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Abstract—Deep reinforcement learning has recently been
adopted for robot behavior learning, where robot skills are
acquired and adapted from data generated by the robot while
interacting with its environment through a trial-and-error pro-
cess. Despite this success, most model-free deep reinforcement
learning algorithms learn a task-specific policy from a clean
slate and thus suffer from high sample complexity (i.e., they
require a significant amount of interaction with the environment
to learn reasonable policies and even more to reach convergence).
They also suffer from poor initial performance due to executing
a randomly initialized policy in the early stages of learning to
obtain experience used to train a policy or value function. Model-
based deep reinforcement learning mitigates these shortcomings.
However, it suffers from poor asymptotic performance in contrast
to a model-free approach. In this work, we investigate knowledge
transfer from a model-based teacher to a task-specific model-
free learner to alleviate executing a randomly initialized policy
in the early stages of learning. Our experiments show that this
approach results in better asymptotic performance, enhanced
initial performance, improved safety, better action effectiveness,
and reduced sample complexity.

I. INTRODUCTION

Intelligent robots are a crucial part of the digitization
of the manufacturing industry. The worldwide assembly in-
dustry is confronting enormous difficulties, such as quickly
changing customer patterns, lack of assets, lack of talented
laborers, maturing society, and demand for local production.
Autonomous robot systems present an answer to every one of
these difficulties.

Deep reinforcement learning has shown great promise in
enabling autonomous complex sequential decision-making be-
haviors in robots [1]. Deep reinforcement learning is a sub-
field of reinforcement learning that uses deep neural networks
to enable reinforcement learning algorithms to be employed
in continuous and high dimensional environments [2]. There
are two main frameworks in deep reinforcement learning,
namely: model-free deep reinforcement learning, and model-
based deep reinforcement learning. In model-free deep rein-
forcement learning, the agent learns a good behavior through
constant interaction with the environment to gather experience

it uses to learn. In model-based deep reinforcement learning,
the agent learns a representation of the environment transition
function1 and uses it to simulate possible outcomes, and uses
the simulated experience to learn good behavior.

Findings in [3] showed a deep reinforcement learning agent
outperforming human expert in the game of Go. Unlike
supervised machine learning, which is limited to data provided
by the domain expert, a deep reinforcement learning agent gen-
erates the data it uses for learning. Most successful model-free
deep reinforcement learning algorithms learn a task-specific
policy from a clean slate, and they use a lot of time and data
to converge to a successful behavior [3], [4]. However, they
commonly require a vast amount of experience to converge
to a good behavior. Some model-based reinforcement learning
mitigates the sample complexity shortcoming by using simple
function approximators [5]–[7]. This makes them not applica-
ble in tasks with high-dimensional state-action spaces. Prior
model-based deep reinforcement learning algorithms often use
large neural networks to represent the transition function of
the environment. However, these algorithms still achieve poor
performance [8] and are restricted to low dimensional tasks
[9].

Work by [10] alleviates these drawbacks, by combining
a model-free deep reinforcement learning algorithm with a
model-based algorithm that uses a deep neural network with
two hidden layers to represent the environment transition
function. This model-based algorithm achieved lower sample
complexity and generated a decent performance on various
complex locomotion tasks in Mujoco [11]. However, its final
performance was far inferior to that of most model-free algo-
rithms. Hence, they decided to use a combination of a model-
based algorithm and a model-free algorithm to solve a single
task. This approach achieved lower sample complexity, better
initial performance, and enhanced asymptotic performance in
a model-free learner when compared to an off-the-shelf model-
free algorithm. However, their model-based planner is limited
to environments without obstacles.

1The transition function determines how the environment evolves under
certain behaviors.
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In this work, we propose an environment independent deep
reinforcement learning framework that transfers knowledge
from a model-based teacher to a task-specific model-free
learner to alleviate executing a randomly initialized policy in
the early stages of learning.

II. BACKGROUND

Reinforcement learning is a sub-field of machine learning
that teaches an agent how to choose an action from its action
space, within a particular environment, in order to maximize
rewards over time. We consider finite episodic tasks described
by a continuous Markov decision process M = 〈D,R〉 given
by the reward function R and the domain D = 〈S,A, T, γ〉,
where S ⊂ RM is the M -dimensional state space, A ⊂ RN is
the N -dimensional action space, T is the transition function,
and γ is the discount factor. We use work by [10] as our base
framework. The framework comprises of three parts, namely:
learning a transition function model, model-based control
(a.k.a planning), and initializing a model-free learner with
the model-based teacher transitions. We briefly discuss how
they interact to complete the whole pipeline in the following
subsections.

A. Transition Function Model Learning

A deep neural network is employed to represent the envi-
ronment transition function. It takes in the current state st and
possible action at as inputs and outputs the difference between
current state st and next state st+1, as shown in Equation 1.

fθ(st, at) = st+1 − st (1)

The training data thus consists of current states and actions as
input and difference between current states and next states as
output. The transition function model predicts the difference
between next state and current state (st+1 − st), because
it is difficult for the transition function model (fθ(st, at))
to properly represent the environment transition function in
cases where the actions executed cause little effect, resulting
in the next state st+1 and current state being too similar
[5]. The process of learning the transition function model
comprises of the following three steps:

Gathering experience: A random policy is executed multiple
times in the environment and the resulting trajectories
(s0, a0, . . . , sT−2, aT−2, sT−1) of length T are recorded in
the random knowledge-base DRand.

Prepossessing: The training data DRand (random data) is
divided into input τinput = (st, at) and corresponding output
label τoutput = (st+1 − st). To ensure each input and its
corresponding output have equal influence on the learning
process, the mean of the data is subtracted from the data
and divided by the standard deviation of the data. To enable
transition function model robustness, zero mean Gaussian
noise is added to τinput and τoutput.

Train transition function model: The transition function
model fθ(st, at) is trained using stochastic gradient descent
(SGD) to minimize the following equation:

loss =
1

|DRand|
∑

(st,at,st+1)∈DRand

1

2
||(st+1 − st)− fθ(st, at)||2.

(2)

B. Model-Based Control

In order to perform model-based control, the reward func-
tion r(st, at) has to be defined first. Then sample K sequences
of actions of length H using simple random sampling shorting
method by [12]. The transition function model fθ(st, at) is
employed, together with the reward function R(st, at) to
search for sequences of actions A(H)

t = (at, . . . , at+H−1) that
lead to the highest expected cumulative reward by optimizing
Equation 3.

A
(H)
t = argmax

A
(H)
t

t+h−1∑
t′=t

R(st′ , at′) (3)

Then apply model predictive control2 (MPC) and receive
transition experience (st, at, st+1). Then repeat this process
in the next state (st+1). The model-based control transitions
(st, at, st+1) are added to the model-based control transitions
knowledge-base DRL. Then after performing model-based
control T times, aggregate DRand and DRL, then use it to fine-
tune the transition function model by continuously training
it. This technique of fine-tuning the transition function model
with aggregated data is responsible for mitigating catastrophic
forgetting3 and distribution mismatch problems in the deep
neural network. Fine-tuning the model with both DRL and
DRand enables the model to learn a new function that represent
both DRL and DRand.

C. Initializing Model-Free Learner

Imitation learning4 is used to initialise an off-the-shelf
policy learning algorithm. The policy πφ is parameterized
as a conditional Gaussian πφ(a|s) ∼ N (µφ(s),

∑
πφ
), in

which the mean is represented by a neural network µφ(s),
and covariance

∑
πφ

is a fixed matrix. The experience in the
model-based control transition knowledge-base DRL is used as
expert demonstrations. The policy πφ(a|s) is trained to mimic
the expert by minimizing the following objective function:

min
φ

1

2

∑
(st,at)∈DRL

||at − µφ(st)||22 (4)

using SGD. After training πφ(a|s) to mimic expert behaviour,
it is used as the initial policy of the model-free trust region
policy optimization (TRPO) [14]. The TRPO algorithm was
chosen because it does not require a value or critic function
for initialization [15].



Fig. 1. Model-based TRPO framework.

III. OUR APPROACH

Our approach mitigates the drawback in [10] of being
limited to an environments without obstacles. We modify their
model-based approach, while keeping the transition function
model learning, and the model-free policy initialization the
same. We aim to improve model-based control performance
in terms of executing safe actions and actions that improve
the previously accumulated reward (effective actions). Then
we use a transfer learning technique to enhance learning
of the model-free deep reinforcement learning learner using
knowledge from the model-based deep reinforcement learning
teacher.

Figure 1 provides an overview of our approach, showing
how its components interact to complete the whole pipeline.
Algorithm 1 provides an overview of the changes we made to
the base framework model-based planner (shown in blue). We
first set the maximum number of times the agent can perform
re-planning in one state to a constant Y , the number of re-
planning executed in the current state (initial recursion) to 0,
the length of sequences of actions H , and the initial number
of sequences K. We then sample a set UKH of K random
sequences of actions of length H , as shown below:

UKH =


a00, a

0
1, . . . , a

0
H

a10, a
1
1, . . . , a

1
H

...
aK0 , a

K
1 , . . . , a

K
H

Then we simulate the sequences using the learned transition
function model fθ(st, at), then calculate the accumulated
reward for each sequence. Then we select the first action of
the sequence that leads to the highest accumulated reward.
We then simulate the first action to observe if the current

2Execute only the first action of the plan.
3Catastrophic forgetting is when artificial neural networks forget entirely

previously learned information when fed with new information to learn.
4Policy learns to mimic expert demonstration [13].

accumulated reward
∑C
t=0R(st, at) is greater than previously

accumulated reward
∑C−1
t=0 R(st, at), as shown in Equation 5.

C∑
t=0

R(st, at) >

C−1∑
t=0

R(st, at) (5)

If this condition is met, we execute the first action in
the environment, set recursion to 0, and record the agent
transition data {st, at, st+1} in the model-based control tran-
sitions knowledge-base (RL data). If the first action of the
sequence does not improve the previously accumulated reward,
and recursion is less than a constant Y , we increase the
number of random sequences of actions by constant number v
(K = K+v), increment the number of recursion by 1, and re-
plan. This condition check step is responsible for ensuring that
at every state st, the agent takes an action that improves the
previously accumulated reward (we call these actions effective
actions).

An increase in the number of sequences of actions by
v guarantees that the agent will have a new v number of
sequences on top of the last number sequences of actions
to evaluate during re-planning. If during re-planning, we run
out of prior set maximum number of re-planning Y without
condition in Equation 5 being met, we apply the first action
of the sequence that leads to the highest cumulative reward
we have encountered during re-planning this approach is also
known as model predictive control (MPC). Furthermore, we
set recursion to the initial value 0. The model-based control
knowledge-base (RL data) is used to train policy π(a|s) using
the imitation learning approach. After training π(a|s) to mimic
DRL transitions, it is used as an initial policy of the off-
the-shelf TRPO. This off-policy training gives TRPO a warm
start, which mitigates executing a randomly initialized policy
in the early stages of model-free reinforcement learning. In
other words, we transfer knowledge from our proposed model-
based deep reinforcement learning teacher agent to the off-the-
shelf model-free deep reinforcement learning learner agent to
enhance learning. We call our approach model-based TRPO
(MB-TRPO).

IV. EXPERIMENTAL RESULTS

We assess the performance of our approach using evalu-
ation metrics introduced by [16], all in contrast to the base
framework by [10] (will use Nagabandi et al.[2017] to refer
to it in the figures), and the standard TRPO5. We also evaluate
our proposed model-based planner effectiveness and safety in
contrast to the base framework planner.

We evaluate our approach on two continuous state-action
environments, namely a custom pothole environment and
Mujoco Halfcheetah environment [11]. We use the pothole
environment because it has obstacles which provides us with
other properties to evaluate (i.e., safety and effectiveness),
which are currently unavailable in widely used learning en-
vironments such as Mujoco [11] and OpenAI gym [18].
Figure 2 shows the pothole environment, we evaluate our

5We use the implementation by [17].



Algorithm 1 Model-based approach.
1: Run random policy π0(a|s), store experience in DRand
2: Initialize empty DRL, and randomly initialise fθ(st, at)
3: recursion = 0
4: Y = m
5: H = l
6: K = e
7: for episode = 1; N do:
8: Train fθ(st, at) by performing stochastic gradient de-

scent by minimizing Equation 2 using DRL and DRand
9: end for

10: for episode = 1; M do:
11: Fine-tune fθ(st, at) by performing stochastic gradient

descent by minimizing Equation 2 using DRL and DRand
12: for t = 1; T do:
13: Observe current state
14: Sample k random sequences of actions UKH
15: Use R(st, at) and fθ(st, at) find sequence with the

highest accumulated reward
16: if Equation 5 is not met and recursion < Y then
17: k = k + v
18: recursion = recursion + 1
19: Re-plan (go back to line 13)
20: else if Equation 5 is not met and recursion > Y

then
21: Apply MPC
22: recursion = 0
23: k = 100
24: Add (st, at, st+1) to DRL
25: else if Equation 5 is met then
26: Apply MPC
27: recursion = 0
28: k = 100
29: Add (st, at, st+1) to DRL
30: end if
31: end for
32: end for

approach by learning policies for navigating around potholes
in a continuous 2D grid-world environment, where states are
any (x, y) position combination between 0 and 50, S ∈ R2,
actions are continuous bounded steps (i.e. [−1, 1]) along each
dimension, A ∈ R2, and potholes (blue circles ) and walls are
regions of high negative reward. The agent receives penalties
of −100 for colliding with the boundaries of the environment
and for entering potholes states. The start state is shown by a
green dot and the goal state is shown by the red dot .

We use the Halfcheetah environment shown in Figure 3 to
demonstrate that our approach does not affect the ability of
the base framework to operate in a high-dimensional space.

A. Planner Evaluation

In this section, we evaluate the performance of the planning
module in terms of sample complexity, effectiveness, data
aggregation, and safety. We compare our planning module
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Fig. 2. Pothole environment.

Fig. 3. Halfcheetah environment.

to that of [10]. For [10] planner module, the length of the
sequences of actions was kept at a constant of H = 10, and the
number of sequences was also held at a constant of K = 400.
For our planner, the length of the sequences of actions was
kept at a constant of H = 10, and the number of sequences
was initially set to K = 100, and during re-planning, we
increase it by v = 10, the maximum number of time the
agent can re-plan in one state was set at a constant of Y = 30.

1) Sample complexity: In this subsection, we evaluate
sample complexity. An epoch refers to every 512 steps, in
which we fine-tune the transition function model with DRand

and DRL. Ideally, the agent that achieves good performance
using lower experience is mostly preferred. In Figure 4 and
5 we make a comparison of our planner, the planner module
in [10], and the standard model-free TRPO. We observe that
our planner outperforms [10] planner and model-free TRPO
with regard to better initial performance and sample efficiency.

2) Effectiveness: In this subsection, we evaluate effective-
ness. To evaluate effectiveness, we observe how many times
the agent reaches the goal and the number of steps it uses to
reach the goal given a certain number of trial steps. We use
only the pothole environment to evaluate this attribute because,
in this environment, it is easier to evaluate if the agent reached
the goal or not, while in Halfcheetah’s environment, this is not
clear. From Table I we note our planner uses fewer steps to
reach the goal and reaches the goal more than the [10] planner.

3) Aggregation: In this subsection, we evaluate the effect
of not including the planner DRand data when fine-tuning
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Fig. 4. Pothole environment planner performance plots, showing mean and
variance averaged over 3 planning agents with different random seeds using
a transition function model pretrained with 3000 samples. It is a comparison
amongst our approach, a model-free TRPO by [14] and the base framework
by [10].
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Fig. 5. Halfcheetah environment planner performance plots, showing mean
and variance averaged over 3 planning agents with different random seeds
using transition function model pretrained with 50000 samples. It is a
comparison amongst our approach, a model-free TRPO by [14] and the base
framework by [10].

Planner Nagabandi et al. [2017] Our planner

Number of times goal reached 63 129
Average steps taken 234 114

Steps taken standard deviation 39.14 17.00

TABLE I
POTHOLE ENVIRONMENT EFFECTIVENESS USING TRANSITION FUNCTION

MODEL PRETRAINED WITH 3000 SAMPLES.

the transition function model. All previous experiments were
conducted using aggregation by combining both data sources
DRL and DRand each time we fine-tune the transition function
model. In these experiments, we make a comparison of our
planner’s performance with and without aggregation. In the
aggregation experiments, an epoch refers to every 512 steps,
in which we fine-tune the transition function model with
DRand and DRL. For without aggregation experiments, an
epoch refers to every 512 steps. In Figure 6 we observe that
the planner with aggregation performs better than without
aggregation. This proves that the aggregation step is vital to
the process.
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Fig. 6. Pothole environment planner’s performance with and without aggrega-
tion using a transition function model pretrained with 3000 samples, showing
mean and variance averaged over 3 planning agents with different random
seeds.

4) Safety: In this subsection, we evaluate safety using the
transition function models. In the Halfcheetah environment, it
is not clear how we can evaluate safety. Hence we only use the
pothole environment to evaluate this attribute. In the pothole
environment, we evaluate safety by counting the number of
collisions per epoch. A collision is when the agent makes
contact with the environment wall or enters a pothole state.
An epoch refers to every 512 steps, in which we fine-tune the
transition function model with DRand and DRL. In Figure 7,
we note our planner obtaining fewer collisions than the [10]
planner. This demonstrates that our planer is safer in contrast
to the [10] planner.
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Fig. 7. Pothole environment safety measure using transition function model
pretrained with 3000 samples, showing mean and variance averaged over 3
planning agents with different random seeds.

B. Transfer Learning Evaluation

In this section, we evaluate transfer learning in the MB-
TRPO using evaluation metrics inspired by [19]. For the
pothole environment, we transfer 10000 samples from the
planner transitions knowledge-base DRL to train the target
policy to mimic the behavior of the planner. While in the
Halfcheetah, we transfer 100000 samples from the planner
transitions knowledge-base DRL. Then use the target policy
as the initial policy for the TRPO algorithm. Figure 8 and 9



demonstrate that our approach (MB-TRPO) outperforms the
vanilla TRPO and [10] approach with regard to initial perfor-
mance, faster convergence, and better asymptotic performance.
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Fig. 8. Pothole environment performance plot, comparing our approach (MB-
TRPO), [10] approach, and standard TRPO. Averaged over 10 agents with
different random seeds.
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Fig. 9. Halfcheetah environment performance plot, comparing our approach
(MB-TRPO), [10] approach, and standard TRPO. Averaged over 10 agents
with different random seeds.

V. CONCLUSION

In this work, we propose an environment independent deep
reinforcement learning framework that transfers knowledge
from a model-based teacher to a task-specific model-free
learner to alleviate executing a randomly initialized policy
in the early stages of learning. Its model-based planner
achieved greater sample efficiency, better initial performance
and faster convergence. Incorporating knowledge transfer,
the framework achieved greater sample efficiency, improved
safety, promoted executing effective actions, delivered better
initial performance, and achieved excellent final performance.
These achievements are some of the most critical properties
when applying deep reinforcement learning algorithms in real
environments. Hence, the proposed framework brings us a
step closer towards using deep reinforcement learning on a
physical robot system.
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