End-to-End Learning to Follow Language Instructions
with Compositional Policies

Vanya Cohenf Geraud Nangue Tasse?
The University of Texas at Austin University of the Witwatersrand
vanyaQutexas.edu geraudnt@gmail.com
Nakul Gopalan Steven James
Georgia Institute of Technology University of the Witwatersrand
nakul_gopalan@gatech.edu steven. jamesQwits.ac.za
Raymond Mooney

The University of Texas at Austin
mooneyQutexas.edu

Benjamin Rosman
University of the Witwatersrand
benjamin.rosmanl@wits.ac.za

Abstract

We develop an end-to-end model for learning to follow language instructions with
compositional policies. Our model combines large language models with pretrained
compositional value functions [Nangue Tasse et al., [2020] to generate policies
for goal-reaching tasks specified in natural language. We evaluate our method
in the BabyAl [Chevalier-Boisvert et al., 2019] environment and demonstrate
compositional generalization to novel combinations of task attributes. Notably our
method generalizes to held-out combinations of attributes, and in some cases can
accomplish those tasks with no additional learning samples.

1 Introduction

i

This work extends the paper “Learning to Follow Language Instructions with Compositional Policies’
Cohen et al.[[2021] to enable end-to-end, compositional learning of language-instruction following
tasks. We build on the Boolean-compositional value function representations of [Nangue Tasse et al.
[2020] and propose an end-to-end system for learning compositional policies for following language
instructions. By leveraging the few-shot learning properties of the large language model TS5 [Raffel
et al.|[2020]], in combination with compositional value functions, we aim to demonstrate more sample
efficient learning of goal-reaching tasks specified by language commands. We evaluate learning to
follow language instructions in the BabyAI domain Chevalier-Boisvert et al.[[2019].

In|Cohen et al.|[2021] the value functions and instruction-to-Boolean-expression translation model
are first learned separately and then combined during inference. The compositional value functions
were trained using the procedure outlined in|Nangue Tasse et al.|[2020]] and the translation model

t Equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

was learned using reinforcement learning. In this work, we instead learn compositions in an end-
to-end manner. We draw inspiration from past work in Neural Module Networks (NMN) |Andreas
et al.| [2015]] [Hu et al.| [2018]]. These networks learn an input-conditioned layout of differentiable
modules that reflect the compositional structure of each task. Our proposed Neural Module Value
Network (NMVN) implements a differentiable Boolean composition of pretrained compositional
value functions modules. The model uses pretrained language representations from T5. The NMVN
optimizes the same loss function used to train the compositional value functions.

Figure 1: Example of a task in the BabyAlI domain. Here the agent (red triangle) needs to complete
the mission specified by the command “pick up the red key”. Solving this task with compositional
value functions requires using the conjunction of the pickup “red object” and “key” value functions.

Previous work has demonstrated the challenges of systematic compositional generalization in neural
networks and proposes that a failure to learn compositional representations may be responsible for the
sample inefficiency of deep learning methods [Lake and Baroni, 2018]]. Many language instruction
tasks posses compositional structure. The meaning of a compositional command can be determined
from the meaning of component phrases and their arrangement [[Szabd, [2020]. While deep learning
methods have attained success in language instruction following tasks [Blukis et al.,[2019] [[Chaplot;
et al,[2018]] [Tambwekar et al.; 2021]], these methods require large amounts of training data and do not
generalize to novel compositions of instruction components. By utilizing the few-shot generalization
capacity of large language models [Brown et al.,2020]] in combination with the sample efficiency of
Boolean compositional policies [Nangue Tasse et al.,|2020] we build a system which can generalize
compositionally to novel tasks without requiring large amounts of additional training data.

We present sample-efficiency results for learning in the BabyAl domain that show learning novel
compositions of task attributes requires an order of magnitude fewer environment samples than the
model of |Cohen et al|[2021]]. These experiments test the ability of the agent to generalize both to
novel compositions of goal conditions and entirely unseen goal conditions. The proposed method is
evaluated against a non-compositional baseline based on the deep Q-network (DQN) BabyAI model
[Mnih et al.| |2015]]. Further we show that the network learns to properly utilize individual value
function modules in a compositional manner.

This project makes the following contributions:

* We propose a novel model, which learns in an end-to-end manner to connect pretrained
compositional value functions with language representations. The model directly maps lan-
guage and pixel-level environment observations to composed value functions that determine
policies for acting in the environment and learns from the same Q-learning loss used to train
the DQN-based [Mnih et al., 2015|] compositional value functions.

* We show learning results for three task curricula designed to test compositional learning
in BabyAlI and show that our model leads to substantial savings in the number of samples
required to learn novel compositions of tasks over our original model in|Cohen et al.|[2021]]
and a non-compositional baseline.

* We find that the internal representations learned by our model match the underlying compo-
sitional task structures.

* We detail the challenges and advantages of learning language representations from a value-
function-approximation learning signal. This signal differs from the majority of other weakly
supervised language learning objectives, including our original model in|Cohen et al.|[2021],
which learns using policy-gradient methods.

2 Background

We consider the case of an agent required to solve a series of related tasks. Each task is formalized as
a Markov decision process (MDP) (S, A, p, r), where S is the state space and A is the set of actions
available to the agent. The transition dynamics p(s’|s, a) specify the probability of the agent entering
state s’ after executing action a in state s, while 7(s, a, s') is the reward for executing a in s. We
further assume that r is bounded by [ryvin, "max|. We focus here on goal-reaching tasks, where an
agent is required to reach a set of terminal goal states G C S.

In our formulation, tasks are related in that they differ only in their reward functions. Specifically, we
first define a background MDP M, = (Sy, Ao, po, o). Then, any new task 7 is characterized by a
task-specific reward function r, that is non-zero only for transitions entering g in G. Consequently,
the reward function for the resulting MDP is given by rg + 7.

The agent aims to learn an optimal policy 7, which specifies the probability of executing an action in
a given state. The value function of policy is given by V™ (s) = E, [>_,°, r(s¢, a;)] and represents
the expected return after executing 7 from s. Given this, the optimal policy 7* is that which obtains
the greatest expected return at each state: V™ (s) = V*(s) = max, V7 (s) forall s € S. Closely
related is the action-value function, Q7 (s, a), which represents the expected return obtained by
executing a from s, and thereafter following 7. Similarly, the optimal action-value function is given
by Q*(s,a) = max, Q" (s,a) forall (s,a) € S x A.

2.1 Logical Composition of Tasks and Value Functions

Recent work [Nangue Tasse et al.,2020] has demonstrated how logical operators such as conjunction
(M), disjunction (V) and negation (—) can be applied to value functions to solve semantically mean-
ingful tasks with no further learning. To achieve this, the reward function is extended to penalise the
agent for attaining goals it did not intend to:

_ TuMIN ifg#seqg
= 1

7(s:9,a) {r(s, a) otherwise, M
where 7,7y is a large negative penalty. Given 7, the related value function, termed world value
function [Nangue Tasse et al.,|2022]], can be written as

Q(s.g.a) = (s, 9.0) + /S V(s g)p(s']s, a)ds', @

where V7™ (s, g) = Ex Y20 T(se. g, at)].

These value functions are intrinsically compositional since if a task can be written as the logical
expression of previous tasks, then the optimal value function can be derived by composing the learned
world value functions similarly. For example, consider the PickUpObj domain shown in Figure|T]
Imagine that the agent has separately learned the task of collecting red objects (task R) and keys (task
K). Using these value functions, the agent can immediately solve the tasks defined by their union
(R V K), intersection (R A K), and negation (—R) as follows:

Qrvi = QR V Qk = max{Q%, Q% }
Qrax = Qr N Qk = min{Q%, Q% }
Q' r = ~Qr = (Qiax + Quin) — Qks

where Q3,4 and Q% are the world value functions for the maximum and minimum tasks
respectively

'The maximum task is defined by the reward function r = ryax for all G. Similarly, the minimum task has
reward function r = ryy for all G.

2.2 TS5 Pretrained Transformer Language Representations

Transformer language models use the self-attention mechanism [Vaswani et al.| [2017] to generate
abstract sequence representations of text inputs and transform these representations into probability
distributions over text outputs. Following the original Transformer architecture, the TS model contains
both a text encoder and decoder. Each of these is a stack of self-attention layers that transform input
sequences to output sequences 2}

We use the T5 sequence-to-sequence model Raffel et al.|[2020] based on the Transformer architecture
Vaswani et al.|[2017]] to generate sentence embeddings of the input BabyAl mission commands.
The large-scale pretraining scheme of T5 and subsequent fine-tuning on downstream tasks, has
significantly improved performance on diverse NLP tasks such as classification, translation, and
question answering [Devlin et al., 2018} Peters et al., 2018| Radford et al.l 2018} [2019] T5 is pretrained
on the Colossal Clean Crawled Corpus (C4) Raffel et al.|[2020], a filtered version of the Common
Crawlﬂ During pretraining, the model optimizes a self-supervised reconstruction objective to learn
semantic representations of the language corpus. We chose T5 because Raffel et al.| perform numerous
ablations to develop their pretrained models and demonstrate high performance on a variety of NLP
tasks.

3 Related Work

Our work is situated within the paradigm of reinforcement learning where novel tasks are specified
using natural language and the agent is required to solve the task in the fewest possible steps.
Previous approaches have solved this problem using end-to-end architectures that are learned or
improved using reinforcement learning |Anderson et al.[[2018]], Blukis et al.|[2019]], Chaplot et al.
[2018]]. A problem with such approaches is a lack of compositionality in the learned representations.
Specifically, learning to navigate to a red ball does not help the agent to learn to identify and navigate
to a blue ball. Approaches that translated language commands to a symbolic representation and
then planned to get to the goal can demonstrate compositionality due to the pre-specified symbolic
representations Dzifcak et al.[[2009], [Williams et al.| [2018]], Gopalan et al.|[2018|]. However these
works do not allow the agent to learn policies, but use pre-specified symbols and a model for planning.
Compositional representation learning has been demonstrated in the solving computer vision and
language processing tasks using Neural Module Networks (NMN) |Andreas et al.|[2015] [Hu et al.
[2018]], but we explicitly want to learn a compositional representation both for the reinforcement
learning policies and the language command. Kuo et al.| [2021] do demonstrate compositional
representations for policy, but they depend on a pre-trained parser to learn this representation.
On the other hand we use large language models [Raffel et al.l 2020] and compositional policy
representations to demonstrate compositionality in our representations and the ability to solve novel
unseen instruction combinations.

Compositional policy representations have been demonstrated using value function compositions,
which were first demonstrated by [Todorov| [2007] using the linearly solvable MDP framework.
Moreover, zero-shot disjunction [[Van Niekerk et al.|[2019] and approximate conjunction [Haarnoja
et al.l 2018al Van Niekerk et al., 2019, Hunt et al., | 2019] have been shown using compositional value
functions. [Nangue Tasse et al.|[2020] demonstrate zero-shot optimal composition for all three logical
operators—disjunction, conjunction, and negation—in the stochastic shortest path problems. Our
approach extends ideas from [Nangue Tasse et al.|[2020] to solve novel commands specified using
natural language.

4 Methods

4.1 Learning the Compositional Value Functions

Like Nangue Tasse et al.|[2020], we use deep Q-learning Mnih et al.|[2015] to learn the Q-function
for each goal of the compositional value functions. We represent each compositional value function
Q* with a list of |G| DQNSs, such that the Q-function for each goal Q;(s,a) = Q*(s,g,a) is
approximated with a separate DQN.

“https://commoncrawl.org

For each task, the agent starts training after 1000 steps of random exploration to populate an experience
replay buffer and a goal buffer (set of reached terminal states). For each episode, the agent samples a
random goal from the goal buffer and uses e-greedy to act in the environment. For each action, a,
that the agent takes in each state, s, it receives goal-oriented rewards (Equation [I)) given by:

r(s,g,a):{o'l ifg#s€g

r(s,a) otherwise,
where task reward r(s,a) = 2 for picking up the correct object and r(s,a) = —0.1 everywhere
elseE| The episode terminates after the agent picks up any object. The agent’s compositional value
function is then trained per episode using the collected experience. Training ends once the agent
reaches a success rate of at least 0.98. For lower success rates, the compounding effect of composing
sub-optimal policies negatively impacts the translation model’s learning.

4.2 Neural Module Value Network

Module Weights

t0 t1 t2

{Composed Value Function }« a

7 Action-Values

5 ------------------- e /

E | -/

S| i . e O

2 % :] @ -

% e Layer 2 : > Layer 2 8 Composmonal
£ ! | S |/ Value Functions \\\
R T Rl ‘ R =0)
@® | H

B |

@D ! 1

[To N Layer 1 — Layer 1

] |

["Pick up the red ball"] BabyAl Image Observation

Figure 2: The NMVN architecture used to learn compositional value functions. The network
maps image observation inputs and text Baby Al missions to Q-values by composing the pretrained
compositional value functions using a differentiable attention mechanism. This model learns using
the same DQN objective that was used to train the compositional value functions.

The Neural Module Value Network in Figure 2] maps input BabyAl observations and text mission
statements to Q-values. The BabyAlI environment observations are image observations of the whole
environment and BabyAI mission commands. The image observations are 54 by 54 pixels and contain
3 color channels for red, green, and blue. The commands take the form “pick up [the/a] [object]”
where [object] contains a composition of type and color attributes (e.g. red box). If more than one
valid goal object is present in the environment, the indefinite article “a” is used.

In the case of the NMVN, TS5 is used to produce a sequence of embeddings of a fixed output length
conditioned on the input mission command. This usage shares some similarities with translation
tasks, where one text sequence is mapped to another in an end-to-end manner. However in the NMVN
the output representations are not decoded to a Boolean expression text sequence. Instead they are
transformed into attention values over the pretrained compositional value functions and operations.

3We used 7arrn = Tarrn = —0.1 since that is the simplest choice and it did not result in any discernible
change in the success rate of the composed policies.

As there are two object attribute classes available in BabyAlI (color and object type) the model
allows for Boolean conjunction expressions with two arguments. At each argument position of the
decoder sub-module, attention weights are calculated over a vocabulary of tokens describing the
object type attributes {bozx, ball, key}, object colors {red, blue, green, grey, purple, yellow}. At
the operator position, attentions are calculated over the two logical operators {and, or} however or
attentions are not used as the tasks examined do not require disjunction. Attentions are calculated as
the softmax over these token logits. We also add an additional value function for going to any object
represented by the token {object}. While this token is present during training it is not required to
solve the environments evaluated in this project. To approximate the min and max operations from
Nangue Tasse et al.|[2020], we utilize softmin and softmax with a temperature setting.

At each argument position, a hard attention is calculated from the soft-attention described by taking
the max over attention positions. As such the attention mechanism learns to select the appropriate
arguments to the conjunction expression. However by utilizing a hard attention mechanism the model
is no longer end-to-end differentiable without a further modification. We approximate the gradient
with respect to the hard attention using the straight-through estimator of Jang et al.|[2016]. In the
forward pass all argument attentions are hard, but the gradients for the backward pass are calculated
with respect to a softmax distribution. We find this works well in practice and produces policies
which attain our success threshold of 95%, which was not true for the soft attention-based arguments.

A soft attention mechanism is used to select the appropriate Boolean operator from {and, or}. At
each position both operators are evaluated with respect to the input arguments; however, in these
experiments we only evaluate with respect to the and operator output. Composed value function
outputs are propagated in a left-right manner using a simple recurrence mechanism. As with the first
argument on the left-hand side of the Boolean composition at t0, the output of the composition can be
passed as the left-hand side argument to further Boolean operations. We note that this restricts the
space of compositions expressible by the model and some tasks would require additional attention
and memory modules to handle operation precedence. Nonetheless this model is sufficient to express
the compositions needed to solve the BabyAl navigation tasks.

4.3 Learning to Compose Value Functions

In preliminary experiments that utilized soft attention mechanisms over arguments, we found that
the model would get stuck in a local maximum of averaging the attention across the appropriate
value functions. For example in the task “pick up the red ball” the model would place half of its
attention for each argument on the value functions for red and ball. These averaged value function
arguments resulted in relatively high performing, but not optimal, policies. Modifications to the
reward function to eliminate these local maxima yielded significantly degraded performance, likely
because the reward scale from the environment no longer matched that of that of the compositional
value functions.

The optimization of the NMVN differs significantly from that of |(Cohen et al.|[2021] and posed
numerous challenges, while also conferring some benefits. The original model also utilizes pretrained
value functions, but learns to translate mission commands to output text Boolean expressions. These
text outputs are then parsed and used to instantiate composed value functions to determine policies to
act in the environment. While this translation model was also trained using reinforcement learning
from environment rewards, it was optimized using a policy-gradient loss. The reward signal was
derived from the average reward from 50 policy rollouts for each sampled environment. Prior work
has established that policy-gradient methods suffer from high variance and require variance reduction
techniques (in this case averaging the policy rollouts) to work well in practice |(Greensmith et al.
[2004].

The NMVN instead learns from a deep Q-learning, temporal difference (TD) loss Mnih et al.| [2015]],
Sutton| [[1988]]. Instead of maximizing the expected reward of the policy rollout in the environment,
the NMVN agent instead minimizes the temporal difference error in estimating the Q-values at each
image-state, where the space of possible Q-values are provided by the pretrained compositional value
functions. The model is capable of expressing a wide number of potential value functions, due to
the number of combinations of compositional value function arguments. Learning to minimize this
TD error (when leveraging pretrained value functions) should require fewer interactions with the
environment, as every step in the environment provides a lower-variance value function Greensmith

[2004] than the higher-variance policy rollout estimates. Our experiments show the new
end-to-end agent learns with fewer environment interactions than the previous agent.

Although the learning signal may be lower variance, optimizing DQN poses significant challenges
and issues with stable learning are outlined in other works |[Haarnoja et al.| [2018b]], Maei et al.| [2009],
[Mnih et al|[2015]], van Hasselt et al.| [2015]]. Through a rigorous hyperparameter search we find the
NMVN DQN learning algorithm sensitive to small hyperparameter changes. For example, when
calculating the value function attentions in the straight-through estimator, the algorithm requires a
particular setting for the softmax temperature [Ackley et al.| [T985] and otherwise does not converge.
Further we found learning sensitive to the noise introduced by dropout in the language model and
consequently turned off dropout. Lastly, performance is sensitive to the learning rate used. In
these experiments we settled on a significantly smaller learning rate than is generally used with
our optimizer, but found it still produced fast and correct learning. Carefully tuning the off-policy
exploration variable e also resulted in significant improvements to agent learning. A significant
fraction of the time spent on experiments went into identifying the various issues caused by slight
variations in these parameter settings, and required tuning the parameters in a fully-supervised pseudo
environment to identify reasonable settings. A full list of relevant hyperparameters are available in
the Appendix.

5 Results
1750
1500 2500
1500
1250 1250 2000
1000
21000 g 81500
% 750 % 750 @
1000
500 500
250 250 500
0
0 s s" > 0 & Sh & S+
& N N \QI\- A 3 o
* ¢ SIS)
< <
goal object goal object goal object

(a) Task set for the attributes
{box, key, green, blue}. The
agent requires significantly fewer
learning steps to learn each addi-
tional task. The agent requires
fewer steps to learn the held-out
combinations of attributes. In
both cases the agent requires at
most approximately 250 environ-
ment steps.

(b) Task set for the attributes
{bozx, ball, yellow,red}. The
agent requires no additional steps
to learn the held-out “pick up the
yellow ball” task but roughly the
same number of steps to learn the
“pick up the red box” task.

(c) Task set for the attributes
{key, box, purple, grey}. In
this sequence the middle two
tasks now share color attributes.
The agent requires no additional
steps to learn the held-out “pick
up the grey box” and “pick up the
grey key” tasks and requires fewer
steps to learn the “pick up the pur-
ple box” task.

Figure 3: Results for the NMVN. The pickup task is learned for each object in series. For three trials,
the mean environment steps needed to attain a 95% success rate are plotted for each task. Note that
some tasks require no additional learning for the agent to succeed. Standard deviations are indicated
for all tasks. During the first 1,000 steps no learning takes place as the DQN replay buffer is filled.
The dashed line indicates the number of steps after which agent learning starts.

We show learning results for sequences of tasks that test the agent’s ability to generalize compo-
sitionally to novel compositions of attributes and novel attributes entirely. Figure 3] shows results
for the three task sequences investigated. The NMVN is trained using a warm-up period of 1,000
environment steps to fill the experience replay buffer for DQN training. Even though learning only
starts after this period, we include these steps in the results for comparison purposes. Importantly if
the agent cannot generalize immediately to the novel task, the learning steps required to solve the task
starts at 1,000. In each task the agent needs to pick up a correct goal object, where four “distractor”
objects are sampled uniformly at random from all possible object types. There may be more than one
valid goal object in the environment and this changes the language command to refer to the object

using the indefinite article “a.” Evaluation takes place at the start of learning for each new task, and
after every 10 episodes. The evaluation tests the agent in 100 randomized task environments. To pass
the evaluation and start learning the next task, the agent needs to attain a 95% success rate.

The plots in Figure [3test different combinations of object attributes in varying sequences. Composi-
tional generalization would mean that tasks defined by novel combinations of learned object attributes
require significantly fewer learning steps than the original tasks. Indeed for all sequences investigated,
the two novel combinations require fewer learning steps than the first two base tasks. Notably, the
model does not require additional learning steps to solve some tasks, and instead relies upon transfer
learning from the pretrained language space and task-specific fine-tuning to solve these environments.
In Figure [3a] and [3c|the final task requires more learning steps to solve than the penultimate task. If
this is evidence of overfitting, it may be possible to ameliorate with better hyperparameter choices
and regularization. Differences in sample complexity between tasks are likely the result of prior
probabilities over the attentions for those value function arguments.

Investigations of the attentions learned across all NMVN trials and tasks indicate that the agent learns
the correct attentions for the value functions when solving each task. Evaluations of agents with
nearly correct attentions (e.g. one argument correct) confirmed that the agent cannot attain a high
success rate unless it selects the correct value function compositions for each task. Altogether, these
findings imply that the NMVN learns more efficiently then the original agent in|/Cohen et al.|[2021]
without sacrificing model interpretability which is one of the main motivations behind the use of
NMN |Andreas et al.|[[2015]].

While the NMVN agent and the agent from [Cohen et al.| [2021]] require roughly the same number
of optimization steps to learn the tasks presented, the agent in|Cohen et al.|[2021]] requires more
than an order of magnitude more environment interactions in the form of policy rollouts to attain a
usable learning signal. The NMVN requires significantly fewer environment interactions to learn
than the non-end-to-end model and trains more quickly as a result. This indicates that the use of
end-to-end optimization in combination with a new objective dramatically improves sample efficiency
for learning to compose the value functions for BabyAlI tasks.

In contrast to our method, the BabyAl baseline is a joint language and vision model which learns a
single Q-function from scratch for all tasks. The baseline architecture is based on a CNN-DQN Mnih
et al.[[2015]] with a GRU |Cho et al.| [2014]] implementing the Baby Al mission encoder. The final
GRU hidden state is used as the representation for the input mission command. Like the NMVN this
network maps image observation inputs and text Baby Al missions to Q-values, but utilizes a FiLM
layer |Perez et al.|[2017]] to condition the Q-values on the inputs. Like the pretrained compositional
value functions and NMVN, this model also learns using the DQN objective. Its component value
function and language representations are not pretrained. Both the NMVN and previous model learn
both task value functions and language separately and then learn to combine them compositionally.
The baseline model does not have explicit compositional representation. Although not a head-to-head
comparison, we also ran evaluations for the baseline agent on these curricula, and found that it did
not successfully learn any of the tasks in fewer than 15,000 steps. This suggests that the model is not
able to generalize effectively between tasks.

6 Conclusion and Future Work

We validate that an end-to-end approach is capable of learning to efficiently compose pretrained value
functions. Given these confirmatory experiments, future work can investigate the changes required
to simultaneously optimize compositional value functions and the model. Additionally, because of
the challenge of getting the end-to-end model to train, there may be additional performance that
can be obtained through further hyperparameter and architecture search. Another potential axis
of compositional generalization involves learning to generalize between Boolean operators. These
experiments would require modifications to the Baby Al domain to support tasks that can utilize both
disjunctive and conjunctive task semantics. Further work in expanding the BabyAl domain can also
enable experiments to train a modified NMVN with mechanisms to handle operator precedence for
specifying arbitrary combinations of task attributes. Lastly as discussed in the introduction, extensions
to experiments in Habitat could test new methods for learning compositional value functions in more
challenging and realistic environments. These environments also open up possibilities for more
complex language commands and compositional task structures.

References

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147-169, 1985.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Siinderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3674-3683, 2018.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks, 2015.
URL https://arxiv.org/abs/1511.02799,

Valts Blukis, Yannick Terme, Eyvind Niklasson, Ross A Knepper, and Yoav Artzi. Learning to map
natural language instructions to physical quadcopter control using simulated flight. arXiv preprint
arXiv:1910.09664, 2019.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj
Rajagopal, and Ruslan Salakhutdinov. Gated-attention architectures for task-oriented language
grounding. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAl: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder—decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724—1734, 2014.

Vanya Cohen, Geraud Nangue Tasse, Nakul Gopalan, Steven James, Matthew Gombolay, and
Benjamin Rosman. Learning to follow language instructions with compositional policies, 2021.
URL https://arxiv.org/abs/2110.04647,

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and Paul Schermerhorn. What to do and how to do
it: Translating natural language directives into temporal and dynamic logic representation for
goal management and action execution. In 2009 IEEE International Conference on Robotics and
Automation, pages 4163-4168. IEEE, 2009.

Nakul Gopalan, Dilip Arumugam, Lawson LS Wong, and Stefanie Tellex. Sequence-to-sequence
language grounding of non-markovian task specifications. Robotics: Science and Systems XIV,
2018.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research, 5(9), 2004.

T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine. Composable deep reinforcement
learning for robotic manipulation. In 2018 IEEE International Conference on Robotics and
Automation, pages 6244-6251, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications, 2018b. URL https://arxiv.org/abs/1812.05905.

https://arxiv.org/abs/1511.02799
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2110.04647
https://arxiv.org/abs/1812.05905

Ronghang Hu, Jacob Andreas, Trevor Darrell, and Kate Saenko. Explainable neural computation via
stack neural module networks, 2018. URL https://arxiv.org/abs/1807.08556.

J. Hunt, A. Barreto, T. Lillicrap, and N. Heess. Composing entropic policies using divergence
correction. In International Conference on Machine Learning, pages 2911-2920, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax, 2016.
URL https://arxiv.org/abs/1611.01144,

Yen-Ling Kuo, Boris Katz, and Andrei Barbu. Compositional rl agents that follow language com-
mands in temporal logic. Frontiers in robotics and Al, 8:689550, 2021.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning,
pages 2873-2882. PMLR, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Hamid Maei, Csaba Szepesvari, Shalabh Bhatnagar, Doina Precup, David Silver, and Richard S
Sutton. Convergent temporal-difference learning with arbitrary smooth function approximation.
Advances in neural information processing systems, 22, 2009.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Riedmiller,
A. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

G. Nangue Tasse, S. James, and B. Rosman. A Boolean task algebra for reinforcement learning.
Advances in Neural Information Processing Systems, 33, 2020.

Geraud Nangue Tasse, Steven James, and Benjamin Rosman. World value functions: Knowledge
representation for multitask reinforcement learning. In The 5th Multi-disciplinary Conference on
Reinforcement Learning and Decision Making (RLDM), 2022.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual rea-
soning with a general conditioning layer, 2017. URL https://arxiv.org/abs/1709.07871.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint arXiv:1802.05365,
2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research 21, 2020.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9-44, 1988.

Zoltan Gendler Szab6é. Compositionality. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, Fall 2020 edition, 2020.

Pradyumna Tambwekar, Andrew Silva, Nakul Gopalan, and Matthew Gombolay. Interpretable policy
specification and synthesis through natural language and rl. arXiv preprint arXiv:2101.07140,
2021.

E. Todorov. Linearly-solvable Markov decision problems. In Advances in Neural Information
Processing Systems, pages 1369-1376, 2007.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning, 2015. URL https://arxiv.org/abs/1509.06461,

10

https://arxiv.org/abs/1807.08556
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1709.07871
https://arxiv.org/abs/1509.06461

B. Van Niekerk, S. James, A. Earle, and B. Rosman. Composing value functions in reinforcement
learning. In International Conference on Machine Learning, pages 6401-6409, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998-6008, 2017.

Edward C Williams, Nakul Gopalan, Mine Rhee, and Stefanie Tellex. Learning to parse natural
language to grounded reward functions with weak supervision. In IEEE International Conference
on Robotics and Automation (ICRA), pages 4430-4436, 2018.

A Appendix

NMVN Hyperparameters
Dropout 0.0
Optimizer AdamW
Learning rate le-6
Softmax Temp 0.5
Replay Buffer Size 1e3
€ init 0.5
€ final 0.1

Table 1: The model hyperparameters were determined empirically through grid-search over a set of
held-out tasks. The AdamW optimizer was introduced by |[Loshchilov and Hutter [2019].

11

	Introduction
	Background
	Logical Composition of Tasks and Value Functions
	T5 Pretrained Transformer Language Representations

	Related Work
	Methods
	Learning the Compositional Value Functions
	Neural Module Value Network
	Learning to Compose Value Functions

	Results
	Conclusion and Future Work
	Appendix

