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Abstract—In any game, play-style is a concept that describes
the technique and strategy employed by a player to achieve
a goal. Being able to identify the play-style of a player is
desirable as it can enlighten players on which approaches
work better or worse in different scenarios, as well as inform
developers of the value of design decisions. In this paper, we
propose a novel approach to play-style identification based on
an unsupervised LSTM-autoencoder clustering approach for
multi-dimensional trajectory-based data of variable length. We
evaluate our approach on two domains and show that not only
is our model capable of identifying these play-styles from entire
trajectories but it is also capable of this during gameplay from
partial trajectories. Additionally, it is demonstrated through state
frequency analysis that the properties of each of the play-styles
can be identified and compared. Through these processes, we
can extract useful information which describes the different
behaviours or play-styles present within a domain useful to both
players and developers.

Index Terms—play-style identification, player modelling

I. INTRODUCTION

A play-style is defined as a particular way of playing a game
and, typically, reflects the preferences with which a player
may engage in progressing through the game. For example,
a player may have a preference for exploring the minutiae
of a game, or for completing it as quickly as possible. The
diversity of possible play-styles can be significant, meaning
that different players could play a game in very different
ways. There is much potential benefit in identifying the play-
style of an individual player as they engage in the game [1].
From the player’s perspective, identifying their style could
be used to assist in the tailoring of game mechanics in real-
time for the needs and preferences of the player. Additionally,
designers gain insight into how their players are interacting
with gameplay features and mechanics. There is an added
benefit of being able to tailor tutorial mechanics and in-game
tips to the type of player identified.

Multiple studies have looked into modelling the style in
which an individual engages with a problem and is not a
concept unique to games. For example, in learning, studies
have been conducted to identify learning styles [2]. Similar
studies, specifically in games, have looked to identify player
archetypes as well as personality characteristics and motiva-
tions [3], [4], [5]. Although work has been done in terms
of play-style identification, there has been little exploration
of applying these techniques to complex trajectory-based

data. Without considering the temporal dimension of a user’s
playthrough we lose the ability to understand how the player
arrived at a certain state and instead the focus is purely on
that final state. By doing so we could reveal further insights
lost when only utilising high-level features. This approach has
the added value of allowing us to assign labels at different
times along the trajectory that more accurately represent the
individual. In addition, video games by nature are time series
domains with decision making occurring and changing through
the course of gameplay. Therefore, it is fitting to model play-
styles using temporal models.

One possible reason for a limited amount of existing work
focusing on temporal data could be the lack of this kind
of trajectory data labelled with respect to style. This makes
applying supervised learning approaches difficult and as a
result, we developed and evaluated our unsupervised model
on a generated dataset where ground truths were known. The
goal of this approach is to improve the credibility of the results
obtained from natural datasets where play-styles are unknown.

Limited access to data is not the only issue in trajectory
analysis that requires further investigation. Another issue is
how to preprocess and analyse large quantities of multidimen-
sional trajectories of variable length. Non-machine learning
applications of trajectory analysis have traditionally only been
performed on points moving in 1D, 2D or 3D spaces [6]. Video
game state information, however, is not limited to such low di-
mensions. In machine learning, the development of Recurrent
Neural Networks has allowed for solving complex problems
using sequence-based data. Most notable applications are in
video tagging [7], generating image descriptions [8], speech
modelling [9], language modelling [10] as well as video-games
[11]. These architectures allow us to be able to handle high-
dimensional trajectory data.

Interpreting generalised behaviours from large datasets is
another issue when trying to identify play-style. This has
been done with non-trajectory based data (summary statistics)
within video games to describe player roles [12]. Creating
such a technique for trajectory data requires compressing both
the spatial and temporal distributions. Such descriptions have
recently been obtained by utilising clustering techniques [13],
[14]. These descriptions offer useful insight into characteristics
and trends present in the underlying data, however, they are
yet to be applied to video game domains as an informative



tool for both player and designer.
In this paper, we address both the problem of processing

complex data and that of finding interpretive descriptions of
behaviours within a dataset. These descriptions should look
to describe some general characteristics or patterns exhibited
by a group. To that end, we propose a novel system for play-
style identification through the clustering of multi-dimensional
variable-length trajectories in video games and demonstrate
that these clusters represent varying styles of behaviours. The
core of this system is a specialised LSTM-autoencoder that
utilises the benefits of Recurrent Neural Network [15] archi-
tectures to handle sequence-based data. We evaluate this model
on a generated benchmark dataset as well as a natural domain.
We also demonstrate the unique ability of our model to identify
the style in both complete and partial trajectories without the
need for any additional engineering or training time. Lastly,
the characteristics of each play-style are recovered through the
analysis of each cluster and their relationships to each other.

II. RELATED WORK

Traditionally, play-style identification has been approached
through player modelling, which is the study of computational
models of players in games. This includes the detection,
modelling and prediction of human player traits which are
manifested through cognitive, affective and behavioural pat-
terns [16]. The techniques utilised in player modelling usually
fall into one of two groups: model-based or model-free.

A. Model-Based Approaches

In model-based approaches, a player model is built on a
theoretical framework whereby the preexisting understanding
of the domain is leveraged [16]. Model-based approaches
have been inspired by cognitive frameworks [17] as well as
general theoretical frameworks of behavioural analysis such as
usability theory [18]. Additional examples are models which
utilise theories of “fun” [19], [20]. These top-down approaches
have also been used to dynamically affect player experience
[21], [22], [23]. Although model-based techniques like these
are useful, our work seeks to avoid the use of any prior
knowledge of the domain and in essence, learn the heuristic
classifier in a model-free setting. Doing so has two benefits,
with the first being we are not required to impart any domain-
based bias, and the second is the ability to learn a more
accurate model than a handcrafted one.

B. Model-Free Approaches

Model-free approaches refer to the construction of a map-
ping (model) between (player) input and a player state repre-
sentation. In this case, there is no pre-existing understanding
of the model; rather, it is learned through an iterative process
[16]. To achieve this, observations are collected and analysed
to generate a model without strong initial assumptions of
its structure. In model-free approaches we see attempts to
model and predict player actions and intentions [24], [25].
Thue et al. [24] implemented a system that learns a label
for the player representing their style. However, this required

the manual annotation of the different “encounters” with their
corresponding style. Our proposed approach looks to learn
these play styles in a completely unsupervised setting.

Data mining efforts to identify different behavioural playing
patterns within a game have also been implemented using
bottom-up approaches [5], [26]. Drachen, Canossa and Yan-
nakakis [5] trained emergent self-organising maps on high-
level game behaviour data to classify players into four cat-
egories representative of their style. Here no pre-existing
information was required for the analysis of the data, which
also meant that the clusters that were identified were not
influenced by external factors. However, this process required
identifying the characteristics that resided within the data of
each separated cluster. It is this statistical analysis of the
separated data that revealed the semantics behind each cluster
and allowed for the identification of player archetypes. We
perform a similar step, however, the results of this process are
dependent on the features present in the original dataset. These
techniques have been effective, however, these studies have
utilised meta-data summaries over raw user data experiences.
We aim to achieve the same goal by analysing raw sequence-
based trajectory data, but without the need for extensive feature
engineering. This analysis is based on trajectory clustering.

C. Trajectory Clustering

An approach to the analysis of trajectory data is com-
paring and grouping based on whole or partial trajectory
attributes using a similarity measurement. However, it has
been demonstrated that clustering using sub-sequences lacked
meaning as the generated cluster centres are not dependent on
the input [27]. Additionally, when clustering trajectories, the
choice of similarity measure is important as it should consider
both the spatial and temporal features [28]. Common distance
measures include Hausdorff distance, Dynamic Time Warping
(DTW) [29], Euclidean distance and Longest Common Sub-
Sequence (LCSS) [30]. The choice of metric is dependent on
the structure of the data. DTW and LCSS in particular can
measure similarities between varying length trajectories.

Techniques such as k-Means and hierarchical clustering
have been utilised to perform the clustering step [31]. How-
ever, these techniques tend to be ineffective when input dimen-
sions are high [32]. Additionally, model-based methods which
use statistical approaches (COBWEB [33]), Neural Network
approaches (ART [34]), or self-organising maps (SOM [35])
have been utilised. SOM clustering of time-series features is
unsuitable for trajectories of unequal length, as the dimen-
sions of the weight vectors are fixed [36]. Furthermore, data
compression techniques utilising Latent Dirichlet Allocation
(LDA) have been applied to play-style clustering [37]. How-
ever, by considering timesteps as individual data points, LDA
approaches ignore the structural significance of temporal data.

In addition to these, deep learning techniques have been
applied to unsupervised clustering [13]. Xie, Girshick, and
Farhadi [13] used an autoencoder which allowed for the
important data compression aspect which was required to
make the previously mentioned clustering techniques more



feasible. This makes the clustering task easier since clustering
can be performed on the encoded data. Xie, Girshick, and
Farhadi [13] pre-train a network to minimise the reconstruction
loss and then separately minimise the clustering loss. This
separate clustering step used the KL-Divergence [38] between
a target distribution and an estimated distribution generated
from the encoded data. More recently, LSTM-autoencoders
have been implemented which are capable of handling time-
series data effectively [39]. This is a similar approach to
Xie, Girshick, and Farhadi [13] with the added LSTM layers
to handle time-series data as well as joint minimisation of
the reconstruction and clustering aspects. We utilise a similar
approach to handling our video game-based trajectories which
have the added characteristic of being variable length as well
as being higher dimensional.

III. METHODOLOGY

We aim to solve the following problem: given a set of
trajectories (X) can we identify a label (y) that categorises
each trajectory (xi ∈ X) according to a unique style of play.

A. Play-style Identification

Our unsupervised approach is based on two key steps. First,
we utilise an autoencoder network to project a trajectory into a
lower-dimensional latent representation. We then perform clus-
tering on this latent space to discover clusters corresponding
to related trajectories in this space. The full system is depicted
in Fig. 1.

1) Trajectory Encoding: An autoencoder works to recon-
struct each original input trajectory (xi ∈ X) after first
encoding it as a lower-dimensional state (zi ∈ Z). Formally,
this is given by (1).

zi = Encoder(xi) and x′
i = Decoder(zi) (1)

Our specific model is a temporal autoencoder containing
non-stacked LSTM layers similar to Xie, Girshick, and Farhadi
[13]. This allows the processing of varied length trajectories
by feeding the state at each time-step into its own LSTM cell.
These cells (“A” in Fig. 1), pass on the important information
(ht, ct) in sequence until finally outputting a fixed sized vector
representative of our latent space (Z). The network is trained
using back-propagation through time [15].

2) Trajectory Clustering: Having projected the trajectories
into the latent space, we then cluster them. This clustering step
is performed on the set of all generated pairs (x, z), where
x ∈ X and z is the output of the Encoder in (1). Each pair
(x, z) is clustered with respect to z to form predicted labels
y′. Since zi is a representation of xi we can use y′i as the
cluster label for the original data. Clustering using Z enables
the use of most clustering algorithms as there is no longer an
issue of varying length or temporal features.

IV. EXPERIMENTS

A. Datasets

To validate the robustness of our method, we evaluate our
model on two different datasets. The first is derived from a

Algorithm 1 Preference-Based Trajectory Generation (PBTG)
1: procedure PBTG(Environment E)
2: Define a set of reward functions R
3: Initialise our set of trajectories T = {}
4: for all reward functions r ∈ R do
5: Use Q-learning to learn optimal policy π∗

r

6: for n number of required Trajectories do
7: πn

r ← perturb(π∗
r )

8: Generate t(n, r) from πn
r and append to T

9: end for
10: end for
11: end procedure

grid-world game where a player seeks out a goal with the
opportunity of completing two additional optional objectives.
By generating this set of trajectories we have access to the
ground truth play-styles and as a result, we use this domain
to obtain quantifiable measure of performance. The second is
an unlabelled set of trajectories from the game Super Mario
Bros [40]. This data set was collected from individuals and
we use it to demonstrate our model’s performance in natural
domains.

1) Grid World: To evaluate an algorithm for play-style
identification, it is important to have multiple trajectories from
a set of different play-styles. Trajectory based datasets labelled
according to style do not exist and therefore we generate
data to account for this. We distinguish two play-styles as
being different goals that could be reached by an agent. These
we model as different reward functions in the reinforcement
learning paradigm. This idea of reward shaping has been used
to train a set of human-like bots with differing styles [41].
We utilise this approach to generate a set of trajectories with
differing performance levels for multiple styles.

Our PBTG trajectory generation approach (Algorithm 1)
was used to generate 5 individual datasets Tn from 5 different
environments (E1, . . . , E5) with 4 varying play styles (reward
functions) present. Each environment is a 10×10 grid world,
as depicted in Fig. 2. The environments each have a start
state (S, in blue) and a goal state (G, in green). Walls (black
tiles) cannot be traversed and trap states (red tiles) result in
failure. The variety in play-styles is introduced through the
addition of two bonus states (B1, in gold and B2, in cyan).
These are the optional objectives that a player with certain
preferences might wish to complete. The set of actions is the
movement in any of the 4 primary cardinal directions. Using
this design we generated data with 4 play-styles, as described
in Table I. The set of reward functions R used to emulate
these behaviours is also defined in Table I. Here we defined
large positive rewards for the objectives we wished the agent
to accomplish. The respective bonus rewards were only given
the first time an agent reached either B1 or B2. Following
the procedure outlined in Algorithm 1 we trained an agent for
each of the combinations of R and E for 20000 episodes with
discount factor γ = 0.99 and linear ϵ decay in order to ensure
our agent converges to the global optimal. The state is given



Fig. 1. Proposed architecture

Fig. 2. Randomly generated grid world environments E1, ..., E5

TABLE I
OBSERVABLE PLAY-STYLES AND REWARD STRUCTURE

R Behaviour G reward B1 reward B2 reward
1 Moves directly to G 100 0 0
2 Visits B1 before G 100 50 0
3 Visits B2 before G 100 0 50
4 Visits B1 and B2 before G 100 50 50

by the tuple (x, y, b1, b2) where x and y are the Cartesian grid
coordinates and b1 and b2 indicate whether an agent has visited
B1 or B2, respectively. Our dataset consists of 8000 randomly
selected trajectories per R and E. Therefore our trajectory is
a sequence of time steps in the form of (x, y, b1, b2).

2) Mario: This dataset consists of 74 playthroughs across
11 different levels of Super Mario Bros. These playthroughs
were each captured by logging the actions of a unique human
participant [40]. We then refactored this data into a trajectory,
where each time step represents the current state of the
playthrough at that point. We defined a state as a tuple given
by (j, k, r, c, d, e) where j is the number of jumps, k is the
number of enemies killed, r number of times the player has
started running, c the number of coins collected, d the number
of times the player died and e the unique encoding for each
action.

B. Training

We trained an individual model for each of our 6 environ-
ments (E1, . . . , E5,Mario). To avoid dataset-specific tuning,
we used the same parameters across all domains with ReLU as
the activation function. Dimensions (20, 8) were used to define
the (Hidden, Output) sizes of the autoencoder. The output
dimension is the size of our latent space. The models were

trained for 10000 episodes using the Adam optimiser with a
learning rate 0.001 using (2) to calculate the loss.

dLRecon

dz
=

d( 12 ||(x− x′)||22)
dz

(2)

C. Clustering

For the clustering step, we evaluated both k-means and
Gaussian Mixture Models (GMMs). For both algorithms, the
number of clusters were 4 and 8 for the Grid World and Mario
domains, respectively. For k-means and GMM we fit our data
using 100 restarts and a maximum iteration of 10000 . In
addition, k-means used a tolerance of 0.0001 and GMM used
a “full” covariance type. Although our model is completely
unsupervised, we do compare the ground truth cluster labels
(yi) with the predicted labels (y′i) to validate accuracy. This
validation step uses (3) and (5). Firstly (3) finds the best
match between the cluster assignments from an unsupervised
algorithm (y′i) and a ground truth assignment (yi), where m
ranges across all possible one-to-one mappings and n is the
number of data points [42].

Accuracy = maxm

(∑n
i=1 1{yi = m(y′i)}

n

)
(3)

Secondly, (5) defines a confidence measure (k) giving the
probability vector that a given trajectory x belongs to a
particular cluster. This is determined using (4) which calculates
the Euclidean distance vector d between x and C, where C is
the set of centroids determined through the clustering step.

d(x) = ||(C − Encoder(x)||22 (4)



k(x) =
exp(d

−1
(x))∑

exp(d
−1

(x))
(5)

Additionally since identifying play-styles on partial trajecto-
ries is a key feature, we need to perform a similar evaluation
step on these partial trajectories. To this end, we calculate
the total accuracy using Algorithm 2 as the average correctly
labelled predictions for every trajectory (t ∈ Tn). In this
case, our predicted label (y′) is determined by first calculating
the weighted moving average confidence (WMAC) [43] over
all partial trajectories (s ∈ t) using (6). Here ki represents
the confidence calculated using (4) and (5) as k(s) where
s ← t[0 : i] and the weighting w ← m(m+1)

2 where m
is the length of t. The cluster with the highest confidence
is then selected as our predicted label and compared to the
corresponding ground truth label y. This process is then
repeated for all (t ∈ Tn) with our final partial trajectory
accuracy (PTA) being the percentage of correct predictions.

WMAC =
m∑
i=0

(
ki × i

w
) (6)

Algorithm 2 Partial Trajectory Accuracy (PTA)
1: procedure PTA(Tn)
2: for all Trajectories t ∈ Tn do
3: w ← (m)(m+1)

2 ▷ m is the length of t
4: Calculate WMAC with all partial trajectories s ∈ tm

using (6)
5: y′ ← argmax

1≤j≤N
WMAC ▷ N being the number of

clusters
6: if y′ matches ground truth y then
7: PTA← PTA+ 1
8: end if
9: end for

10: PTA← PTA
n

11: end procedure

V. RESULTS AND DISCUSSION

Through the results of our experimental analysis, we demon-
strate the ability of our model to accurately cluster game
trajectories into their respective play-styles on both complete
and partial trajectories. Additionally, we also show how unique
characteristics can be recovered from these clusters by identi-
fying similarities and differences across clusters.

A. Complete Trajectory Clustering

To demonstrate the effectiveness of our model in identifying
play-styles, we plotted heat maps of the trajectories in each
cluster as well as the original trajectories for each r ∈ R for
E1. In Fig. 3 we observe that there is a correlation between
heat maps for both the clustered trajectories and the original
trajectories separated by reward function. This shows firstly,
that the desired behaviours in Table I are represented in the
data through the use of the rewards in Table I. Secondly,

Fig. 3. Heatmap of visited states comparing 8000 clustered trajectories
separated by our model (bottom) and original trajectories separated by reward
function (top) for E1.

TABLE II
COMPLETE AND PARTIAL TRAJECTORY CLUSTERING ACCURACY

E Complete Complete Partial Partial
GMM kmeans GMM kmeans

E1 0.653 0.598 0.499 0.534
E2 0.707 0.714 0.602 0.706
E3 0.778 0.705 0.749 0.670
E4 0.709 0.706 0.576 0.639
E5 0.778 0.652 0.686 0.678

we observe that the clustered trajectories depict the same
behaviour. For example, R4 sees the agent move to both bonus
objectives (top-right) and the same behaviour is observed in
the corresponding clustered set (bottom-right).

For quantitative analysis, we directly compared the set of all
predicted labels (y′) with the set of all ground truth labels (y)
for each Environment (E1, . . . , E5) using (3). This resulted
in the clustering accuracies shown in Table II for both k-
means and GMM clustering algorithms. Table II demonstrates
our model’s ability to accurately cluster play-styles from
completed trajectories across multiple varying environments.

B. Partial Trajectory Clustering

To investigate the ability to identify play-styles during
gameplay, we clustered partial trajectories and measured the
change in clustering confidence as a function of time. This
was achieved using Algorithm 2 with the results depicted in
Table II. We observe that an environment where trajectories
are initially similar such as E1 have a lower clustering
performance. This indicates that the play-styles are initially
well aligned while only diverging after some time.

Fig. 4 depicts the change in cluster assignment over time for
two particular trajectories. We observe that the cluster assign-
ments are non-volatile after an initial fluctuation. However,
two noticeable shifts occur, namely 3→ 0 which corresponds
to the shift R1 → R2 and 0 → 2 which corresponds to
the shift R2 → R4. This change in clustering assignment
is valid as these trajectories are both from R4 where the
optimal behaviour was to move B1 → B2 → G. This also



Fig. 4. Change in play-style prediction over time for two particular trajec-
tories with behaviour corresponding to R4 with 2 being the correct cluster
assignment for both

Fig. 5. Change in play-style prediction over time for two particular trajectories
from the Mario dataset

demonstrates that the autoencoder is separating data according
to the reward functions. Therefore, this form of analysis can
identify how a player’s play-style changes over time as a result
of performing some objective in some fashion.

To demonstrate the efficacy of our partial clustering over
time we analysed all trajectories separated by the identified
clusters across all 5 grid environments (E1, . . . , E5). This
aggregation is possible since the play-styles we are trying to
recover are the same across these different environments, as
they would be across multiple levels in a video game. Fig.
6 depicts the results of this, where we observe that for all
environments the clustering assignment converges to a unique
cluster. This demonstrates that across multiple trajectories our
approach to partial trajectory clustering produces consistent
desired results.

We applied the same analysis in the Mario domain; the
results are shown in Fig. 5. Here we observe that two initially
different trajectories converge to the same play-style. Based
upon initially differing behaviours it is natural for them to
change over time and even converge, based on the changing

Fig. 6. Clustering assignment over time separated by identified clusters over
all 5 grid environments

dynamics of a video game. Additionally, we once again see the
same initial fluctuations as observed in Fig. 4. The occurrence
of fluctuations after the convergence is indicative of cross-
over regions between play-styles. This is the main benefit of
identifying style temporally as developers or players have a far
denser signal indicating where and when their style changes.

The partial trajectory clustering accuracy (PTA), calculated
using Algorithm 2, is shown in Table II. The accuracy does
decrease using partial trajectories, but not by a significant
amount. This decrease, however, is to be expected with play-
styles sharing similarities, most notably the start location. This
demonstrates the robustness of the clustering model to unseen
data within the domain as well as demonstrating our ability to
quickly identify the correct play-style.

VI. IDENTIFYING UNIQUE STYLE CHARACTERISTICS

In the case of our grid world domain, we have shown that
we can group trajectories based upon an expected semantic
meaning encoded into the data. However, it is not commonly
the case that the semantic meaning behind clusters is known
beforehand. The characteristics of each cluster need to be iden-
tified for the grouping to be useful for developers or players.
We analyse the frequency (fk) of state (s) occurrences across
the identified clusters (k) to identify unique characteristics
defined by (7). A state is an individual time step within a
trajectory. In (7), x, si ∈ S, where S is the set of all possible
states, and n denotes the number of different states.

fk(x) =

n∑
i=1

1[si = x] (7)

In particular, we observe in Fig. 7 that the unique states
for cluster 1 reside in the top right of the map for E4 when
B1 = 0, B2 = 1 as well as when B1 = 0, B2 = 0
which expectantly corresponds to behaviour 4 in Table I.
These unique states for cluster 1 (k = 1) were calculated
as f1(x) − (

∑3
k=0[fk(x)]; k ̸= 1). Here uniqueness emerges

when a particular state occurs more than the total frequency



for that state in all the other clusters. Similar forms of analysis
can be used to determine similarities and differences between
particular play-styles. For example, the similar states between
clusters 1 and 3 as seen in Fig. 8 are calculated as the
combined frequency for each common state. A state is said
to be common if it exists within trajectories found in both
clusters. Frequencies are combined by selecting the minimum
frequency between the two clusters for each particular state
(x). Here it is observed that both play-styles first go to B1

before heading towards the middle in the direction of the goal.
We saw in Fig. 7 the behaviour of cluster 1 was to move to
B2 before heading to the goal, however, this is not the case
for cluster 3. Through observing the unique states as well as
where the clusters are similar and different we can formulate
a deeper understanding of the behaviours associated with each
cluster. Applying the same form of analysis to the Mario
dataset, shown in Table III, allowed us to discover the meaning
behind the identified clusters. For example, we note that cluster
0 corresponds to players who die the least while cluster 2
contains players who are more likely to collect coins while
also killing enemies. By engaging in this behaviour we see
that they are more likely to die. Lastly, cluster 1 players tend
to jump the least while also ignoring picking up any coins. The
unique state counts were also used to influence the number of
clusters chosen when using k-means. By considering whether
the frequency of the most unique state was too large or small
we could raise and lower the number of clusters we identified.
For example, if the frequency of unique states was below a
certain threshold, the particular cluster would be considered
too similar to another. By doing this we settled on 3 clusters
that had both unique cluster characteristics and a suitable
amount of data.

TABLE III
THE 3 MOST FREQUENT UNIQUE STATES FOR EACH IDENTIFIED CLUSTER

FOR ALL THE TRAJECTORIES IN THE MARIO DATASET

State Description
jumps kills runs coins deaths action

Cluster 0 17 1 2 3 0 9
17 1 2 3 0 2
12 1 0 2 0 2

Cluster 1 11 7 0 0 1 9
11 7 0 0 1 2
8 7 0 0 1 2

Cluster 2 38 8 0 8 2 9
38 8 0 8 2 9
49 8 0 8 1 9

VII. CONCLUSION AND FUTURE WORK

This paper presents an approach to play-style identification
using an unsupervised LSTM-autoencoder clustering model on
variable-length trajectory data. Through empirical analysis, we
demonstrated that the generated clusters matched the ground-
truth underlying play-styles in our generated benchmark do-
main for both partial and complete trajectories. Similar results
were demonstrated in the Mario domain demonstrating the

Fig. 7. Unique states observed for Cluster 1 for E4 (excluding non-visited
states)

Fig. 8. Shared states observed between Cluster 3 and 1 for E4 (excluding
non-visited states)

model’s ability to work in natural domains. The capacity of
our model to recover the underlying play-style from partial
trajectories demonstrates its usefulness during game-play. We
were also able to show how our model could describe how
a player’s style evolved throughout their game-play using our
partial trajectory analysis. This is particularly useful as our
model requires no further engineering or training to perform
this operation on partial trajectories. This abstraction technique
was effective at identifying these behaviours using raw low-
level data rather than hand-tuned features. Although clustering
over time for play-styles has been attempted before [44]
we achieve this result in an unsupervised setting. Through
state frequency analysis we identified the characteristics which
define our play-styles. This component makes it easier for
developers and players not only to understand how an indi-



vidual plays but also how that individual compares to others
of differing styles, thereby allowing players or developers to
make more informed decisions on which aspects they should
change. A natural progression for this work would be to test
the effectiveness of our model on higher dimensional tra-
jectories more representative of modern games. Furthermore,
another possible improvement may arise from the application
of “attention” based models [45] as they are capable of
handling temporal data.
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