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Abstract

Video game developers are increasingly utilising procedu-
ral content generation (PCG) techniques in order to gener-
ate more content far quicker than if it were designed. Al-
though promising, much of the successful work to date has
been achieved in simple 2D environments or has required sig-
nificant hand-designed effort. This is due to the difficult na-
ture of defining plausible metrics, fitness functions or reward
functions which can quantify the quality of generated levels.
Our work aims to avoid this difficulty by utilising minimal
human design to build up constraints, and generating diverse
levels that maintain these constraints. We achieve this by hier-
archically applying the recent WaveFunction collapse (WFC)
algorithm. Our approach allows designers to specify larger-
scale components, and additional constraints that are difficult
to enforce using standard WFC. We empirically demonstrate
that our approach does indeed incorporate these higher-level
structures, and is more controllable than our baselines. De-
spite these benefits, our levels do not suffer from a lack of
diversity. Finally, we illustrate the scalability and flexibility
of our approach by applying it to both 2D and 3D domains.

Introduction
Procedural content generation (PCG) has become increas-
ingly important in the field of game development due to its
ability to efficiently create complex and varied content at a
fraction of the cost of manual development (Hendrikx et al.
2013; Smith 2017; Korn et al. 2017). WaveFunction col-
lapse (WFC) is a new, powerful technique used for gener-
ating levels in games (Gumin 2016; Karth and Smith 2022).
This approach has been shown to generate impressive results
similar to that of a designer due to its emphasis on enforc-
ing designed constraints within the generated levels (Karth
and Smith 2022; Stålberg 2022). Furthermore, these con-
straints can be specified naturally by providing an exam-
ple level, as opposed to needing to manually define each
constraint (Gumin 2016). However, this technique has some
limitations (Cheng, Han, and Fei 2020). In particular, the
generated levels often have a lack of structure, due to con-
straints being mostly local. Secondly, while a designer can
specify constraints in terms of an example level, controlling
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the occurrence of certain elements, it is challenging to en-
force more complex constraints, such as having exactly one
of a certain structure in the generated level.

To address these limitations, we propose an extension to
WFC that leverages hierarchical elements, which can pro-
vide more structure to the generated levels. In particular,
our approach performs several steps, where the first steps
add high-level structure to the level in the form of large ele-
ments, and the later steps fill in details around this structure.
Each step performs the normal WFC algorithm, with a dif-
ferent set of rules and constraints to, in the end, generate a
structured, but interesting level. By introducing hierarchies,
our method allows for a more modular approach to level de-
sign, making it easier to specify desired features and gener-
ate high-level structures. We demonstrate the benefits of our
approach through a series of experiments in different games,
showing that our method can generate structured and diverse
content that meets specific design goals while maintaining
the advantages of WFC. In particular, our approach allows
for more control over the generation, while not compromis-
ing on the diversity of content. Furthermore, by leveraging
hierarchy and larger-scale components, our method can gen-
erate more complex levels than a non-hierarchical baseline.1

WaveFunction Collapse
The WFC algorithm is effectively a constraint-solving
method that can generate tilemap levels, with several dis-
tinct steps (Karth and Smith 2022). A tile is the lowest-level
element we consider, where a tile is a single pixel in an im-
age, or a single block in a level. We next consider patterns,
which are small, rectangular grids of tiles (e.g., a 2 × 2 or
3 × 3 window). To execute the WFC algorithm, we require
constraints that specify which patterns can be placed next to
which other patterns. There are several ways to obtain the
patterns and constraints, and they can also be designed man-
ually. A common technique, however, leverages an example
level and extracts patterns and adjacency constraints from
this example (Gumin 2016). Given an example level of size
N ×N , we consider overlapping sliding windows of certain
sizes (such as 2 × 2 or 3 × 3), obtaining a set of patterns.
This process is shown in Fig. 1. We now also have our con-
straints: pattern a can be placed adjacent to pattern b if there

1See https://github.com/Michael-Beukman/HWFC for code.
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is at least one row or column of overlap between a and b.

Figure 1: Illustrating the set of patterns (right) that were ex-
tracted from an example level (left).

The rest of the WFC process is shown in Fig. 2. We con-
sider the map to be a 2- or 3-dimensional matrix of super-
positions. A superposition is simply a set of tiles, indicating
which possible tiles can be placed at that particular location
in the map. The map is initialised as a matrix where each
element is a superposition of all possible tiles, i.e., each cell
in the map is c = {T1, T2, . . . , Tk}, if we have k tiles. This
represents that, initially, each cell can be filled by any tile.

We now perform the following three steps until the level
is completely generated. First, we Select a tile to collapse
(far left in Fig. 2). We do this using the concept of entropy,
where the entropy of an n×n window is proportional to the
number of different tile options available in this window. In
essence, it is the sum of the number of tiles in each cell’s su-
perposition

∑
i |ci|. We choose the location with the lowest

entropy to reduce the chance of obtaining a state where no
more tiles can be placed, but the level is not yet finished—
a contradiction. Once we have selected a tile, say (i, j), we
find the patterns that are compatible with the current state of
the map around that location. We do this by considering the
window with its top-left corner at location (i, j). A pattern is
then compatible with the current state of the map if, for each
corresponding tile, the superposition in the map contains the
tile in the pattern at that location. If there are multiple com-
patible patterns, we select randomly, weighted by how often
each pattern occurred in the example level.

Once a pattern is selected, we perform the Collapse step.
This involves taking the current region, and replacing each
cell’s superposition with a single tile, that of the currently
chosen pattern. This then reduces the number of active su-
perpositions and collapses the region into a concrete pattern.
The final step is Propagation. This considers the new state
of the map, and updates the superpositions of surrounding
cells to take the new information into account. In particu-
lar, we consider all compatible patterns that partially overlap
with the recently-collapsed region. The superpositions of the
surrounding tiles are then updated to include only tiles from
these patterns. This process is repeated in a breadth-first
manner until all superpositions have been updated. WFC
progresses by repeating these last three steps, selection, col-
lapse and propagation until the entire map is collapsed, at
which point the level is completely generated.

Finally, WFC runs the risk of ending up in an unsolv-
able state, where some tiles have empty superpositions. This
indicates a contradiction, which means that the generation
process cannot progress. There are multiple ways to address

this. One way is to simply restart the generation process,
hoping that it does not lead to another contradiction (Gumin
2016; Karth and Smith 2022). A more principled approach
involves backtracking, where the recent steps are reversed,
and a new pattern is chosen (Karth and Smith 2022).

Related Work
In recent years, PCG has gained significant attention from
both the academic (Dormans 2010; Dormans and Leijnen
2013; Summerville et al. 2018) and commercial (Adams and
Adams 2006; Yu 2008; Dormans 2017; Ludomotion 2017;
Adams 2019) communities due to its potential to reduce de-
velopment costs and increase the replayability and diver-
sity of games. There are many approaches to PCG, such
as machine learning (Summerville et al. 2018; Liu et al.
2021), evolutionary algorithms (Togelius et al. 2011; Earle
et al. 2022; Beukman, Cleghorn, and James 2022) and gram-
mars (Dormans 2010; Dormans and Leijnen 2013).

General PCG
Search-based PCG methods use search algorithms to gener-
ate content that meets specific functional criteria, for exam-
ple, solvability (Togelius et al. 2011). However, the search
process can be computationally expensive, especially for
complex content or large search spaces.

A less computationally expensive approach involves the
use of constraint-based methods. This approach entails rep-
resenting design rules and preferences as constraints and ap-
plying constraint solvers to search for solutions (i.e., con-
tent) that satisfy the specified constraints (Van Der Linden,
Lopes, and Bidarra 2013). However, designing these con-
straints can be unintuitive in complex domains. This short-
fall can also be observed in grammar-based methods, where
a grammar specifying the structure and properties of the gen-
erated content has to be defined (Shaker et al. 2011, 2012).

Recently, there has been a shift towards PCG via Rein-
forcement Learning, where an agent is trained to sequen-
tially place tiles to maximise a particular reward (Khalifa
et al. 2020; Earle et al. 2021; Jiang et al. 2022). Nevertheless,
devising a comprehensive objective or reward function that
encourages the creation of intricate and functional structures
while remaining amenable to optimisation may be an unin-
tuitive task (Togelius et al. 2013). An alternative method that
eliminates the need for an objective function involves lever-
aging a large dataset of pre-existing content (which may not
be available for many games) to train machine learning mod-
els, enabling the generation of novel content (Summerville
et al. 2018; Liu et al. 2021; Shu, Liu, and Yannakakis 2021).

WaveFunction Collapse
More recently, a technique called WaveFunction collapse
(WFC) has gained popularity in the realm of PCG, for the
visually aesthetic quality of the generated content (Karth
and Smith 2022), and has seen use in two published games,
Bad North (Concept 2022) and Townscaper (Stålberg 2022).
Initially proposed by Gumin (2016), WFC looks to decom-
pose input examples into smaller blocks while identifying
the constraints needed to compose them. This approach then
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Figure 2: The overall WFC process. First, we select a region to collapse, and find all of the compatible patterns that could be
placed at that location. We then randomly sample a pattern, and collapse the previously selected region to that pattern. Then,
during propagation, we update the superpositions of the surrounding regions to take this new information into account.

allows for the construction of large outputs from these small
blocks based on the identified constraints. Additionally, Kim
et al. (2019) expanded WFC to a graph-based domain which
allowed for greater variety in content at the cost of intuitive
controllability. To address the lack of controllability, Lan-
gendam and Bidarra (2022) developed a mixed-initiative ap-
proach to WFC, where the user can influence the genera-
tion process, thereby changing the final output. To a simi-
lar end, Sandhu, Chen, and McCoy (2019) propose dynam-
ically adjusting tile weights—which govern how often tiles
are selected—to potentially obtain more satisfactory results.
Both these extensions focus on better playability, designer
control and increased similarity to that of a human designer.

Compositional PCG
Much work has also been done in compositional PCG,
where multiple methods are composed together to gener-
ate large and complex structures (Togelius, Justinussen, and
Hartzen 2012). Snodgrass and Ontanon (2015) use hierarchy
to generate and combine structures at different scales. Given
a set of example levels, their method extracts high- and low-
level patterns from these. They then fit Markov chains to
this data, and generate levels by first placing the high-level
structure, and filling in the low-level details.

Beukman et al. (2023) also decompose levels into sev-
eral layers, where each layer generates an abstract level, to
be completed by the lower-level generators. While this ap-
proach allowed the designer to specify the hierarchical struc-
ture, it required fitness functions to be specified for each gen-
erator, which may be cumbersome to design.

Another application of hierarchy is seen in generating dif-
ferent aspects of a level separately. In particular, Dormans
(2010) first generates the high-level mission, followed by
the physical layout of the level based on the mission. A sim-
ilar approach has been employed in the commercial game
Unexplored (Ludomotion 2017), where an abstract graph is
transformed into a concrete grid-based level layout.

Combining the idea of a hierarchy with WFC, Alaka and
Bidarra (2023) segment the map into abstract, meta-tiles that
dictate which low-level tiles can be placed in each region.
For instance, they group together several concrete tiles all
under the abstract tile “road”—allowing a designer to spec-
ify that a particular area must be covered by roads, without
needing to focus on the details of which exact tiles should
be used. This method focuses more on the mixed-initiative
setting, where a designer can sketch out a level layout in

abstract, high-level terms. WFC can then use this sketch to
replace the abstract tiles with concrete patterns. We instead
add structure to WFC itself through additional designed ele-
ments, which are organised hierarchically.

Methodology
Our method uses both hierarchical and non-hierarchical ex-
pert examples to generate structured video game levels. This
process, outlined in Fig. 3, consists of two core components:
constraint discovery and our hierarchical variation of WFC.

Constraint Discovery
In order to generate structured levels, we extract a set of pat-
terns from human-designed examples. These patterns repre-
sent the lowest-level features which can be present in our
generated levels. This set is obtained by passing a rolling
window across the entire example while tracking unique oc-
currences (patterns) along with their frequency. By using
these patterns and how often they occur in the level, we
are able to ensure that our generated level is constructed
from the same patterns as the example, with a similar fre-
quency. This approach is similar to that performed in stan-
dard WFC (Gumin 2016; Karth and Smith 2022).

Besides the example levels which we use to obtain low-
level patterns, we additionally require the designer to spec-
ify hierarchical elements. These are generally larger patterns
that represent a single component that can be placed in a
level. These components can be high-level, in which case
the patterns contain superpositions, i.e., some tiles are not
filled in by the designer, and must be populated by the algo-
rithm. Medium-level patterns do not contain superposition
tiles, and can be placed within these high-level structures.

Hierarchical WaveFunction Collapse
Given the hierarchical patterns, as well as the example level,
our method (detailed in Algorithm 1) generates levels as fol-
lows: We start with a map completely populated with super-
position tiles. Then we perform several passes of WFC (line
6), with each pass using a different set of patterns. At each
stage, we also have separate termination conditions (line 7);
for instance, specifying that k elements at a particular level
of a hierarchy must be placed, or that x% of the level must be
filled up from elements at that hierarchy level. Being able to
specify constraints in this way gives the designer immense
control over the final generated level, which is a beneficial
property in PCG (Sorenson, Pasquier, and DiPaola 2011).
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Algorithm 1: HWFC

1: procedure HWFC(Patterns, Map, i, Term)
2: if i is lowest level then
3: return Map
4: end if
5: repeat
6: Perform WFC using Patterns[i] on Map
7: until Term[i](Map)
8: Replace Unfilled tiles with a full superposition
9: Propagate(Map, Patterns[i])

10: return HWFC(Patterns, Map, i+ 1, Term)
11: end procedure

1. We first perform a pass using only the high-level patterns.

2. We next perform a pass using the medium-level patterns;
however, these patterns are only allowed where the su-
perpositions were placed by the first step (i.e., within the
top-level hierarchies).2

3. Finally, we generate the remainder of the level using the
low-level patterns.

In general, we can have multiple levels of hierarchy that
will each be executed in sequence; for instance, two high-
level steps, followed by three medium-level ones, etc.

Additionally, while we use only the corresponding pat-
terns at each level when collapsing, we use an expanded set
of patterns when performing the propagation step. In partic-
ular, at level i of the hierarchy, we consider all patterns from
levels i to the lowest-level patterns during propagation. This
ensures that the algorithm does not fail due to a contradiction
if a lower-level pattern can satisfy all constraints. Finally, we
also allow the designer to specify the maximum number of
components of each type that can be placed. Once a pattern’s
number of occurrences reaches this limit, we remove it from
the set of compatible patterns.

To implement our method in practice, we introduce a
new tile denoted as Unfilled (see the far left pink tile
in Fig. 5). When designing hierarchical elements, the de-
signer can place these tiles to indicate areas that must be
populated by the lower-level hierarchies. During generation,
when these tiles are placed, the map considers it as collapsed
at that location. In between each hierarchical level, how-
ever, we reset these tiles as superpositions (line 8), which
can then be filled by the next pass of WFC. We also per-
form a full propagation step here (line 9), to ensure these
superpositions are compatible with the already-placed struc-
tures within the level. In essence, the termination conditions
govern when we move to the next hierarchical level, whereas
the Unfilled tiles indicate where the next level’s elements
must be placed. To ensure that the medium-level patterns are
only placed within the high-level components, at each high-
level hierarchical step, all tiles that remain uncollapsed are
marked as invalid positions for the next hierarchical level.

2While we have opted to restrict medium-level patterns to be
contained within high-level patterns, designers are entirely at lib-
erty to modify or remove this constraint.

In sum, HWFC differs from standard WFC in two notable
ways:

1. While WFC would place patterns of the same scale
throughout the execution, our method expands upon this
by incorporating patterns of multiple different scales.

2. Instead of limiting ourselves to a single completed iter-
ation, we recursively perform multiple iterations of the
WFC algorithm at different scales until completion.

Experiments
This section details the experiments we perform to empiri-
cally demonstrate the effectiveness of HWFC. We first dis-
cuss the games we consider, and then describe the baselines
we compare against. Finally, we detail the metrics we use.

Environments
We evaluate our method across three different tile-based do-
mains, each with its own unique characteristics. We first con-
sider a 2D binary Maze game. We next examine a much
more complex 2D game, with 38 different tiles. We finally
investigate Minecraft, a more complex 3D game.

Maze A Maze level is modelled as a 2D grid of cells, each
being either occupied or unoccupied. The simplicity of this
domain makes it ideal for efficiently benchmarking our sys-
tem. Fig. 1 depicts the example level and low-level patterns,
while Fig. 4 shows the hierarchical components.

Roguelike Each level is also a 2D grid of cells, but each
cell can exist in one of 38 distinct states. This domain is a
more complex version of the Maze, and is similar to games
used in prior works, such as The Legend of Zelda (Khal-
ifa et al. 2020). The tiles, hierarchical patterns and example
levels we use are illustrated in Figs. 5 to 7, respectively.

Minecraft Minecraft provides a useful domain for PCG
due to its open-world sandbox environment. Additionally,
Minecraft’s tile-based nature makes it ideal for expanding
our system to a more complex and challenging 3D setting.

Baselines
We consider two methods as our baselines. The first is the
standard WFC algorithm, which extracts 2 × 2 and 3 × 3
patterns from the examples. It also extracts patterns from
the hierarchical designs, but does not use them otherwise.
The second baseline is Multiscale WFC (MWFC), which is
exactly the same as WFC, except that it also uses the hier-
archical examples directly as patterns, which it can place as
normal. In this way, we can measure how much hierarchy
improves performance compared to default WFC. We can
also compare the effect of having multiple stages—where
we first place the large hierarchies, and then the next levels
within this predefined structure—against naı̈vely using the
large patterns within the unmodified WFC framework.

Metrics
We use four metrics to evaluate the performance of HWFC.
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Figure 3: Overall model for HWFC. Here, we demonstrate the process of generating a full level with 3 levels of hierarchy.
During the constraint discovery phase, we hand-design the high- and medium-level patterns, and extract all the unique low-
level patterns from a hand-designed example level. High-level patterns contain superposition tiles (indicated by the dark grey
squares). During the constraint propagation phase, we modify a single starting world by sequentially performing WFC for each
hierarchical level. The high- and medium-level hierarchies terminate without completing the world; this current world state is
then used as the starting point for the next hierarchical level. The generation process is completed once WFC has terminated in
the lowest level of the hierarchy.

Figure 4: The designed hierarchy patterns for Maze. Blue
tiles represent superpositions within the high-level patterns;
red indicates wall and green indicates open space.

Figure 5: The tiles in Rogue (excluding rotations, which we
also use). The pink tile on the left represents a superposition.

Figure 6: The designed hierarchy patterns for Rogue.

Figure 7: The Rogue example levels.
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Diversity First, we consider the diversity of the gener-
ated levels, as measured by the Tile-Pattern KL diver-
gence (Lucas and Volz 2019). This metric computes the KL-
Divergence between the probability distributions of n × n
tile patterns in a level. Concretely, given a level, we con-
struct a probability distribution over all possible n × n pat-
terns (where n is fixed, e.g. n = 3). The distance between
two levels, then, is d(A,B) = KL(A||B)+KL(B||A)

2 . Given
K levels, we compute the distance between each pair of lev-
els; and average these distances to obtain an overall diversity
score for a particular method. We also consider another met-
ric, the Hamming distance. This is simply the number of cor-
responding tiles that are different between two levels. Over
K levels, we again average the pairwise diversity. Overall,
a meaningful level of diversity is required to ensure that a
generator is useful, i.e., generating content that is unique and
interesting enough to maintain engagement.

Action Variance To more precisely narrow down the di-
versity of our levels, we consider another metric, the action
variance, which measures the variance in patterns that were
selected and placed in the level. The intuition of this is that a
high variance is undesirable, as it indicates that the method
places some patterns very often, and others very seldomly.
A lower variance is preferred, as it indicates that the method
does not focus on only a small set of patterns.

We calculate this as follows: We find the number of times
each pattern was selected over K levels. We then multiply
the frequency by the number of tiles in the pattern, which ac-
counts for larger patterns taking up more space in the level.
We finally compute the standard deviation of these values.

Controllability This metric calculates how many of the
medium-level hierarchies were generated inside the top-
level hierarchical components. This measures the degree to
which a designer can control where the medium-level struc-
tures are placed.

Structural Complexity Here we measure the number of
large hierarchical elements that were generated in the levels.
We further measure the number of subpatterns of these hi-
erarchies in each level, to determine if some methods skew
more towards generating small parts of the hierarchies, com-
pared to generating the entire structure outright.

Experimental Setup
Our experimental setup is as follows. To ensure fair com-
parisons, each method has access to the same examples. In
particular, all methods use the same base example to extract
patterns from. HWFC and MWFC use the hierarchical com-
ponents as patterns, whereas base WFC simply extracts pat-
terns from these components—ignoring patterns that contain
superposition tiles—and uses them alongside the base pat-
terns. We consider 2×2 and 3×3 patterns. For MWFC, since
the interior of the high-level components may be filled with
superpositions (in the form of Unfilled tiles), once the al-
gorithm has terminated, we replace all Unfilled tiles with
superpositions and then run the algorithm again, until the en-
tire level is filled. Finally, since the edge of the levels often
causes problems for the constraint-solving WFC method, we

terminate the generation once all of the non-boundary tiles
are collapsed, and then simply crop out these boundary rows
and columns. We generate 100 levels from each method and
use these to calculate the abovementioned metrics.

Results and Discussion
This section presents our results. We first examine the quan-
titative results using the metrics defined above and then pro-
vide a qualitative demonstration of HWFC’s effectiveness.

Diversity
Fig. 8a measures how diverse a set of levels from the same
generator is. Most methods perform similarly as the KL-
Divergence tile size increases, indicating that the levels are
similarly diverse. Fig. 8b measures diversity using the Ham-
ming distance, and here HWFC has slightly less diversity
than the other levels, but the large standard deviation indi-
cates that each method’s diversity is similar.

Next, we consider the action variance, shown in Fig. 9.
This plot indicates that MWFC has a much higher action
variance, indicating that it frequently places the same pat-
tern, which leads to repetitive-looking levels. This occurs
most often in the medium-level hierarchy, but also happens
generally over the entire generation process.

Controllability
Fig. 10 illustrates the fraction of the medium-level hierarchi-
cal elements that were placed inside vs. outside the top-level
hierarchies. HWFC is able to place a much larger fraction of
these elements inside the top-level hierarchies, compared to
MWFC. This demonstrates that our method can effectively
use the hierarchical components to generate more control-
lable levels that better match the desired structure. The rea-
son why HWFC does not generate all of its medium-level
components inside the top-level hierarchies is the same rea-
son why normal WFC has a non-zero (albeit small) number
of medium-level hierarchies: Some of these hierarchical ele-
ments are quite simple, and were generated by normal WFC
directly, instead of being placed as a single pattern.

Structural Complexity
Fig. 11 contains the structural complexity results. In the rel-
atively simple Maze domain, each method generates a large
number of each pattern. As the size we consider increases,
the quantity of patterns does drop off, which makes sense, as
each subpattern then takes up more space in the level. In the
more complex Rogue domain, WFC’s generation of large
patterns decreases. By contrast, both MWFC and HWFC can
generate many of these larger structures.

In simpler domains, there is less opportunity for complex-
ity within the environment, which is why we see less of a
drop-off for WFC. This could also be caused by the fact that
our hierarchical elements in the Maze are similar to the ex-
ample, causing WFC to generate similar-looking structures.

Qualitative Results
To gain qualitative insights into our findings, we present
Fig. 12, which illustrates several levels generated by each
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Figure 8: Diversity of the generated levels using (a) The KL-Divergence and (b) Hamming metrics.
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Figure 10: Illustrating the controllability of each method for
the (left) Maze and (right) Rogue. Each bar has the fraction
of medium-level hierarchical elements that are placed inside
compared to outside the top-level hierarchies.

of the three methods for (a) Maze and (b) Rogue. Our ob-
servations reveal that while WFC adheres to the constraints,
it tends to produce simplistic levels, lacking the emergence
of complex structures such as large castles or town layouts.
Conversely, both MWFC and HWFC demonstrate the ability
to generate such intricate structures. However, MWFC ex-
hibits a notable drawback (evidenced by the Rogue levels),
as the majority of levels consist of a limited set of larger pat-
terns repetitively placed in neighbouring locations. In con-
trast, HWFC strikes a balance between MWFC and WFC,
allowing for the emergence of large complex structures such
as castles in proportionate quantities. Additionally, Fig. 13
shows a collection of Rogue levels generated using HWFC,
employing the 2.5D tile assets shown in Fig. 6. This presen-
tation highlights the diverse range of levels, their complex-
ity, and the controllability achieved through our approach.

Controllability Our approach imparts several aspects of
controllability to the generation process. First, we can con-
trol the number of hierarchical elements that are placed in
the level. Fig. 14 illustrates this aspect. Here we modify the
number of top- and medium-level hierarchical elements that
are allowed in the level, and obtain visually distinct results.

Next, we can control the relative positioning of the top-
and medium-level components, as seen in Fig. 15. Here, the
medium pattern is consistently nested within the larger pat-
tern. In the case of MWFC, the medium pattern can be ob-
served both inside and outside of the large hierarchy. If we
consider the medium pattern, e.g., as a blacksmith and the
big pattern as a castle, it is reasonable to expect the black-

smith to be generated within the castle. While WFC strug-
gles to generate such complex structures, MWFC produces
them without spatial constraints, whereas HWFC maintains
the desired hierarchical relationships between patterns.

Minecraft We finally turn our attention to Minecraft. To
make our approach feasible in 3D, we make some additional
changes. First, we seed the starting level’s ground boundary
with roads, to ensure we do not have uncompleted structures
on the edges. Similarly to Barthet, Liapis, and Yannakakis
(2022), we use a different block for air inside our build-
ings compared to outside. Finally, we have different blocks
for the corners of houses, and different ones for each dif-
ferent height level, to ensure the generated buildings have
a reasonable height. When generating, however, all of these
are replaced with identical “wall” tiles. Fig. 16a shows the
examples and hierarchical elements we used, and Fig. 16b
shows three generated levels. Overall, we can see that our
approach generates coherent levels that contain specific de-
sired structures—a walled area and a moat in this case.

Summary

Overall, the results in this section demonstrate that HWFC
can effectively be controlled, and structural complexity can
easily be added. Despite this, HWFC does not suffer signif-
icantly in terms of diversity; on the contrary, it has a better
action variance than MWFC. Furthermore, from our qualita-
tive results, we can see that HWFC can generate structured
levels—without being overly repetitive and uncontrollable.
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Figure 11: Structural complexity results in (left) Maze and (right) Rogue. Here, the x-axis represents the size of the pattern (or
subpattern) we consider, while the y-axis is the number of occurrences of that pattern over 100 levels. For instance, a pattern
size of 100 considers, e.g., 10 × 10 subpatterns of the large hierarchies. It is worth noting that there was a zero occurrence at
x = 360 for WFC in the Maze domain. In this domain, we used two large hierarchical patterns, one was a simple 20 × 20
pattern; the other was a more complex pattern of size 18 × 20. Due to its simplicity, WFC could generate the first pattern.
Therefore, where x = 400 (20 × 20), 361 (19 × 19), 324 (18 × 18), etc., WFC had a non-zero number of occurrences. The
other, 18× 20 pattern, however, was more complex, and WFC never generated it. Therefore, where x = 360 (18× 20), WFC
had zero occurrences. This anomaly is an artifact of the particular choice of top-level hierarchies we used.

Limitations and Future Work
While we demonstrated that HWFC usefully extends WFC
by adding structure, our method has some limitations. Sim-
ilarly to WFC, there is generally no way to guarantee that
a level fulfils specific functional requirements, such as be-
ing solvable. Additionally, while designing a single example
is simple, it may require more effort to design a useful ex-
ample that leads to desirable levels. Finally, we found that,
for large—and particularly 3D—levels, WFC and HWFC
are computationally expensive, requiring large amounts of
memory and time to successfully generate levels.

In future work, we would like to combine our approach
with another method (such as an evolutionary search-based
method) to benefit from HWFC’s aesthetic levels and the
functionality of objective-based methods. Furthermore, we
would like to investigate how to scale the efficiency of the
approach to generate larger levels. Additionally, automated
extraction techniques could be considered, where the hierar-
chical elements are partially extracted from some example
levels. Finally, it would also be worthwhile to explore 3D
domains in more depth, considering how best to design con-
straints and patterns in this more complex setting.

Conclusion
In conclusion, our research presents a novel approach to
level generation in procedural content generation that lever-
ages WaveFunction collapse in a hierarchical fashion, along-
side constraint discovery to enable greater control over the
generation process, resulting in the emergence of high-level
structures. Since HWFC is based on WFC, our approach
similarly requires minimal human design—one example and
some hierarchical elements—and allows for both diversity
and the maintenance of desired constraints. Empirical re-
sults demonstrate that, through the added utilisation of hier-
archies, more complex structures are accurately represented
in our generated levels with a high degree of diversity. More-

over, our approach is scalable and flexible, as evidenced by
its successful application to both 2D and 3D domains. Our
work has significant implications for video game develop-
ers seeking to generate more content more efficiently, while
also maintaining desired constraints and increasing the level
of control over the generation process.

(a) Maze

(b) Rogue

Figure 12: Two generated levels for each method and game.
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Figure 13: Example levels generated using HWFC on Rogue.

(a) (b) (c)

Figure 14: Illustrating the controllability of HWFC by generating levels with (a) one, (b) two or (c) three top-level hierarchies.

(a) Maze (b) Rogue

Figure 15: Demonstrating the occurrences of the top- and medium-level hierarchies.

(a) The examples and hierarchical components. (b) Three generated levels in Minecraft.

Figure 16: Illustrating the (a) examples and hierarchical components and (b) three generated levels in Minecraft. In (a), from
right to left, we show the example level, the top-level hierarchical components and the medium-level hierarchical components.
The dark red tiles represent superpositions.
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