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Abstract

Financial inclusion ensures that individuals have access to
financial products and services that meet their needs. As a
key contributing factor to economic growth and investment
opportunity, financial inclusion increases consumer spend-
ing and consequently business development. It has been
shown that institutions are more profitable when they pro-
vide marginalised social groups access to financial services.
Customer segmentation based on consumer transaction data
is a well-known strategy used to promote financial inclusion.
While the required data is available to modern institutions,
the challenge remains that segment annotations are usually
difficult and/or expensive to obtain. This prevents the usage
of time series classification models for customer segmenta-
tion based on domain expert knowledge. As a result, cluster-
ing is an attractive alternative to partition customers into ho-
mogeneous groups based on the spending behaviour encoded
within their transaction data. In this paper, we present a solu-
tion to one of the key challenges preventing modern financial
institutions from providing financially inclusive credit, sav-
ings and insurance products: the inability to understand con-
sumer financial behaviour, and hence risk, without the intro-
duction of restrictive conventional credit scoring techniques.
We present a novel time series clustering algorithm that al-
lows institutions to understand the financial behaviour of their
customers. This enables unique product offerings to be pro-
vided based on the needs of the customer, without reliance on
restrictive credit practices.

Introduction
Financial inclusion means that individuals have access to
financial products and services that meet their needs. No-
tably, financial inclusion is a strong contributing factor to
economic growth as it stimulates entrepreneurship while
expanding investment opportunities. It boosts consumer
spending and business development, leading to job cre-
ation and improved productivity. Financial institutions are
strongly incentivised to support the positive social impact
brought about by a financially inclusive market (Moin and
Ahmed 2012). This is a consequence of the fact that insti-
tutions are more profitable when they make use of mod-
ern technological strategies that provide marginalised so-
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cial groups access to financial services (Alshehadeh and Al-
Khawaja 2022).

A well-known strategy used to enable financial inclusion
is customer segmentation. A key result in service market-
ing research indicates that companies should not market the
same set of services to all customers, but rather target prod-
ucts at specific segments of the customer base (Ansari, Ri-
asi et al. 2016). Customer segmentation can be achieved
through the analysis of bank transaction data, which has be-
come available as a result of the large-scale automated data
acquisition systems present in modern financial institutions
(Taifi 2023). Unfortunately, the challenge remains that data
annotations are difficult and/or expensive to obtain from do-
main experts. This lack of annotations prevents supervised
learning models from being used to perform customer seg-
mentation based on domain expert knowledge (Dempster,
Petitjean, and Webb 2020; Ismail Fawaz et al. 2019). As a
result, unsupervised clustering is an attractive alternative to
partition customers into homogeneous groups based on the
spending behaviours encoded within their transaction data.

In this paper, we present a solution to one of the key chal-
lenges preventing modern financial institutions from provid-
ing financially inclusive credit, savings and insurance prod-
ucts. This is the inability to understand consumer financial
behaviour, and hence risk, without the introduction of re-
strictive conventional credit scoring techniques. To this end,
we extend the evaluation of time series clustering algorithms
by measuring their performance on financial data. Guided by
these results, we present a novel approach to financial time
series clustering that is shown to outperform state-of-the-art
techniques. Our method enables institutions to understand
their customer base as a set of homogeneous groups, each
with similar financial behaviour. By understanding the group
to which a customer belongs, a product offering can be tai-
lored to suit the needs of the customer in accordance with
the risk appetite of the institution.

Background
Clustering
Cluster analysis or clustering is the task of partitioning a
set of objects such that the elements within each partition
are more similar to one another than those in other parti-
tions. The notion of similarity in the space is defined both in



terms of the distance metric as well as the algorithm respon-
sible for the calculation of the clustering. As a result, cluster
analysis is not comprised of a single algorithm, but rather a
collection of techniques. The definition of what constitutes
a cluster differs significantly between algorithms, and con-
sequently, the approaches followed to efficiently calculate
them.

Cluster analysis is an unsupervised learning technique.
Consequently, the ideal cluster associated with each sample
in the dataset is unknown. This aspect of clustering makes
it difficult to quantify the quality of a given clustering. This
follows from the fact that the information required to com-
pute such a quantity directly is not available. This has led
to the introduction of proxy objectives such as the Silhou-
ette Coefficient (SC) and Davies-Bouldin index (DBI) which
measure the quality of clusterings based on assumed proper-
ties of high-quality clusterings. The SC quantifies the degree
of similarity between elements within each cluster in com-
parison to that of other clusters. The SC ranges from -1 to 1,
where a high value indicates that the objected is well suited
to its cluster and poorly suited to neighbouring clusters. The
DBI is a measure of similarity between the elements of a
cluster and those of the closest neighbouring cluster. The
similarity is defined as the ratio of within-cluster distances to
between-cluster distances. The minimum DBI value is zero
with lower values indicating better clusterings.

Specificity of the Time Dimension
In this paper we focus on time series data, where a time se-
ries is comprised of a collection of data points that are in-
dexed through time. Each data point is a vector of feature
values at a specific instant in time. It has been shown that
conventional clustering algorithms perform poorly on this
type of data, as they make use of distance metrics that are in-
compatible with the time series representation (Lafabregue
et al. 2022). In response, several dedicated time series clus-
tering algorithms have been developed. These algorithms ei-
ther make use of distance metrics specifically designed for
time series (Müller 2007) or introduce alternative data rep-
resentations (Madiraju 2018). The latter approach, known as
representation learning, is the primary focus of this study.

Neural Network Architectures
The architecture of a neural network refers to the number,
types and sizes of the layers from which it is composed.
Throughout the literature, several variations have been pro-
posed for deep neural network layers. These layers can be
organised into three families: fully connected, convolutional
and recurrent layers.

Fully Connected Neural Network Layers (FCNN) Each
neuron in a fully connected layer is connected to all neu-
rons in the following layer (Block, Knight Jr, and Rosenblatt
1962). Fully connected layers apply a linear transformation
to the input data before passing the result through a non-
linear activation function.

Convolutional Neural Network Layers (CNN) Convo-
lutional neural network layers are well known as a result

of their widespread adoption in the field of computer vision
(He et al. 2016). A key property of the convolutional kernels
used within each layer is shift-invariance. This property is
a consequence of the shared-weight architecture on which
the design is based. While the most commonly used convo-
lutional layers, designed for image processing, make use of
two-dimensional convolutions, one-dimensional variants ex-
ist (Wang, Yan, and Oates 2017). These variants have been
adapted to capture temporal rather than spatial patterns in
the data.

Recurrent Neural Network Layers (RNN) The recurrent
neural network layer has been specifically designed for ap-
plications involving the time dimension (Hopfield 1982).
Recurrent layers introduce cyclical connections, allowing
neuron outputs to propagate through the inference process,
subsequently affecting future inputs to the layer. These lay-
ers can effectively capture temporal dynamic behaviour. An
RNN layer variant known as the Long Short-Term Memory
(LSTM) layer has been proposed in (Hochreiter and Schmid-
huber 1997) as a solution to the vanishing gradient problem
which hinders the performance of RNNs.

Deep Representation Learning
The objective of representation learning is to produce an al-
ternate representation of the raw data. This representation
is intended to increase the likelihood of obtaining desirable
clustering results when used in conjunction with cluster-
ing algorithms that have not been designed for time series
data. Representation learning is a key component of most
deep learning-based clustering frameworks. Generally, the
primary role of deep learning within these frameworks is
to produce an alternate representation of the data. This is
achieved through the use of a deep neural network known as
the encoder. The encoder is a non-linear mapping Eϕ : X −→
Z , parameterised by ϕ, that maps elements from the original
data space X to the space of encoded representations Z . The
encoded representation of x ∈ X , denoted z = Eϕ(x), is re-
ferred to as the latent representation. The objective of deep
representation learning is to learn a mapping Eϕ that can
produce a latent representation of the data that facilitates the
desired clustering when used in combination with clustering
algorithms that have not been designed for time series data.

We seek to optimise the parameters of the encoder such
that the learned representation favours the clustering of data
points into homogeneous groups. In this study, such a clus-
tering corresponds to one in which individuals with similar
transaction data, measured in terms of size and frequency of
transaction amounts, are clustered together. However, as the
desired clusters are unknown, we must optimise the encoder
through the introduction of an auxiliary objective. Conse-
quently, a second neural network known as the decoder is
introduced along with a self-supervised objective function.
Similarly to the encoder, the decoder Dθ : Z → X is a
non-linear mapping, parameterised by θ, that maps elements
from the latent space Z back to the original data space X .
The encoder and decoder functions form what is known as
an autoencoder. Forward propagation in an autoencoder con-
sists of two stages. Firstly, the input feature vector x is em-



bedded into the latent space through the use of the encoder
network. Secondly, a reconstruction of x, denoted x′, is pro-
duced by passing the latent representation through the de-
coder network. The introduction of the decoder network fa-
cilitates the usage of a self-supervised objective.

Autoencoder Architectures The architecture of an au-
toencoder consists of two main components, the encoder
and decoder. As described, the encoder and decoder are both
neural networks which function as non-linear mappings be-
tween vector spaces. In general, the decoder is constructed
as a mirror of the encoder with the exception of the embed-
ding layer (Lafabregue et al. 2022). That is, the architecture
of the decoder is obtained by arranging the layers of the en-
coder in reverse order. Depending on the application, any of
the previously described neural network layers can form part
of an autoencoder’s architecture.

Autoencoder Training As described, the objective of rep-
resentation learning is to produce an alternate representation
of the raw data that facilitates the desired clustering. This re-
quires the parameters of the encoder to be optimised towards
this objective. As the desired cluster labels are unavailable,
preventing the usage of supervised objectives, many aux-
iliary objectives have been used throughout the literature.
While several approaches have been developed to train the
parameters of the encoder, we focus on those that rely on the
tasks of data reconstruction and generation.

In the first approach to autoencoder training, the parame-
ters of the encoder and decoder networks are optimised such
that the network can encode and decode data while incurring
minimal loss of information. More precisely, the network is
trained to minimise the error between the input and recon-
structed representations with respect to some loss function.
The most commonly used objective function for this task
is the classical reconstruction loss (Meng et al. 2017). The
classical reconstruction loss is defined as the mean squared
error between the original and reconstructed representations:

LR =
1

N

N∑
i=1

||xi −Dθ(Eϕ(xi))||22 (1)

This loss was extended by Ghasedi Dizaji et al. (2017) in
which a layerwise objective is introduced. That is, the loss is
defined as the sum of reconstruction losses associated with
each depth in the autoencoder network:

LLR =
1

N

N∑
i=1

L∑
l=1

1

|zli|
(zli − ẑli)

2 (2)

where L is the number of encoder and decoder layers, zli is
the output of the lth encoder layer, ẑli is the output of the
lth decoder layer and |zli| is the number of elements in the
output of the lth encoder layer.

In contrast to reconstructive approaches, generative meth-
ods optimise the parameters of the encoder for the genera-
tion of realistic data. The variational autoencoder (VAE) in-
troduced by Kingma and Welling (2013) is one of the most
commonly used generative methods. While this method is

based on the autoencoder architecture, a significantly dif-
ferent training regime is introduced for parameter optimisa-
tion. The input is passed through the encoder in which it is
mapped onto a Gaussian distribution qϕ(z|x). Samples are
then drawn from this distribution and passed through the de-
coder to obtain the distribution pθ(x|z). The parameters of
the generative model Dθ (the decoder) are optimised to re-
duce the reconstruction error between the input and output
representations. The parameters of the encoder network Eϕ

are optimised to minimise the distance between the two dis-
tributions qϕ(z|x) and pθ(z|x). The proposed loss function
to perform this task is known as the evidence lower bound
(ELBO):

LV =

N∑
i=1

E
z∼qϕ(·|xi)

ln

(
pθ(xi, z)

qϕ(z|xi)

)
(3)

Encoder Optimisation for Clustering The aforemen-
tioned optimisation tasks have focused on the development
of a meaningful latent space for specific tasks. While this ap-
proach provides good performance in some cases (Barkhor-
dar, Shirali-Shahreza, and Sadeghi 2021), there is no guaran-
tee that the learned representation will be well suited to the
clustering task. In response to this challenge, several meth-
ods have been proposed that modify the learned latent space
to increase compatibility with the clustering task (Madiraju
2018; Xie, Girshick, and Farhadi 2016). Generally, this is
achieved through the introduction of a complementary loss
function, used to increase separability in the latent space.
This loss function is referred to as the clustering loss.

Deep Embedded Clustering (DEC) is one of the first con-
ventional clustering algorithms presented in this space (Xie,
Girshick, and Farhadi 2016). The proposed time series vari-
ant is known as Deep Temporal Clustering (DTC) (Madiraju
2018). Learning in the encoder layers of the DTC model is
driven by the interleaved optimisation of two loss functions,
namely, the classical reconstruction loss, defined in equa-
tion (1), as well as the introduced clustering loss, defined
in equation (4). The DTC model contains a learnable set of
cluster centroids. These centroids are used to perform clus-
tering during forward propagation and are updated based on
the clustering loss.

The training procedure used in these models consists of
two distinct phases. Firstly, the autoencoder is pretrained to
reconstruct the input data. After pretraining is complete, the
training data is embedded into the latent space, allowing for
the initialisation of the model’s cluster centroids. The latent
representations are clustered through the use of hierarchi-
cal clustering with complete linkage (Hubert 1974), and the
centroids are initialised as the average of all elements in each
cluster. The pretraining phase is used to ensure a meaningful
initial set of cluster centroids. In the second phase of train-
ing, the clustering loss is introduced. The interleaved opti-
misation of two loss functions takes place in this phase. The
first loss function is the classical reconstruction loss between
the input and reconstructed representations, defined in equa-
tion (1). The second loss is the clustering loss. In each for-
ward pass, the distance from the latent representation zi to
each cluster centroid ωj is calculated as dij(zi, ωj), where



d : Z × Z → R is the distance metric used in the space and
Z is the set of all latent representations. Once calculated, the
distances are then normalized to probability assignments qij
using the Student’s t-distribution kernel:

qij =
(1 +

d(zi,ωj)
α )

−α+1
2

k∑
j=1

(
1 +

d(zi,ωj)
α

)−α+1
2

where qij is the probability input i belongs to cluster j, α
is the number of degrees of freedom, set to one by conven-
tion and k is the number of clusters. The clustering loss is
formulated as the Kullback–Leibler divergence between the
assignment probabilities qij and the target distribution pij .
The target distribution P , used in the loss function, is cho-
sen to strengthen high-confidence predictions and normalise
losses to prevent distortion of the latent representations:

pij =

q2ij
n∑

i=1
qij

k∑
j=1

q2ij
n∑

i=1
qij

This gives the overall loss used in the second phase of train-
ing:

LD =
1

N

N∑
i=1

||xi −Dθ(Eϕ(xi))||22 +DKL(Q||P ) (4)

where Q is the cluster assignment distribution, P is the
target distribution and DKL is the Kullback–Leibler diver-
gence.

As the latent representations produced by the DTC en-
coder are time series as opposed to vectors, the Complex-
ity Invariant Distance (CID) is commonly used as a metric
function for the latent space. We use LDE to denote the loss
function in which Euclidean distance is used as the metric
function and similarly, LDC for the case where CID is used
as the metric function.

Dimensionality Reduction
Dimensionality reduction is the transformation of data from
a high-dimensional space to a lower-dimensional space. The
objective of dimensionality reduction techniques is to maxi-
mally preserve the meaningful properties of the original data
after transformation. Dimensionality reduction techniques
are commonly divided into linear and non-linear approaches.

Principal Component Analysis (PCA) Principal compo-
nent analysis is the most widely used linear dimensional-
ity reduction technique. PCA maps the data to a lower-
dimensional space in such a way that the variance of the
data in the low-dimensional representation is maximized
(Hotelling 1933).

Uniform Manifold Approximation and Projection
(UMAP) The UMAP algorithm is a general-purpose
non-linear dimensionality reduction technique that utilises a
theoretical framework based on Riemannian geometry and
algebraic topology (McInnes, Healy, and Melville 2018).

Methodology
In this paper, we decompose deep representation learning-
based clustering methods into their constituent components
before performing an in-depth performance analysis. The
objective of this analysis is to find associations between
architectural components and good clustering performance
when applied in the financial domain. Finally, guided by
the results of our performance analysis, we present a novel
deep representation learning-based clustering algorithm Fi-
nancial Transaction History Clustering (FTHC). This algo-
rithm is compared to the current state-of-the-art approaches
in the field.

Component Selection

Deep representation learning-based methods are decom-
posed into four distinct component classes. These compo-
nent classes consist of (i) the autoencoder architecture, (ii)
the dimensionality reduction technique, (iii) the pretext loss
function and (iv) the clustering loss function. The full set of
components considered is listed in Table 2 with more de-
tailed configuration information provided in Appendix A.

Component Option 1 Option 2 Option 3 Option 4

Architecture FCNN CNN LSTM DTC

Dimensionality
Reduction PCA UMAP NONE

Pretext Loss LR LLR LV NONE

Clustering Loss LDE LDC NONE

Table 1: Component Configurations

Component Combinations

A component combination is defined as a set of compo-
nents including exactly one component from each of the
four classes. The performance of each compatible combi-
nation is evaluated. A combination is defined as compatible
if the components within the combination can function with-
out the violation of any assumptions. For example, the DTC
autoencoder architecture is incompatible with the variational
autoencoder loss, equation (3), as the latent representation
produced by the encoder is a time series. Several component
incompatibilities exist between architectures and loss func-
tions. Loss function support is described in Table 2.

Dataset

The Berka1 dataset consists of a collection of financial
records from a bank in Czechoslovakia (Berka et al. 2000).
Specifically, this dataset is an aggregation of the financial
information of approximately 5,300 bank customers. The
dataset includes over 1,000,000 transactions, close to 700
loans and nearly 900 credit card applications.

1https://data.world/lpetrocelli/czech-financial-dataset-real-
anonymized-transactions
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Pretext Loss Clustering Loss

LR LLR LV LDE LDC

FCNN

CNN

LSTM

DTC

Table 2: Architecture compatibility with loss functions. The
LSTM and DTC architectures are incompatible with the ex-
tended reconstruction loss, equation (2), as the decoders are
structured differently from the encoders. This prevents the
calculation of the layerwise reconstruction error required by
the loss. The DTC architecture is incompatible with the vari-
ational autoencoder loss, equation (3), as the latent represen-
tation produced by the encoder is a time series.

Evaluation Procedure
The training procedure2 used for deep representation
learning-based models consists of two distinct phases. In
the first phase, pretraining, the autoencoder of the model is
trained to minimise the pretext loss function. This is fol-
lowed by the cluster optimisation phase to improve clus-
ter assignments through the minimisation of the clustering
loss function. All compatible component combinations were
tested.

The dataset was randomly partitioned to form non-
overlapping training and testing datasets. Each dataset was
composed of 50% of the available data. Component combi-
nations were trained using the training dataset and evaluated
based on the clustering produced on the testing dataset. As
described by Ma et al. (2019); Xiao et al. (2021), although
clustering is an unsupervised learning technique, combina-
tions must be evaluated on unseen data to ensure that the
learned latent spaces can generalise. Clustering performance
is measured in terms of the Silhouette Coefficient and the
Davies-Bouldin index. The final performance scores associ-
ated with each combination were calculated as the average
score achieved across five independent trials.

Results
In this section, we discuss the results3 obtained from the var-
ious analyses carried out in this study. We begin with a dis-
cussion relating to the stability of models which incorporate
a clustering loss. This is followed by the introduction of a
training heuristic for this class of models. Next, we present
the performance results for each component class. Finally,
we show that our formulation outperforms the current state-
of-the-art methods in the domain.

Model Stability
Throughout the development of the experimental frame-
work, it was observed that invalid clusterings were produced
significantly more frequently by certain component combi-
nations than others. A clustering was deemed invalid if one

2Training details included in Appendix B.
3Source code and results available at https://github.com/

TristanBester/berka clustering

of the following two cases occurred: a degenerate cluster
was produced containing all data points or the model was un-
able to produce cluster assignments as a result of divergence
during the training process. In the first case both the SC and
DBI are undefined. In the second case, the clusters cannot be
computed as a result of numerical errors. The model cannot
be evaluated if either of the cases occurs. Upon investigation,
it was determined that the only common element between
the affected combinations was the inclusion of a clustering
loss. This divergent behaviour has previously been attributed
to vanishing or exploding gradients (Lafabregue et al. 2022).
For combinations that do not incorporate a clustering loss
component, we agree with these findings. However, the ma-
jority of invalid clusterings are produced by combinations
that incorporate a clustering loss as shown in Figure 1.

Figure 1: Percentage of invalid clusterings produced across
all combinations. Results are shown for each clustering layer
variant.

An investigation was carried out to determine the factors
leading to the observed behaviour. The clustering loss com-
ponent used in this study is that of the DTC model proposed
by Madiraju (2018). To ensure the observed behaviour was
not a consequence of the combination of disparate model
components, the investigation was carried out using the ex-
act DTC architecture described in the original paper. This
restriction would verify that the behaviour was a property of
the clustering layer rather than a consequence of the model
combination strategy.

An investigation was conducted through the use of a syn-
thetic dataset to test the relationship between the learning
rates used in the pretraining and cluster optimisation phases.
The learning rate used in the pretraining phase is that which
is used to pretrain the autoencoder before cluster optimisa-
tion. Similarly, the learning rate used in the cluster optimi-
sation phase is that which is used to minimise the clustering
loss function. In the first stage of the investigation, the DTC
autoencoder was pretrained on the experimental dataset. Af-
ter this stage had been completed, the cluster centroids re-
quired to initialise the clustering layer are calculated as pre-
viously described. As the DTC autoencoder is being used
for the experiment, both the latent representations and clus-
ter centroids are time series with a reduced number of time
steps. At this point, the autoencoder parameters and clus-
ter centroids were fixed. This allowed for the initial state of



the clustering layer to be consistent across all subsequent
experiments. Following this step, the learning rates used to
train the clustering layers were varied and the results were
recorded for analysis.

Polynomials of varying degrees were used to generate
synthetic time series for the experimental dataset. Cluster
labels were assigned to each of the time series in the dataset
based on the degree of the polynomial from which it was
generated. The pretraining phase was carried out on the
dataset, followed by the centroid initialisation process. The
latent space produced by the encoder at this point is illus-
trated in Appendix C. A learning rate of ηpre was used in the
pretraining phase and ηcls in the cluster optimisation phase.
The effect of varying the learning rate used in the cluster
optimisation phase is illustrated in Figure 2.

Figure 2: The effect of varied learning rates in the cluster
optimisation phase. In the lower plot, it can be seen that the
cluster centroids remain in their initial positions while the
latent representations all converge to a single representation.
Consequently, all data points are assigned to the same clus-
ter. The stability of the upper model is clear from the con-
verged latent space representation.4

After analysis of the recorded results, a subset of which
have been presented, the cause for the behaviour was iden-
tified. If the learning rate used in the cluster optimisation
phase was greater than or equal to that of the pretraining
phase, the model was significantly more likely to produce an
invalid clustering. Moreover, it was observed that model sta-
bility could be significantly improved by setting the learning

4The loss curve of the upper model flattened out towards the
end of training indicating that the model had converged to a stable
solution rather than requiring more iterations to diverge as a result
of the smaller learning rate.

rate used in the cluster optimisation phase an order of mag-
nitude smaller than that used in the pretraining phase.

Performance Results
An analysis was conducted to assess whether or not clusters
separate consumers based on human-understandable prop-
erties of transaction histories. It was found that in general
clusters associate consumers with similar transaction be-
haviour (i.e. salaried employees are separated from individ-
uals with irregular income) however counterexamples ex-
ist within the clusters. As a result, we feel that research
into human-interpretable performance metrics for transac-
tion history clustering is an interesting avenue for future
work.

From the results, it is clear that no single combination
outperforms all others in each test. That is, for each perfor-
mance metric and number of clusters, there is no single best
algorithm. However, certain combinations are more com-
monly associated with higher performance than others. The
performance associated with each component is calculated
as the average performance achieved by all combinations in
which the component is used. The results obtained for each
component class are described below.

Autoencoder Architecture The results obtained for the
autoencoder architecture component are consistent across
both performance metrics. This is illustrated in Figure 3. For
this component class, the CNN-based component is associ-
ated with the highest performance. This is consistent with
the results obtained by Lafabregue et al. (2022) on the uni-
variate UCR Archive5.

Figure 3: Average clustering performance associated with
each autoencoder architecture.

Pretext Loss Function The classical reconstruction loss,
equation (1), is associated with the highest average perfor-
mance across all combinations. The results are illustrated in
Figure 4. Our results are in agreement with Lafabregue et al.
(2022) in which it is stated that the representations learned
for the generation task, equation (3), are incompatible with
clustering.

Clustering Loss Function Higher performance is associ-
ated with combinations in which a clustering loss is not used.
As illustrated in Figure 5, a significant increase in average
performance is obtained with the removal of the clustering
loss. Contrary to the results presented by Lafabregue et al.
(2022), 28 out of the 30 highest performance combinations
made use of a clustering loss. It was previously concluded

5https://www.cs.ucr.edu/∼eamonn/time series data



Figure 4: Average clustering performance associated with
each pretext loss function.

that the use of existing clustering losses is not relevant for
time series. This is likely a result of the fact that the learning
rate used in the clustering phase was not tailored to increase
model stability. Consequently, the models performed poorly
or produced invalid clusterings. We rely on these results in
the construction of the FTHC formulation. That is when a
stable solution is obtained with the use of a clustering loss,
the combination will perform better than if the component
had been omitted.

Figure 5: Average clustering performance associated with
each clustering loss function.

Clustering Distance Metrics Of the two functions used
as metrics in the latent space, the Euclidean distance was
associated with the highest performance. On average when
Euclidean distance was used as the clustering layer metric
function, the performance was significantly higher than that
associated with complexity invariant distance. These results
are shown in Figure 6.

Figure 6: Average performance associated with clustering
loss function metrics.

Dimensionality reduction
Across all component combinations, principal component
analysis and the omission of dimensionality reduction ex-
hibit similar average performance characteristics. The incor-
poration of UMAP as a dimensionality reduction technique
shows slightly decreased performance as illustrated in Fig-
ure 7.

Figure 7: Average clustering performance associated with
dimensionality reduction techniques.

Financial Transaction History Clustering (FTHC)
In this section, we define a novel approach designed for fi-
nancial time series clustering before establishing a strong
performance baseline for the domain. Guided by the pre-
viously discussed results, we combine the following com-
ponents to produce a novel approach known as Financial
Transaction History Clustering. We make use of the CNN-
based autoencoder architecture based on ResNet. The au-
toencoder is trained using the classical reconstruction loss
as a pretext loss function. The encoder is trained with the
DTC clustering loss function with Euclidean distance as the
metric. We compare our approach to the current state-of-the-
art techniques in financial time series clustering presented by
Lafabregue et al. (2022); Barkhordar, Shirali-Shahreza, and
Sadeghi (2021). From the results presented in Figure 8, it
can be seen that FTHC outperforms all of the current state-
of-the-art approaches both in terms of the SC as well as the
DBI.

Figure 8: Performance results comparing our approach to
the current state-of-the-art methods. The K-means clustering
algorithm is used to form clusters in the latent space of the
LSTM, FCNN and VAE autoencoders. The DTC approach
forms clusters through the use of a clustering layer. Results
were averaged across five independent trials.

Conclusion
In this paper, we have conducted a study to compare a vari-
ety of time series clustering algorithms based on deep repre-
sentation learning. The algorithms are compared based on
their ability to cluster univariate time series of consumer
bank transaction data. We have shown that deep learning-
based clustering methods can be decomposed into four com-
ponents, namely, the architecture, dimensionality reduction



technique, pretext loss function and clustering loss func-
tion. Based on the proposed taxonomy, we have conducted
a cross-comparison to evaluate each component’s influence
on clustering performance. We combine the top-performing
components to create a novel clustering algorithm which is
shown to outperform the current state-of-the-art approaches
both in terms of the silhouette coefficient as well as the
Davies-Bouldin index.
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Appendix
Appendix A: Component Configurations
(i) Autoencoder Architecture The configuration of each
architecture depends on a large number of hyperparameters.
As a result, we have decided to use the configurations used
in other articles for our experiments as described below.

• FCNN – The fully connected neural network architecture
proposed in (Xie, Girshick, and Farhadi 2016; Guo et al.
2017) will be used to represent this class of autoencoder
architectures. The encoder is composed of three FCNN
layers. The number of neurons in each layer is 500, 500
and 2,000 respectively. An embedding layer is used to
map the data into the latent space. The decoder is con-
structed as a mirror of the encoder with the exception of
the embedding layer.

• CNN – The convolutional neural network architecture is
based on the ResNet architecture described in (He et al.
2016). The encoder is composed of three residual blocks
followed by a global average pooling layer. A fully con-
nected layer is used as the embedding layer. Similar to
the FCNN, the decoder is constructed as a mirror of the
encoder with the exception of the embedding layer.

• LSTM – The first recurrent neural network architecture
is based on the LSTM. The encoder is comprised of a
stacked, two-layer bidirectional LSTM. The network out-
puts associated with the forward and backward passes at
each time step are concatenated to form the final output.
The final hidden state of the network is used as the la-
tent representation. The decoder is constructed as a mir-
ror of the encoder and latent representation is upsampled
to ensure that the input and output sequence lengths are
identical.

• DTC – The second recurrent neural network architecture
has been proposed in Madiraju (2018). Notably, the la-
tent representation produced by this network is a time
series with a reduced number of time steps. The encoder
is composed of a convolutional layer followed by a max-
pooling layer with a kernel size of 10. The output of this
layer is then passed to a stacked, two-layer bidirectional
LSTM with a hidden size of 50. Once again, forward
and backward pass outputs are concatenated at each time
step. The latent representation of the input time series is
equal to the hidden state sequence produced by the en-
coder. The decoder is comprised of an upsampling layer
followed by a deconvolutional layer to reconstruct the in-
put time series.

(ii) Dimensionality Reduction
• PCA – Principal component analysis is used to reduce the

dimensionality of the latent vectors before the clustering
operation.

• UMAP – The UMAP algorithm is used to reduce the di-
mensionality of the latent vectors before clustering.

• NONE – In this case, no dimensionality reduction is per-
formed. As a result, the latent representations are clus-
tered directly.

(iii) Pretext Loss Function
• LR – Equation (1)
• LLR – Equation (2)
• LV – Equation (3)

(iv) Clustering Loss Function
• LDE – This is the DTC clustering loss function in which

the Euclidean distance is used as the metric function.
That is, the Euclidean distance is used to measure dis-
tances in the latent space of the autoencoder.

• LDC – This is the DTC clustering loss function in which
Complexity Invariant Distance is used as the metric func-
tion. That is, the CID is used to measure distances in the
latent space of the autoencoder.

• NONE – In this case, no clustering loss function is used.
As a result, the model is an autoencoder in which clus-
tering is performed in the latent space.

Appendix B: Model Training Procedure
All compatible component combinations were tested. Each
combination was trained for 1,000 batch iterations in the
pretraining phase and 1,000 batch iterations in the cluster
optimisation phase. A constant learning rate of ηpre = 10−2

was used in the pretraining phase and ηcls = 10−3 in the
cluster optimisation phase. The selection of these learning
rates is motivated in the next section. For combinations in
which a clustering loss is not included, training is terminated
at the end of the pretraining phase.

For combinations that do not make use of a clustering
layer, clusters are calculated using the K-Means algorithm
(MacQueen et al. 1967) to cluster the latent representations
produced by the model. This is not necessary with the in-
clusion of a clustering layer, as the layer produces cluster
assignments directly.

Appendix C: Latent Space After Pretraining

Figure 9: Visualisation of the autoencoder latent space after
the pertaining phase.


