering (Step A) To separate trajectories
with respect to the style we first project a trajectory (Xi ∈
D) into a lower-dimensional latent representation (Zi ∈ Z)
using an LSTM autoencoder network. This network is opti-
mised by minimising the distance between the original tra-
jectory (Xi ∈ D) and the reconstructed trajectory (X ′

i) given
by Equation 2.

Zi = Encoder(Xi) and X ′
i = Decoder(Zi) (2)

We then perform clustering on this latent space (Z) to dis-
cover k clusters corresponding to related trajectories.

Policy Learning (Steps B and C) Having clustered all tra-
jectories (X ∈ D) into separate subsets (Hk ⊂ D) where k
is the cluster identifier. In step B each trajectory in Hk is
reordered based on a ranking metric. This ranking metric
works by assigning a performance or “skill” value to a par-
ticular trajectory X ∈ Hk. By applying this approach we
obtain an ordered set of Hk such that the first element (tra-
jectory) is the weakest performing and the last is the highest
performing trajectory in Hk. This process is necessary such
that we can filter trajectories based on a specific performance
or “skill” range. To do this, a thresholding parameter (p) is
used to choose a subset of trajectories (Hk,p ⊆ Hk) that per-
form in the top “p” percent. This subset is utilised as inputs
for the corresponding play-style-centric model (πk,p). This
is implemented to guarantee that the trajectories received by
our play-style-centric models correspond to a particular skill
range based on p and for a particular play-style k. Lastly in
step C, the play-style-centric model is trained through a su-
pervised learning approach that minimises the loss between
the predicted action by the model and the expected action.

Experiments
Datasets
To validate the robustness of our method, we evaluate our
model on two synthetic datasets and one natural dataset. The
first is derived from a GridWorld game where a player seeks
out a goal with the opportunity of completing two additional
optional objectives. By generating this set of trajectories we
have access to the ground truth play-styles and as a result,
we use this domain to obtain a quantifiable measure of per-
formance. The second is a standard video game research
domain called MiniDungeons (Holmgard et al. 2014) con-
taining data generated from different designed human-like

258

behaviours across multiple 2D levels. The third is an unla-
belled set of trajectories from the game Super Mario Bros
(Guzdial and Riedl 2016). This data set was collected from
individuals and we use it to demonstrate our model’s perfor-
mance in natural domains.

GridWorld To assess the capacity of our model to learn
distinct play-style-centric policies, it is crucial to obtain nu-
merous trajectories from a variety of play-styles. Trajectory-
based datasets labelled according to style do not exist and
therefore we generate data to account for this. Certain
datasets aim to capture metrics that are loosely connected
to play styles, such as emotions and enjoyment. However,
these datasets often depend on limited surveys with self-
reported features, which can introduce noise2. In contrast,
behavioural cloning necessitates substantial amounts of data
to be effective. We distinguish two play-styles as being dif-
ferent goals that could be reached by an agent. These we
model as different reward functions in the reinforcement
learning paradigm. This idea of reward shaping has been
used to train a set of human-like agents with differing styles
(Arzate Cruz and Ramirez Uresti 2018). We utilise this ap-
proach to generate a set of trajectories with differing perfor-
mance levels for multiple styles.

Our Preference-Based Trajectory Generation (PBTG) ap-
proach (Algorithm 1) was used to generate 5 individual
datasets Dn from 5 different environments (E1, . . . , E5)
with 4 varying play-styles (reward functions) present. Each
environment is a 10×10 grid world, as depicted in Figure
2. The environments each have a start state (S, in blue) and
a goal state (G, in green). Walls (black tiles) cannot be tra-
versed and trap states (red tiles) result in failure. The vari-
ety in play-styles is introduced through the addition of two
bonus states (B1, in gold and B2, in cyan). These are the op-
tional objectives that a player with certain preferences might
wish to complete. The set of actions is the movement in any
of the four primary cardinal directions. These environments
were designed and implemented using Unity3, a free-to-use
3D video game creation engine. These environments incor-
porated “ml-agents”4 an open-source project that enables
games and simulations to serve as environments for training
intelligent agents. Lastly, these environments with the “ml-
agents” toolkit were wrapped as Open-AI gym5 environment
using a pre-existing gym-wrapper6.

Using this approach we generated data with 4 play-styles,
as described in Table 1. These are the observable behaviours
our model aims to recover through its play-style identifica-
tion process. The set of reward functions R used to emu-
late these behaviours is also defined in Table 1. Here we
defined large positive rewards for the objectives we wished
the agent to accomplish. The respective bonus rewards were
only given the first time an agent reached either B1 or B2.
Following the procedure outlined in Algorithm 1 we trained

2source: https://plt.institutedigitalgames.com/datasets.php
3https://unity.com/
4https://github.com/Unity-Technologies/ml-agents
5https://github.com/openai/gym
6https://github.com/gzrjzcx/ML-agents/blob/master/gym-

unity/README.md

R Behaviour G reward B1 reward B2 reward
1 Moves directly to G 100 0 0
2 Visits B1 before G 100 50 0
3 Visits B2 before G 100 0 50
4 Visits B1 & B2 before G 100 50 50

Table 1: Observable play-styles and reward structure

Algorithm 1: Preference-Based Trajectory Generation
(PBTG)

1: procedure PBTG(Environment E)
2: Define a set of reward functions R
3: Initialise our set of trajectories D = {}
4: for all reward functions r ∈ R do
5: Use Q-learning to learn optimal policy π∗

r
6: for n number of required Trajectories do
7: πn

r ← perturb(π∗
r)

8: Generate X(n, r) from πn
r and append to D

9: end for
10: end for
11: end procedure

a Q-learning agent for each of the combinations of R and E
for 20000 episodes with discount factor γ = 0.99 and lin-
ear ϵ-decay over the number of training episodes to ensure
our agent converges to the global optimal. The state is given
by the tuple (x, y, b1, b2) where x and y are the Cartesian
grid coordinates and b1 and b2 indicate whether an agent
has visited B1 or B2, respectively. Our dataset consists of
8000 randomly selected trajectories per R and E. There-
fore our trajectory is a sequence of time steps in the form
of (x, y, b1, b2).

MiniDungeons MiniDungeons is a two-dimensional top-
down dungeon exploration game, and is a common bench-
mark research domain for modelling and understanding hu-
man play-styles (Holmgard et al. 2014). We use a dataset of
game trajectories generated using six player proxies which
are handcrafted policies designed to exhibit particular be-
haviours (play-styles) (Arendse, Ingram, and Rosman 2022).
Table 2 describes the different play-styles corresponding to
the 6 player proxies as well as their corresponding behaviour
with example trajectories depicted in Figure 3. The paths
followed by the system are produced by executing the ac-
tions chosen by the designed policies at each level while
keeping track of the state-action transitions. The state at each
timestep is defined as a 15 dimensional vector which en-
codes event information up until that current timestep and
aims to track higher-level player tactics. We combine a total
of 780 trajectories generated across multiple different levels
to form our training and testing sets. The specific levels used
as named by Holmgard et al. (2014) are as follows:

• train: (md-test-v0, md-hard-v0, md-random 1-v0,
md-random 2-v0, md-gene 1-v0, md-gene 2-v0, md-
strand 1-v0)

• test: (md-holmgard 1-v0, md-holmgard 2-v0, md-
holmgard 4-v0, md-holmgard 6-v0, md-holmgard 9-v0,
md-holmgard 10-v0)

259

Figure 2: Randomly generated grid world environments E1, ..., E5

Play-style Behaviour
Safe Runner Complete the dungeon as quickly as

possible while avoiding monsters.
Wreckless Runner Complete the dungeon as quickly as

possible without avoiding monsters.
Brave Treasure Hunter Collect treasure even if guarded by en-

emies.
Pure Treasure Hunter Collect only unguarded treasure.
Safety-First Only collect treasure and potions.
Monster Killer Fight as many monsters as possible

without dying.

Table 2: MiniDungeons player proxy behaviours

Figure 3: Example visualisations of trajectories for each of
the 6 player proxies in the MiniDungeons domain (Holm-
gard et al. 2014)

Mario This dataset consists of 74 playthroughs across 11
different levels of Super Mario Bros. These playthroughs
were each captured by logging the actions of a unique hu-
man participant (Guzdial and Riedl 2016). We then refac-
tored this data into a trajectory, where each time step repre-
sents the current state of the playthrough at that point. We
defined a state as a tuple given by (j, k, r, c, d, e) where j is
the number of jumps, k is the number of enemies killed, r
number of times the player has started running, c the number
of coins collected, d the number of times the player died and
e the unique action encoding.

Training
For the trajectory clustering, we used a pre-trained unsuper-
vised LSTM clustering model as described by Ingram et al.
(2022). Our play-style-centric models were made up of 3
fully connected layers of 5 nodes each. The dimensions of
the input and output for this model correspond to the length
of a single timestep, which is equal to 4, 6 and 15 for the
GridWorld, Mario and MiniDungeons domains respectively.

All experiments were conducted using 4 seeds across
the 5 GridWorld environments as well as the Mario and
MiniDungeons domains with the average accuracy for each
being recorded. We trained each play-style-centric model
for 2000 episodes. The initial dataset (D) contains 4000
trajectories for each GridWorld environment and 780 for
MiniDungeons and 74 for Mario. For our ranking metric,
we utilised Equation 3 where xT denotes the final state in
the trajectory X , and β is a constant penalty factor that re-
duces the score when xT is not a goal state. This perfor-
mance metric incentivises shorter trajectories by utilising the
length of a trajectory calculated as |X|. Here higher values
of |X| correspond to lower performance, while smaller val-
ues of |X| indicate better performance. Additionally, we ad-
just this metric based on whether a trajectory successfully
reaches the goal state or not. For example, if β = 0.5, then
the score is halved when the trajectory does not end in a goal
state. In particular, we used β = 0.1 heavily penalising all
trajectories which did not reach the goal state. While in our
domains we employ trajectory length as a performance mea-
sure, it is equally feasible to substitute it with a predefined
score metric or a different combination of features that can
serve as indicators of overall skill. To showcase the advan-
tage of “step C” in our approach, we trained an individual
model with the same architecture as each play-style-centric
model without clustering, as a baseline approach. Lastly, we
tested over a range of thresholding percentages, in partic-
ular, where p = [1, 0.75, 0.5, 0.25, 0.1]. Here a value of 1
indicates we train our play-style-centric models on all tra-
jectories while 0.1 indicates we train each model on the top
1% of trajectories.

Performance(X) =
1

|X|
·
{
1 if xT is a goal state
β otherwise

(3)

Evaluation
In this study, model accuracy hinged on the model’s capac-
ity to predict the correct action for transitioning the agent

260

between states si and si+1. Employing an autoregressive
approach to predict subsequent states at each step proved
problematic due to error accumulation. To remedy this and
ensure that each prediction can be made independently of
historical mistakes, we input, at each step, the ground truth
state to the model instead of its previous predictions. This is
a widely-used technique in language modelling and model-
based reinforcement learning (Moerland et al. 2023). This
process is completed for all states in a trajectory and across
all trajectories in the testing set. Moreover, alongside all rel-
evant plots, we incorporate error bars representing a single
standard deviation of the model. Furthermore, we conduct a
comparison with a random baseline. However, it should be
noted that although the action space for both domains con-
sists of the four cardinal directions, we apply masking to
prohibit agents from selecting actions that are invalid in spe-
cific states. Consequently, the average performance of the
random baseline is not 0.25, as one might expect, but rather
an average calculated across all possible actions for every
state.

Results
Through the results of our experimental analysis, we demon-
strate the ability of our model to accurately represent desired
behaviours that correspond to identified play-styles.

PCPG Model Performance

Figure 4a demonstrates that our PCPG model not only yields
high performance but also surpasses the equivalent “No
Clustering” baseline. Comparable outcomes can be observed
for the MiniDungeons depicted in Figure 4b and for Mario
as seen in Figure 4c. This benefit can be observed across all
tested values for the performance threshold (p). As our ob-
jective is to generate models that emulate the behaviour ex-
hibited by the data, the accuracy of model predictions serves
as a suitable performance measure.

Given our knowledge of the GridWorld environment’s in-
trinsic reward function, we can assess each model’s (πk) per-
formance relative to the corresponding underlying reward
function (Rk). This is measured as the difference between
the model’s mean reward (across trajectories and environ-
ments) and the optimal reward distribution (Table 1). Trajec-
tories in this case refer to those generated by the model itself.
The model’s performance is depicted in Table 3, demon-
strating notable enhancement in average rewards compared
to random performance and a likeness to the optimal sce-
nario. This finding underscores that play-style-centric mod-
els, trained on segmented data, can effectively internalize the
encoded underlying play-styles exhibited within the trajec-
tories.

Finally, Table 4 reports the prediction accuracy of each
play-style-centric model πk,p having been trained on its cor-
responding subset Hk,p while then being tested on all sub-
sets Hk,p. The results are averaged over all values of p. The
strong diagonal suggests that each model has specialised in
the data within its partition. This indicates that the policies
learned by each model are inherently different.

Play-style-centric Policies
Model

Performance π1 π2 π3 π4

Perfect 0.0 0.0 0.0 0.0
Ours (66%) 8.66 44.85 46.28 50.79

50% 16.80 89.89 90.52 95.81
40% 27.02 133.59 134.02 141.53

Random (33%) 33.05 180.84 180.12 192.42

Table 3: Distance between average obtained reward and op-
timal underlying reward function for each play-style centric
policy (πk)

Average over all values of p π1,p π2,p π3,p π4,p

H1,p 0.57 0.45 0.44 0.36
H2,p 0.37 0.64 0.36 0.49
H3,p 0.38 0.39 0.63 0.46
H4,p 0.33 0.57 0.40 0.69

Table 4: Prediction accuracy of each model versus the dif-
ferent partitions averaged across all GridWorlds and all p

Behavioural and Skill-Based Diversity
By varying the value of the performance threshold p we are
also able to generate policies of varying skill levels which is
another form of diversity. The reason for this outcome can
be attributed to the fact that our PCPG model was trained on
a particular skill range of trajectories. This is evidenced by
Figure 5, which shows a consistent pattern where increas-
ing values of p (wider range of skill) correspond to longer
average trajectory lengths. This is a valid analogue for skill
as the trajectory length was used as the primary feature of
our performance metric (Equation 3). Furthermore, we can
observe that each play-style is converging towards its own
optimal length, which serves as further evidence of the be-
havioural diversity that can be achieved through our PCPG
model. In contrast, the “No Clustering” approach converges
towards a single behaviour. A similar result can be observed
in the Mario domain as seen in Figure 6 where the individual
play-style-centric models each have a different average tra-
jectory length. Demonstrating diversity among models, Fig-
ure 7 displays cross-correlation between play-style-centric
models and different data subsets (Hk). Values closer to 1
indicate stronger correlation between play-style and trajec-
tory subset. Notably, the model achieves the highest corre-
lation with its specific training subset. Correlation values
beyond the diagonal are generally lower, except for a sin-
gle exception. Specifically, play-styles one and three show
discernible but not significant correlation, suggesting shared
traits, while the remaining play-styles significantly differ.

Qualitatively we can view the diversity in behaviours in
Figure 8 for a particular environment E2. Here we observe
that the exhibited behaviours match those behaviours en-
coded in the data, as shown in Table 1. To generate a tra-
jectory of states, each component of our play-style-centric
models (πk,p) takes an initial state as input and produces an
action. This action is applied to the current state to transi-
tion to the next state. This process is repeated iteratively to

261

(a) GridWorld (b) MiniDungeons (c) Mario

Figure 4: Comparison of effect of differing the performance threshold percentage p on the models accuracy in GridWorld,
MiniDungeons and Mario

Perfect clustering Clustering using our model Clustering with 50% accuracy Random clustering
Reward H1 H2 H3 H4 H1 H2 H3 H4 H1 H2 H3 H4 H1 H2 H3 H4

R1 99.89 0 0 0 74.07 12.03 13.02 18.24 46.87 27.90 24.97 35.56 21.97 39.23 39.85 50.42
R2 0 149.85 0 0 7.42 112.32 11.99 19.22 15.32 72.73 29.18 33.27 22.34 36.47 38.09 55.71
R3 0 0 149.86 0 7.42 10.25 115.43 17.38 15.65 24.62 76.57 33.59 23.50 36.90 40.80 49.20
R4 0 0 0 199.81 7.30 11.09 16.42 148.52 13.27 26.17 25.87 103.88 22.49 38.27 40.60 49.66

Table 5: The effect of clustering accuracy on the average generated rewards for trajectories contained within each subset Hk

across all GridWorlds

Figure 5: Comparison of effect of differing the performance
threshold percentage p on the trajectory diversity across all
GridWorld environments (E1, . . . , E5)

construct a sequence of states and actions that represents the
predicted trajectory. Notably, the “No Clustering” behaviour
corresponds to a direct path to the goal, reflecting the ex-
pected behaviour for the shortest trajectories.

Effects of Varying the Clustering Performance
Since our approach is dependent on first separating trajec-
tories we look to analyse the effect of the clustering perfor-
mance of our PCPG model’s performance. In Figure 9 we
observe the results of manually varying the levels of clus-
tering accuracy. Since our GridWorld data was generated
we have access to the ground truth clusters. We then man-
ually mislabel a varying portion of these ground truth labels.
Therefore, Figure 9 is the result of training our play-style-
centric models on datasets of varying corruption levels, here

Figure 6: Comparison of effect of performance threshold
percentage p on the trajectory diversity in Mario domain

“1” indicates random clustering and “0” is perfect cluster-
ing. As a result, we identify that increasing the levels of cor-
ruption results in decreasing the effectiveness of our model.
However, it does not affect the case where we do not employ
any separation. This observation is to be expected as the case
whereby we train a single model on the entire dataset does
not utilise the play-style information. It is also noted that the
variance in performance increases substantially in our mod-
els when the level of corruption increases, indicating that
our models are no longer able to specialise on a common
behaviour found in clustered subsets.

Table 5 displays the impact of clustering accuracy on
the average rewards generated by each trajectory in each
data subset (Hk) across all GridWorlds. This type of anal-
ysis is only feasible when the underlying reward function
is known. Here we observe that when clustering is perfect,
the expected rewards from each trajectory in Hk are exactly

262

Figure 7: Correlation Matrix depicting relationship between
play-style-centric models and data subsets across all Grid-
World environments (E1, . . . , E5)

Figure 8: Single trajectory visualisation of behaviours for all
Play-style-centric models and the “No Clustering” model for
p = 0.1 in E1

the same as those obtained from the original reward func-
tions defined in Table 1, which were utilised to generate the
GridWorld trajectories. However, declining clustering per-
formance leads to dispersed average rewards across the re-
ward functions. Off-diagonal values denote noise within Hk,
stemming from incorrect trajectory clustering. This noise
adversely affects prediction accuracy, as shown in 9.

Discussion and Future Work
Defining or learning a set of play-style-centric behaviours
can be challenging due to the subjective nature of play-styles
and the diversity of play-style preferences among players.
Additionally, it can be difficult to identify and quantify the
defining characteristics of each play-style and create a suit-
able framework for learning these behaviours. Although our
focus was solely on grid-based environments, it is essential
to highlight that their state space encompassed multiple fea-
tures beyond just ”x” and ”y” coordinates. Furthermore, we
took into account the temporal nature of these environments
and did not overlook it. We also believe that the features we
utilised for clustering had the potential to capture variations
in a player’s style. As a result, there is a possibility to ap-
ply this approach in more complex environments and will

Figure 9: Comparison of the effect of differing the corrup-
tion threshold percentage on the models’ accuracy. Here “1”
indicates random clustering and “0” perfect clustering

be the focus of future work. Moreover, it is worth noting
that in many games, access to raw underlying state infor-
mation is often limited. However, with the advancement of
transformer-based models (Wolf et al. 2020), it would be in-
triguing to explore the application of such an approach to
image-based trajectories. This would facilitate easier inte-
gration of the system into games. One prospective avenue
for future research, which entails greater complexity and ac-
cess to natural data, centers on the game of Chess. This re-
search could explore the representation of distinct playing
styles through the utilisation of well-known Chess openings.

Conclusion
This paper proposes an approach to generating a diverse
set of play-style-centric agents that exhibit expected be-
haviours corresponding to their play-style. Our approach in-
volves utilising unsupervised clustering to separate multi-
dimensional varying-length gameplay trajectories by play-
style. The resulting trajectory subsets are used to train mod-
els using behavioural cloning, enabling the learning of rep-
resentative policies. This study demonstrates that the sepa-
ration approach results in models that specialise in the sub-
sets of trajectories on which they are trained and outperform
the base case where no separation was used. This paper also
demonstrates that model diversity can be achieved through
the scaling of a performance threshold, which allows for the
learning of agents with varying skill levels. This scalability
is useful for developers in creating realistic behaviours that
can be more easily scaled in terms of difficulty. Furthermore,
this is accomplished without the requirement for designing
or learning reward functions, which can be a challenging and
non-intuitive process. Notably, this study shows that cluster-
ing accuracy has an impact on performance, but decreased
clustering accuracy only results in the model prediction ac-
curacy tending towards the baseline. These results were ob-
tained through testing in both synthetic and natural domains,
highlighting the method’s robustness and generalisability. In
conclusion, our proposed PCPG model, which involves both
unsupervised clustering and behavioural cloning, is an effec-
tive approach for the creation of a diverse set of play-style-
centric policies.

263

References
Abbeel, P.; and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
1.

Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schul-
man, J.; and Mané, D. 2016. Concrete problems in AI safety.
arXiv preprint arXiv:1606.06565.

Arendse, L.; Ingram, B.; and Rosman, B. 2022. Real Time
In-Game Playstyle Classification Using A Hybrid Proba-
bilistic Supervised Learning Approach. In The Third South-
ern African Conference for AI Research Proceedings. Part
of the book series: Communications in Computer and Infor-
mation Science, Springer, December 2022. Springer.

Arrabales, R.; Muñoz, J.; Ledezma, A.; Gutierrez, G.; and
Sanchis, A. 2012. A machine consciousness approach to the
design of human-like bots. Believable Bots: Can Computers
Play Like People?, 171–191.

Arzate Cruz, C.; and Ramirez Uresti, J. A. 2018. HRLB: A
Reinforcement Learning Based Framework for Believable
Bots. Applied Sciences, 8(12): 2453.

Bakker, P.; Kuniyoshi, Y.; et al. 1996. Robot see, robot do:
An overview of robot imitation. In AISB96 Workshop on
Learning in Robots and Animals, volume 5. Citeseer.

Bauckhage, C.; Drachen, A.; and Sifa, R. 2014. Clustering
game behavior data. IEEE Transactions on Computational
Intelligence and AI in Games, 7(3): 266–278.

Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dkebiak,
P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse,
C.; et al. 2019. Dota 2 with large scale deep RL. arXiv
preprint arXiv:1912.06680.

Drachen, A.; Canossa, A.; and Yannakakis, G. N. 2009.
Player modeling using self-organization in Tomb Raider:
Underworld. In 2009 IEEE symposium on computational
intelligence and games, 1–8. IEEE.

Gorman, B.; and Humphrys, M. 2007. Imitative learning
of combat behaviours in first-person computer games. Pro-
ceedings of CGAMES.

Guzdial, M.; and Riedl, M. 2016. Game level generation
from gameplay videos. In Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference.

Halina, E.; and Guzdial, M. 2022. Diversity-based Deep Re-
inforcement Learning Towards Multidimensional Difficulty
for Fighting Game AI. arXiv preprint arXiv:2211.02759.

Harmer, J.; Gisslén, L.; del Val, J.; Holst, H.; Bergdahl, J.;
Olsson, T.; Sjöö, K.; and Nordin, M. 2018. Imitation learn-
ing with concurrent actions in 3d games. In 2018 IEEE Con-
ference on Computational Intelligence and Games (CIG), 1–
8. IEEE.

Hester, T.; Vecerik, M.; Pietquin, O.; Lanctot, M.; Schaul,
T.; Piot, B.; Horgan, D.; Quan, J.; Sendonaris, A.; Osband,
I.; et al. 2018. Deep q-learning from demonstrations. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 32.

Holmgard, C.; Liapis, A.; Togelius, J.; and Yannakakis,
G. N. 2014. Evolving personas for player decision mod-
eling. In 2014 IEEE Conference on Computational Intelli-
gence and Games, 1–8.
Hussein, A.; Gaber, M. M.; Elyan, E.; and Jayne, C. 2017.
Imitation learning: A survey of learning methods. ACM
Computing Surveys (CSUR), 50(2): 1–35.
Ingram, B.; Rosman, B.; van Alten, C.; and Klein, R. 2022.
Play-style identification through deep unsupervised cluster-
ing of trajectories. In 2022 IEEE Conference on Games
(CoG), 393–400. IEEE.
Jacob, A. P.; Wu, D. J.; Farina, G.; Lerer, A.; Hu, H.;
Bakhtin, A.; Andreas, J.; and Brown, N. 2022. Model-
ing strong and human-like gameplay with KL-regularized
search. In International Conference on Machine Learning,
9695–9728. PMLR.
Justesen, N.; González-Duque, M.; Cabarcas, D.; Mouret,
J.-B.; and Risi, S. 2020. Learning a behavioral repertoire
from demonstrations. In 2020 IEEE Conference on Games
(CoG), 383–390. IEEE.
Khalifa, A.; Isaksen, A.; Togelius, J.; and Nealen, A. 2016.
Modifying mcts for human-like general video game playing.
Kim, B.; Farahmand, A.-m.; Pineau, J.; and Precup, D.
2013. Approximate Policy Iteration with Demonstration
Data. RLDM 2013, 168.
Lopes, M.; Melo, F. S.; and Montesano, L. 2007.
Affordance-based imitation learning in robots. In 2007
IEEE/RSJ international conference on intelligent robots and
systems, 1015–1021. IEEE.
Marom, O.; and Rosman, B. 2018. Belief reward shaping in
reinforcement learning. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 32.
Moerland, T. M.; Broekens, J.; Plaat, A.; Jonker, C. M.; et al.
2023. Model-based reinforcement learning: A survey. Foun-
dations and Trends® in Machine Learning, 16(1): 1–118.
Pearce, T.; and Zhu, J. 2022. Counter-strike deathmatch with
large-scale behavioural cloning. In 2022 IEEE Conference
on Games (CoG), 104–111. IEEE.
Ramachandran, D.; and Amir, E. 2007. Bayesian Inverse
Reinforcement Learning. In IJCAI, volume 7, 2586–2591.
Ranchod, P.; Rosman, B.; and Konidaris, G. 2015. Non-
parametric bayesian reward segmentation for skill discovery
using inverse reinforcement learning. In 2015 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), 471–477. IEEE.
Ross, S.; Gordon, G.; and Bagnell, D. 2011. A reduction of
imitation learning and structured prediction to no-regret on-
line learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 627–635.
JMLR Workshop and Conference Proceedings.
Sephton, N. 2016. Applying Artificial Intelligence and Ma-
chine Learning Techniques to Create Varying Play Style in
Artificial Game Opponents. Ph.D. thesis, University of York.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the

264

game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484–489.
Tucker, A.; Gleave, A.; and Russell, S. 2018. Inverse
reinforcement learning for video games. arXiv preprint
arXiv:1810.10593.
Uchibe, E. 2018. Model-free deep inverse reinforcement
learning by logistic regression. Neural Processing Letters,
47(3): 891–905.
Valls-Vargas, J.; Ontanón, S.; and Zhu, J. 2015. Exploring
player trace segmentation for dynamic play style prediction.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 11,
93–99.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature,
575(7782): 350–354.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al.
2020. Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 conference on empirical
methods in natural language processing: system demonstra-
tions, 38–45.
Xie, J.; Girshick, R.; and Farhadi, A. 2016. Unsupervised
deep embedding for clustering analysis. In International
conference on machine learning, 478–487. PMLR.
Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; Dey, A. K.; et al.
2008. Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, 1433–1438. Chicago, IL, USA.

265

