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Abstract

We present counting reward automata—a finite state machine
variant capable of modelling any reward function expressible
as a formal language. Unlike previous approaches, which are
limited to the expression of tasks as regular languages, our
framework allows for tasks described by unrestricted gram-
mars. We prove that an agent equipped with such an abstract
machine is able to solve a larger set of tasks than those utilis-
ing current approaches. We show that this increase in expres-
sive power does not come at the cost of increased automaton
complexity. A selection of learning algorithms are presented
which exploit automaton structure to improve sample effi-
ciency. We show that the state machines required in our for-
mulation can be specified from natural language task descrip-
tions using large language models. Empirical results demon-
strate that our method outperforms competing approaches in
terms of sample efficiency, automaton complexity, and task
completion.

Introduction
In recent years, reinforcement learning (RL) has achieved
a number of successes in complex domains ranging from
video games (Badia et al. 2020) to robotics (Kumar,
Todorov, and Levine 2016; Kalashnikov et al. 2018). How-
ever, these applications have largely been constrained to rel-
atively simple, short-horizon tasks. This is a consequence of
the techniques used for learning and reasoning, where ap-
proaches have been constrained to strategies relying on end-
to-end learning systems. This restricts agents from access-
ing information about the structure of the problem which
is known to designers (Marcus 2020). Consequently, the
agent is required to unnecessarily learn information which
could have been provided, resulting in poor sample effi-
ciency (Marcus and Davis 2019; Arjona-Medina et al. 2019)

Neuro-Symbolic Artificial Intelligence is a subfield of AI
that focuses on the integration of neural and symbolic meth-
ods with the intention of addressing the inherent weak-
nesses present in either of the approaches. It has been ar-
gued that the rich cognitive models necessary to solve tem-
porally extended tasks require a combination of these ap-
proaches (Valiant 2008). Hierarchical reinforcement learn-
ing (HRL) and state machine-based approaches combine
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symbolic reasoning with machine learning (Mitchener et al.
2022). These techniques are congruent with the “best of both
worlds” perspective at the core of neuro-symbolic learning.
Neural systems excel in training while remaining robust to
noise in the data. Symbolic systems excel in the represen-
tation and manipulation of explicit knowledge (facilitating
human-understandable explanations) while supporting prov-
ably correct reasoning procedures (Sarker et al. 2021).

While HRL (Barto and Mahadevan 2003) and state
machine-based approaches (Icarte et al. 2018) have been
proposed as potential solutions to learning long-horizon
tasks, both methods are hindered by several shortcomings.
HRL methods have traditionally been limited by practical
challenges including exploration (Kulkarni et al. 2016) and
reward definition (Eysenbach et al. 2018). In contrast, state
machine-based approaches have shown significant potential
in learning optimal policies for temporally extended tasks
(Icarte et al. 2022). Unfortunately, these methods can only
express a small set of tasks, limiting their application to a
restricted set of problems.

We present a solution to long-horizon RL designed to
address the limitations of current state-machine-based ap-
proaches. In this paper, we define a novel state machine vari-
ant known as a Counting Reward Automaton (CRA) capa-
ble of modelling any computer algorithm (Hopcroft and Ull-
man 1995). Our formulation is strongly reliant on both neu-
ral and symbolic methods. We rely on explicit symbol ma-
nipulation in the form of graph algorithms and natural lan-
guage for task specification. We make the following contri-
butions: (i) we propose counting reward automata as a novel
abstract machine variant capable of modelling reward func-
tions expressible in any formal language; (ii) we show that
the state machines produced by this approach are both intu-
itive to specify through the use of Large Language Models
(LLMs) as well as significantly simpler than those produced
by alternative approaches; (iii) we describe how the sam-
ple efficiency of any off-policy algorithm can be improved
through the use of counterfactual reasoning. A modified ver-
sion of Q-learning is provided as an illustrative example; (iv)
we discuss the conditions under which the proposed algo-
rithms are guaranteed to converge to optimal policies and
demonstrate their utility in several complex domains requir-
ing long-horizon plans.



Background

MDPs, NDMPs, and RDPs

A Markov Decision Process (MDP) is a tuple M =
⟨S,A, T, γ,R⟩ where S is the set of states which may be
occupied by the agent, A is the set of actions, T : S ×A→
Π(S) is the transition function which returns a distribu-
tion over next states given action a is executed in state s,
γ ∈ [0, 1] is a discount factor and R : S×A→ R is a reward
function representing the task to be solved. The agent is re-
quired to learn a Markov policy π that performs action se-
lection to maximise cumulative reward. The value function
encodes the expected return associated with being in a given
state. That is the expected total discounted reward when the
agent is in a given state s and selecting actions according
to some policy π: V π(s) = Eπ[

∑∞
t=0 γ

tR(st, at, st+1)].
An alternative value function is the action-value function
Qπ(s, a), which represents the expected total discounted re-
ward when the agent executes action a in state s and follows
policy π thereafter.

A Regular Decision Process (Brafman, De Giacomo
et al. 2019) is a restricted Non-Markovian Decision Process
(NMDP). An NDMP is defined identically to an MDP, ex-
cept that the domains of T and R are finite sequences of
states instead of single states: T : S+ ×A× S → Π(S) and
R : S+ × A→ R. In the RDP formulation, the dependence
on history is restricted to regular functions.

Reward Machines

A reward machine (RM) is a finite state machine that de-
scribes the internal structure of the reward function (Icarte
et al. 2022). An RM operates by mapping abstracted descrip-
tions of the current environment state to reward functions.
This allows a single environmental interaction ⟨s, a, s′⟩ to
be assigned different reward values based on the active RM
state.

A reward machine makes use of a set of propositional
symbols P which encode high-level events in an environ-
ment. The agent is able to detect the events in P . The subset
of events taking place in the environment at each time step
is used as the input to the machine. The labelling function
L : S × A × S 7→ 2P determines which events are taking
place at a given instant in time. That is, the labelling func-
tion is used to assign truth values to the propositions in P
given an environmental experience. A reward machine de-
fined in an environment with states S and actions A is a tuple
RPSA = ⟨U, u0, F, δu, δr⟩, where U is a finite set of states,
u0 ∈ U is the initial state, F is a set of terminal states with
(U ∩ F = ∅). The state-transition function is defined by the
mapping δu : U × 2P 7→ U ∪ F . The state-reward function
is given by the mapping δr : U 7→ [S × A × S 7→ R]. A
reward machineRPSA begins in the initial state u0. At each
time step, the machine receives as input the set of high-level
events taking place in the environment. Upon receiving this
information, the machine transitions between states based on
the state-transition function and outputs a reward function as
defined by the state-reward function.

Counting Reward Automata
To address the limited expressive power of reward ma-
chines, we introduce a novel abstract machine known as a
Counting Reward Automaton (CRA) that is capable of mod-
elling reward functions expressible as recursively enumer-
able languages. In contrast to RMs, this framework supports
tasks described by unrestricted as opposed to regular gram-
mars. Consequently, the formulation is compatible with any
NMDP in which the dependence on history is expressible in
a formal language. As a result, this framework may be ap-
plied to a much larger number of problems than RMs which
are only applicable in RDPs.

Counter Machines
Counter automata may be thought of as finite state automata
augmented by a finite number of counter variables. While
processing a string, the machine can update the values of its
counters based on inputs, and the counters can in turn influ-
ence the machine’s state transitions. A constraint imposed
on the machine is that the value of its counters cannot be
decremented below zero.

For m ∈ Z, let +m denote the function as defined in
lambda calculus λx.x + m. This function is used to mod-
ify counter values in response to machine transitions. A k-
counter counter machine (Fischer, Meyer, and Rosenberg
1968) is defined as a tuple ⟨Q,F,Σ, δ, q0⟩where Q is a finite
set of machine states, F is a finite set of terminal states, Σ is
the input alphabet, q0 is the initial machine state and δ is the
state transition function defined as

δ : Q× {Σ ∪ {ε}} × {0, 1}k → Q× {+m : m ∈ Z}k

where k is the number of counter variables and ε is used to
denote an empty string. The empty string allows the machine
to transition without reading an input symbol.

A counter machine processes an input string one symbol
at a time. For each input symbol, we use δ to update the ma-
chine configuration based on the input symbol and current
machine configuration. A machine configuration is defined
as ⟨q, c⟩ ∈ Q × Nk. Upon reading input symbol σ the ma-
chine transitions according to

⟨q′, c′⟩ = δ(q, σ, Z(c)),

where Z : Nk 7→ {0, 1}k is a zero-test function defined as

Z(c)i :=
{
0 if ci = 0

1 otherwise.

A worked example showing how a counter machine operates
has been included in the Appendix.

Augmenting Agents with Counter Machines
We now introduce the CRA framework as an approach to
modelling reward in NMDPs. We begin with the definition
of a counting reward automaton. This is followed by the in-
troduction of a running example, used to illustrate the oper-
ation of a CRA. Finally, we describe how the automaton can
be thought of as defining a reward function on an MDP with
a larger state space than that of the NDMP.



Counting Reward Automaton A CRA is a counter ma-
chine that has been augmented with an output function. The
output function returns a reward function after each machine
transition. A machine transition occurs every time the agent
interacts with the environment. An abstract description of
this interaction is used as the input to the machine. This
causes the machine to transition, producing the reward func-
tion used to reward the agent for interaction.
Definition 1.1 (Counting Reward Automaton). Given a set
of environment states S, a set of actions A and a set of
propositional symbols modelling high-level events P , a k-
counter counting reward automaton is defined by a tuple
⟨U,F,Σ,∆, δ, λ, u0⟩, where U is a finite set of non-terminal
states, F is a finite set of terminal states (U ∩ F = ∅),
Σ = 2P is the input alphabet, ∆ = [S × A × S 7→ R]
is the output alphabet, δ is the state transition function

δ : U×{Σ∪{ε}}×{0, 1}k 7→ {U∪F}×{+m : m ∈ Zk},
λ is the output function

λ : U × {Σ ∪ {ε}} × {0, 1}k 7→ ∆,

and u0 is the initial machine state.

A C

D

N
B C

D

Figure 1: Illustration of the LetterEnv environment, con-
figured for the CFL experiment. The symbol A is replaced
with a B after it has been observed N times by the agent.

Example Task As a running example, we consider the
LetterEnv environment presented in Figure 1. In this envi-
ronment, a symbol (letter) is associated with certain posi-
tions. Symbols may either be observed infinitely often, or
replaced by another symbol after a set number of observa-
tions. The agent is able to observe two aspects of the cur-
rent state, its xy-location as well as the associated symbol
(if such a symbol exists). The agent is able to move in any
of the four cardinal directions.

For this example, the following environmental configura-
tion is used. In each episode, the symbol A may be observed
a fixed number of times, before being replaced by the sym-
bol B. The symbols B,C and D may be observed infinitely
often. Specifically, the symbol A may be observed N times
within an episode, where N is a random variable with a dis-
crete uniform distribution over the set N. The agent is re-
quired to observe a sequence of environment symbols which
corresponds to a string in the context-free language (CFL)
described by the set L = {ANBCN : N ∈ N}.
Remark. As the reward model used in this example dis-
tinguishes between histories based on properties not ex-
pressible as regular expressions over the elements of the set
S×A×S (in this case counting how many times a state has
been reached) it cannot be expressed as a reward machine.

CRA Operation We use three propositions, one to model
the presence of each symbol in the agent’s current position
P = {PA, PB , PC}. After each interaction of the agent with
the environment ⟨s, a, s′⟩, the labelling function L is used to
compute the input to the machine σ ∈ 2P . Upon reading the
input symbol σ, the machine transitions according to δ and
emits a reward function based on λ. This process continues
until the machine enters a terminal state.

We now describe how a CRA can be used to model the
reward function for the example task. For convenience, we
make use of a special case of the CRA formulation known
as a Constant Counting Reward Automaton (CCRA). After
each transition, a CCRA returns a reward value directly as
opposed to a reward function which is output by a CRA.

Definition 1.2 (Constant Counting Reward Automaton).
Given a set of propositional symbols modelling high-level
events P , a constant counting reward automaton is defined
as a tuple ⟨U,F,Σ,∆, δ, λ, u0⟩ where U,F,Σ, δ, λ and u0

are defined as in a counting reward automaton; however,
the output alphabet of the machine is defined as R.

Theorem 1. For each constant counting reward automaton,
there exists an equivalent counting reward automaton.

Proof. See Appendix.

A graphical representation of the example CCRA is illus-
trated in Figure 2. The machine contains two non-terminal
states, one for each subtask in the specification. In the state
u0, the agent’s objective is to observe the symbol A repeat-
edly. However, in the state u1, the agent is required to ob-
serve the symbol C repeatedly. Intuitively, the automaton
stores the number of A symbols it has seen in its counter.
After observing the symbol B, the machine decrements
its counter each time the symbol C is observed. Once the
counter has been decremented to zero, the machine transi-
tions into a terminal state and emits a reward of one. The
automaton is represented as a directed graph. Each vertex in
the graph represents a state in the machine, with u0 being the
initial state. Terminal states are represented by filled circles.
Associated with each edge in the graph is a tuple ⟨φ,ω,µ, r⟩
in which φ is a propositional logic formula over P , the vec-
tor ω contains the zero-tested counter states, µ contains the
counter modifiers and r is the reward associated with the
transition. A directed edge between the states ui and uj la-
belled by the tuple ⟨φ,ω,µ, r⟩ means that if the machine
is in state ui, the truth assignment L(s, a, s′) = σ satisfies
φ, that is σ |= φ, and Z(c) = ω, then the next machine
state is equal to uj and the counter values are updated to
c+µ. For example, the edge between u0 and u1 labelled by
⟨PB , [1], [0], 0⟩ means that the machine will transition from
state u0 to state u1 without modifying the counter value and
emit a reward of one if the machine is in state u0 with a non-
zero counter value when the proposition PB becomes true.
The automaton is updated after every agent-environment in-
teraction. For example, if the agent takes action a in state s
resulting in the following state s′, the machine configuration
is updated to ⟨u′, c′⟩ = δ(u, L(s, a, s′), Z(c)) and the agent
receives a reward of r = λ(u, L(s, a, s′), Z(c))(s, a, s′).



u0 u1

⟨PA, [0], [1], 0⟩

⟨PA, [1], [1], 0⟩

⟨PB , [1], [0], 0⟩

⟨¬PA ∧ ¬PB , [0], [0], 0⟩
⟨¬PA ∧ ¬PB , [1], [0], 0⟩

⟨PC , [1], [−1], 0⟩

⟨PB , [1], [0], 0⟩
⟨τ, [0], [0], 1⟩

Figure 2: Illustration of a CCRA used to solve the example
CFL task in the LetterEnv environment. The τ symbol is
used to represent a tautology (a propositional formula that is
always true) which conditions the corresponding transition
only on the states of the counters.

Solving the Example Task With a CCRA in place, we
proceed to discuss how a solution to the example task can be
obtained. As described, the automaton specifies the reward
function for the task. The reward is non-Markovian with re-
spect to the ground environment state. That is, the agent’s
observation of the environment state does not contain suf-
ficient information to determine the reward. For example,
consider the case in which the agent observes that it is in the
position associated with the symbol B. As this observation
does not contain information about the sequence of symbols
previously observed, it is insufficient to define the reward.
However, the machine configuration can be combined with
the ground environment state to produce a Markov state. As
in the RM formulation, the automaton can be thought of as
defining a reward function on an MDP with an alternate state
space. Each state in this MDP is formed by combining an
automaton configuration with a ground environment state.
We refer to this MDP as the Automaton-Augmented Markov
Decision Process (AAMDP). While the general CRA formu-
lation is not limited, we focus on finite-horizon MDPs. That
is, we enforce a fixed upper bound on trajectory length. We
use the symbolH to denote the maximum length of any tra-
jectory. This value can be used to compute an upper bound
on the value of any machine counter. Specifically,H is mul-
tiplied by the maximum counter increment defined in δ to
produce the upper bound denoted Γ.
Definition 1.3 (Automaton-Augmented Markov Decision
Process). An automaton-augmented Markov decision pro-
cess is an MDP in which the reward function is mod-
elled through the use of a counting reward automaton. An
AAMDP is a tuple ⟨S,A, T, γ, U, F,Σ,∆, δ, λ, u0⟩ in which
S,A, T and γ are defined based on an environment rep-
resentation, and U,F,Σ,∆, δ, λ and u0 are defined as in
a counting reward automaton. Each AAMDP induces an
equivalent MDP ⟨SA, AA, TA, γA, RA⟩ with AA = A,
γA = γ,

SA = S × {U ∪ F} × {1, ...,Γ}k,
TA = P (⟨s′, u′, c′⟩ | ⟨s, u, c ⟩, a)

=


P (s′|s, a) if u ∈ F and u′ = u, c′ = c

P (s′|s, a) if u /∈ F and ⟨u′, c′⟩ = δ(u, σ, Z(c))

0 otherwise.

and RA(s, a, s
′) = λ(u, σ, Z(c))(s, a, s′), where σ :=

L(s, a, s′).

As the AAMDP is fundamentally an MDP, conventional re-
inforcement learning algorithms, such as Q-learning, may be
used to compute a solution in the form of an optimal policy.

Compatible Reward Functions As the CRA formulation
is based on a counter machine, it is able to model both
Markovian and non-Markovian reward functions to the ex-
tent that a Turing machine is able to distinguish between his-
tories. This property holds as a two-counter counter automa-
ton (equivalently, a two-stack pushdown automaton with a
two-symbol alphabet) can simulate an arbitrary Turing ma-
chine (Hopcroft and Ullman 1995).

Relationship between Counting Reward Automata and
Reward Machines Reward machines are a special case
of the CRA formulation. The reward output function of a
reward machine is dependent only on the current machine
state. As a result, an RM output function is equivalent to
that of a CRA which returns the same reward function for
all transitions out of a given machine state. The RM state
transition function is dependent only on the current machine
state and the input symbol. Consequently, the state transi-
tion function is equivalent to that of a CRA which does not
modify the value of its counters.

Theorem 2. Any reward machine can be emulated by a CRA
with an equivalent number of machine states and transitions.

Proof. See Appendix.

Learning Algorithms
In this section, we discuss learning algorithms for the
AAMDP formulation. As AAMDPs are fundamentally
MDPs, we begin by discussing their compatibility with con-
ventional reinforcement learning techniques. This is fol-
lowed by the introduction of a novel learning algorithm
for AAMDPs. This algorithm exploits task information en-
coded within the CRA of the AAMDP to increase sample
efficiency. We provide pseudo-code implementations for the
tabular case and discuss each algorithm’s convergence guar-
antees.

The AAMDP Baseline
Each AAMDP is an MDP which takes into account the state
of the CRA at each time step. As a result, the AAMDP agent
not only considers the underlying ground environment state
s when selecting an action, but also the CRA configuration
⟨u, c⟩. Regardless of this distinction, the construction satis-
fies the properties of an MDP. Consequently, any learning al-
gorithm designed to learn policies for an MDP is compatible
with the AAMDP formulation. Any convergence guarantees
associated with such algorithms in MDPs hold by extension
in AAMDPs. As these algorithms do not use automaton in-
formation when learning, it is unlikely that any increase in
sample efficiency will be observed when they are applied to
AAMDPs. To illustrate how a conventional reinforcement
learning algorithm can be used with an AAMDP, we provide
an adapted version of tabular Q-learning in the Appendix.



Counterfactual Experiences

We describe how task information encoded within the struc-
ture of a CRA can be used to enable more sample efficient
learning. The learning algorithm we propose to exploit CRA
task information is based on the Counterfactual experiences
for Reward Machines (CRM) algorithm (Icarte et al. 2022).
Our algorithm has been adapted to support the k-counter
counter machine used in the CRA formulation. The counter-
factual experiences generated by this algorithm can be used
to increase the sample efficiency of any off-policy learning
method.

We begin by providing an overview of the intuition behind
the algorithm. We describe how task information, encoded
within the automaton structure, can be used to enable more
sample efficient learning. Suppose an agent in a ground envi-
ronment state s takes action a, producing a subsequent state
s′. If the CRA configuration was ⟨u, c⟩ prior to the transi-
tion, then the reward signal emitted by automaton would be
r = λ(u, L(s, a, s′), Z(c))(s, a, s′). However, we are able
to consider every possible machine configuration prior to the
transition. This counterfactual reasoning generates a set of
counterfactual experiences, each of which may be used for
learning. The generation of synthetic experiences is enabled
by the task information encoded within the automaton struc-
ture.

In order to illustrate how counterfactual experiences can
be incorporated into an off-policy learning algorithm, we
present Counterfactual Q-Learning (CQL) in Algorithm 1.
It can be seen that the only adaptation required is to the Q-
function update. That is, rather than updating the Q-function
once based on the observed AAMDP transition, it is updated
multiple times, considering every possible prior automaton
configuration. The process begins with the agent executing
an action and observing the next ground environment state
(line 8). This information is passed to the labelling func-
tion to compute the input to the machine. This is followed
by counterfactual experience generation. That is, we simu-
late what would have happened had the machine been in any
of its non-terminal configurations when the transition took
place (lines 9-10). For each experience, the corresponding
next machine configuration and reward are computed (lines
11-12). This information is used to update the Q-function
(lines 13-17). Finally, the machine configuration is updated
based on the transition that was observed in reality. We note
that in practice, the loop on line 10 can be optimised by
maintaining a cache of observed counter states.

Theorem 3. Given an AAMDPM, tabular CQL converges
to an optimal policy forM in the limit (under the same con-
ditions required for convergence of Q-learning in MDPs).

Proof. As the counterfactual experiences generated in CQL
are sampled according to the transition probability distribu-
tion P (⟨s′, u′, c′⟩ | ⟨s, u, c ⟩, a) = P (s′|s, a), the conver-
gence proof provided by Watkins and Dayan (1992) for tab-
ular Q-learning applies directly to the case of CQL.

Algorithm 1: Counterfactual Q-Learning (CQL)
Input: AAMDPM = ⟨SA, AA, TA, γA, RA⟩
Output: Optimal Q-value function Q∗

1: Initialise Q(s, u, c, a)← 0 ∀ ⟨s, u, c, a⟩ ∈ SA ×AA
2: repeat
3: Initialise u← u0

4: Initialise c← 0
5: Initialise s as initial environment state
6: while u /∈ F and s non-terminal do
7: Sample a from ⟨s, u, c⟩ using policy derived from

Q (e.g. ϵ-greedy)
8: Execute action a, observe s′

9: for ui ∈ U do
10: for cj ∈ {1, ...,Γ}k do
11: ⟨uk, ck⟩ ← δ(ui, L(s, a, s

′), Z(cj))
12: rk ← λ(ui, L(s, a, s

′), Z(cj))
13: if uk ∈ F or s′ is terminal then
14: Q(s, ui, cj , a)

α← rk
15: else
16: Q(s, ui, cj , a)

α← rk + γ max
a′∈A

Q(s′, uk, ck, a
′)

17: end if
18: end for
19: end for
20: Compute ⟨u′, c′⟩ ← δ(u, L(s, a, s′), Z(c))
21: Set u← u′

22: Set c← c′

23: end while
24: until end

Experimental Evaluation
In this section, we provide an empirical evaluation of the
proposed methods. We begin by considering a context-free
task specification that cannot be expressed by current state-
machine-based approaches. In the following experiment, we
compare the sample efficiency of our approach to that of
state-of-the-art techniques for a context-sensitive task. Fi-
nally, we demonstrate how expert knowledge is naturally in-
tegrated into our formulation during task specification. An
LLM is used to specify the desired task as a regular lan-
guage which is used to produce the required automaton. A
solution is obtained through function approximation.

Task Specifications Beyond Regular Languages
We use the previously described LetterEnv environment to
evaluate our methods on a task specification only expressible
as a context-free language. The environment is illustrated in
Figure 1. The agent is required to observe a sequence of en-
vironment symbols corresponding to a task in the context-
free language L = {ANBCDN : N ∈ N}. In our exper-
iments, we compare CRA performance to that of state-of-
the-art RM-based learning approaches (Icarte et al. 2022),
including CRM and CRM with automated reward shaping
(CRM+RS). For each approach, we compute the number of
environmental interactions required to learn a policy which
solves the task. The results are shown in Figure 3. As the



Figure 3: Number of samples required by each approach to
obtain a solution to the task. Mean and variance are reported
over 40 independent trials. A single CRA can be trained and
immediately used to solve all tasks in the specification. For
all other approaches, multiple policies must be learned.
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Figure 4: Illustration of the Office Gridworld presented in
Icarte et al. (2022). The agent, represented as a blue circle,
begins in a fixed location. The agent is able to move in any of
the four cardinal directions and its observations are restricted
to its current position in the environment. The symbols ∗
represent decorations, which are broken if the agent collides
with them. Mail can be collected from the location B and
coffee can be made at location K. A number of people are
located at P . The trajectory for the context-sensitive task
specification is shown

CRA is able to model the CFL reward directly, one machine
can be trained and immediately used to solve all tasks in
the specification. This is not true for the RM formulation,
which is limited to the expression of reward functions in
regular languages. This requires the RM formulation to em-
ulate a CRA. This is achieved through the use of separate
RMs for each value of N . Notably, while the CRA configu-
ration remains constant across all tasks, the number of states
required by an RM grows linearly with task complexity. The
results demonstrate that the ability of the CRA to directly
model more complex reward functions provides significant
improvements in sample efficiency in comparison to CRA
emulation through a collection of RMs.

State Machine Complexity
We consider the Office Gridworld environment illustrated
in Figure 4. We focus on a task specification that is only ex-
pressible as a context-sensitive language. The following task
specification is used for this experiment. Firstly, the agent is
required to navigate to the mail room and collect all avail-
able mail (the amount of mail is randomly generated at the
start of each episode). The agent must then make a single
coffee for each person that it has collected mail for. Finally,
the mail and coffee must be delivered to the office employ-
ees located at P . The agent immediately fails the task if a
decoration is broken or an incorrect number of coffees is
collected/delivered. This task requires the agent to remem-
ber both the amount of mail it has collected as well as the
number of coffees it has made. As a result of this property,
this task can only be represented as a context-sensitive lan-
guage. Due to the memory requirements associated with this
task, two counter variables are used in the CRA formulation.
For this task specification, we note that the CRA formula-
tion, trained with the CQL algorithm, converges to a solu-
tion significantly faster than both CRM and CRM with au-
tomated reward shaping (CRM+RS) in all cases (see Ap-
pendix). However, we focus on the complexity of the state
machines produced by either of the approaches. The CRA
required to solve the task consists of three intuitive non-
terminal states. These states correspond to the tasks: (i) col-
lect all mail; (ii) make coffee and (iii) deliver the collected
items. As the reward machine formulation is based on a fi-
nite state machine, it is unable to directly express task spec-
ifications corresponding to non-regular languages. This re-
quires the reward machine to contain a single state for each
CRA task-counter pair. We note that as the CRA formula-
tion is able to express the context-sensitive task specifica-
tion directly—it is therefore able to solve all task strings in

Figure 5: Comparison between the complexity of the state
machines produced by the CRA and RM formulations. The
illustration shows the complexity of the machine required
to solve a task specification with a fixed upper bound on
task-string length (in this case, the maximum number of mail
items). RMs were constructed using a general template im-
plementation parameterised by the maximum string length
required for the task.



the language without modification. This is illustrated in Fig-
ure 5, with the machine configuration remaining constant as
the maximum length of a task string is increased. An illus-
tration of the state machines is provided in the Appendix.
As existing approaches assume that the automaton is given,
this requires that the specification of machines is intuitive
and human-readable. We note that this is not the case. Com-
plex algorithms were required to generate the RMs used in
these experiments. The state machines required by current
approaches are not only difficult to specify, but also to ver-
ify for correctness.

Integration of Expert Knowledge in Learning
We now illustrate how expert knowledge can be naturally
integrated into our formulation. We make use of the Office
Gridworld environment to demonstrate our approach. We
consider the following task specification. The agent is re-
quired to collect exactly one item of mail and deliver it to a
person without breaking a decoration. The natural language
description of this task is converted to a formal language
through the use of an LLM, specifically ChatGPT (Ope-
nAI 2023). The LLM is prompted to produce a formal lan-
guage that specifies the sequence of high-level events satis-
fying the task description. This formal language description
is used to produce the required automaton illustrated in Fig-
ure 7. The LLM prompts and responses are provided in the
Appendix. Solutions to the task specification were obtained
through function approximation, replacing Q-learning with
DQN (Mnih et al. 2013). Full details of experimental hy-
perparameters a provided in the Appendix. The results are
shown in Figure 6.

Figure 6: Sample efficiency comparison for natural lan-
guage tasks solved through function approximation. Mean
and variance were reported over 10 independent trials. CQL
and CRM exhibit similar performance as the approaches are
equivalent for regular language task descriptions.

Related Work
In recent years, formal language and state machine-based
approaches for task specification and efficient learning have
been extensively studied (Littman et al. 2017; Li, Vasile, and

u0 u1 u2
⟨PB, 0⟩ ⟨PP , 0⟩

⟨PP ∨ P∗, 0⟩ ⟨PB ∨ P∗, 1⟩ ⟨τ,−1⟩

Figure 7: Illustration of a CCRA specified from a natural
language task description through the use of an LLM. The
propositions Ps are satisfied when the symbol s is encoun-
tered. As counter values remain unchanged for regular lan-
guage tasks, they are not shown to save space.

Belta 2017; Brafman, De Giacomo, and Patrizi 2018; Joth-
imurugan, Alur, and Bastani 2019). This research has largely
focused on the problems of specification like in Camacho
et al. (2019) and learning the abstract machines from data
like in Abadi and Brafman (2020). However, due to current
formulations’ dependence on Finite State Machines (FSMs),
they are significantly limited in terms of the types of reward
functions they are able to express. This restricts the applica-
tion of such methods to the small subset of problems which
may be represented as Regular Decision Processes (RDPs)
(Brafman, De Giacomo et al. 2019). This property imposes
significant constraints on the classes of problems expressible
by current approaches. For example, any problem which in-
volves counting the number of times a state has been reached
cannot be solved using these methods.

Finally, a related number of works have been proposed
under the HRL framework for solving temporally extended
tasks (Barto and Mahadevan 2003; Barreto et al. 2019).
Solutions include methods such as the options framework
(Sutton, Precup, and Singh 1999), HAMs (Parr and Rus-
sell 1997) and MAXQ (Dietterich 2000). Levy et al. (2017)
make use of goal-conditioned policies at multiple layers of
the hierarchy for RL. However, all of these approaches have
been shown to struggle with exploration (Kulkarni et al.
2016) and reward definition (Eysenbach et al. 2018) which
has limited their application.

Conclusion
We have proposed the counting reward automata formula-
tion as a universal approach to modelling reward in rein-
forcement learning systems. As a result of the formulation’s
dependence on counter machines, it is able to model re-
ward functions expressible in any formal language, unlike
previous approaches. Task information is encoded within
the abstract machine during the reward modelling process,
which may be exploited to enable more sample-efficient
learning. Given a counting reward automaton for a task of
interest, we have proposed a learning algorithm that can ex-
ploit the automaton structure to increase sample efficiency
through counterfactual reasoning. The convergence guaran-
tees of this approach have been discussed in the tabular case.
Through empirical evaluation, we demonstrate the effective-
ness of the proposed formulation both in terms of sample
efficiency as well as state machine complexity. Finally, we
have demonstrated how expert knowledge can be integrated
into the formulation through the use of natural language task
descriptions and LLMs.



References
Abadi, E.; and Brafman, R. I. 2020. Learning and
solving regular decision processes. arXiv preprint
arXiv:2003.01008.
Arjona-Medina, J. A.; Gillhofer, M.; Widrich, M.; Un-
terthiner, T.; Brandstetter, J.; and Hochreiter, S. 2019. Rud-
der: Return decomposition for delayed rewards. Advances
in Neural Information Processing Systems, 32.
Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.;
Vitvitskyi, A.; Guo, Z. D.; and Blundell, C. 2020. Agent57:
Outperforming the atari human benchmark. In International
conference on machine learning, 507–517. PMLR.
Barreto, A.; Borsa, D.; Hou, S.; Comanici, G.; Aygün, E.;
Hamel, P.; Toyama, D.; Mourad, S.; Silver, D.; Precup, D.;
et al. 2019. The option keyboard: Combining skills in re-
inforcement learning. Advances in Neural Information Pro-
cessing Systems, 32.
Barto, A. G.; and Mahadevan, S. 2003. Recent advances in
hierarchical reinforcement learning. Discrete event dynamic
systems, 13(1-2): 41–77.
Brafman, R.; De Giacomo, G.; and Patrizi, F. 2018.
LTLf/LDLf non-markovian rewards. In Proceedings of the
AAAI conference on artificial intelligence, volume 32.
Brafman, R. I.; De Giacomo, G.; et al. 2019. Planning
for LTLf/LDLf Goals in Non-Markovian Fully Observable
Nondeterministic Domains. In IJCAI, 1602–1608.
Camacho, A.; Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In IJCAI, volume 19, 6065–6073.
Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
artificial intelligence research, 13: 227–303.
Eysenbach, B.; Gupta, A.; Ibarz, J.; and Levine, S. 2018.
Diversity is all you need: Learning skills without a reward
function. arXiv preprint arXiv:1802.06070.
Fischer, P. C.; Meyer, A. R.; and Rosenberg, A. L. 1968.
Counter machines and counter languages. Mathematical
systems theory, 2(3): 265–283.
Hopcroft, J.; and Ullman, J. D. 1995. Introduction to au-
tomata theory, languages, and computation. CNIB.
Icarte, R. T.; Klassen, T.; Valenzano, R.; and McIlraith, S.
2018. Using reward machines for high-level task specifi-
cation and decomposition in reinforcement learning. In In-
ternational Conference on Machine Learning, 2107–2116.
PMLR.
Icarte, R. T.; Klassen, T. Q.; Valenzano, R.; and McIlraith,
S. A. 2022. Reward machines: Exploiting reward function
structure in reinforcement learning. Journal of Artificial In-
telligence Research, 73: 173–208.
Jothimurugan, K.; Alur, R.; and Bastani, O. 2019. A com-
posable specification language for reinforcement learning
tasks. Advances in Neural Information Processing Systems,
32.

Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.;
Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Van-
houcke, V.; et al. 2018. Qt-opt: Scalable deep reinforce-
ment learning for vision-based robotic manipulation. arXiv
preprint arXiv:1806.10293.
Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenen-
baum, J. 2016. Hierarchical deep reinforcement learning: In-
tegrating temporal abstraction and intrinsic motivation. Ad-
vances in neural information processing systems, 29.
Kumar, V.; Todorov, E.; and Levine, S. 2016. Optimal
control with learned local models: Application to dexterous
manipulation. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), 378–383. IEEE.
Levy, A.; Konidaris, G.; Platt, R.; and Saenko, K. 2017.
Learning multi-level hierarchies with hindsight. arXiv
preprint arXiv:1712.00948.
Li, X.; Vasile, C.-I.; and Belta, C. 2017. Reinforcement
learning with temporal logic rewards. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 3834–3839. IEEE.
Littman, M. L.; Topcu, U.; Fu, J.; Isbell, C.; Wen, M.; and
MacGlashan, J. 2017. Environment-independent task speci-
fications via GLTL. arXiv preprint arXiv:1704.04341.
Marcus, G. 2020. The next decade in AI: four steps
towards robust artificial intelligence. arXiv preprint
arXiv:2002.06177.
Marcus, G.; and Davis, E. 2019. Rebooting AI: Building
artificial intelligence we can trust. Vintage.
Mitchener, L.; Tuckey, D.; Crosby, M.; and Russo, A. 2022.
Detect, understand, act: A neuro-symbolic hierarchical rein-
forcement learning framework. Machine Learning, 111(4):
1523–1549.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
OpenAI. 2023. Blog — openai.com. https://openai.com/
blog. [Accessed 23-11-2023].
Parr, R.; and Russell, S. 1997. Reinforcement learning with
hierarchies of machines. Advances in neural information
processing systems, 10.
Sarker, M. K.; Zhou, L.; Eberhart, A.; and Hitzler, P. 2021.
Neuro-symbolic artificial intelligence. AI Communications,
34(3): 197–209.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial intelligence, 112(1-
2): 181–211.
Valiant, L. G. 2008. Knowledge infusion: In pursuit of ro-
bustness in artificial intelligence. In IARCS Annual Confer-
ence on Foundations of Software Technology and Theoret-
ical Computer Science. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning, 8: 279–292.



Appendix

A. Counter Machine Example

In this section, we provide an example illustrating how counter machines operate. We describe how a counter machine can be
used to recognise strings belonging to the context-free language L = {ANBN : N ∈ N}. The counter machine is illustrated in
Figure 8.

The machine is illustrated as a directed graph. Each vertex in the graph is a machine state and each edge in the graph
is a transition. Associated with each edge is a label ⟨σ,ω,µ⟩ where σ ∈ Σ is an input symbol, ω ∈ {0, 1} is the zero-tested
counter state and µ ∈ {+m : m ∈ Z} is the counter modifier.

We will use an example string AABB to demonstrate how the machine functions. The machine begins in the initial
state u0 with a counter value of 0. The input string is processed one symbol at a time. Firstly, the symbol A is read. At
this point, the machine’s counter state is [0] as the counter value is zero. Upon reading this symbol, the machine transitions,
remaining in state u0 and incrementing its counter value by 1. Next, the symbol A is read by the machine. At this point, the
counter state is [1] as the counter value is not equal to zero. This causes the machine to transition, remaining in state u0 and
incrementing its counter value to 2. The machine then reads the input symbol B. The machine transitions to state u1 and
decrements the counter value by 1. Finally, the machine reads the input symbol B. The machine transitions and decrements the
counter value to zero. The input string is accepted as the automaton is in an accepting state with a counter value of zero after
processing is complete.

u0 u1

⟨A, [0], [1]⟩
⟨A, [1], [1]⟩

⟨B, [1], [−1]⟩

⟨B, [1], [−1]⟩

Figure 8: Illustration of a counter machine that recognises the language L = {ANBN : N ∈ N}.

B. Theorem 1.1

Proof. Let AP = ⟨U,F,Σ,∆c, δ, λc, u0⟩ be a CCRA.

The equivalent CRA is defined as APSA = ⟨U,F,Σ,∆f , δ, λf , u0⟩ where U,F,Σ, δ and u0 are defined as in the
CCRA.

The output alphabet of the machine is defined as ∆f = [S ×A× S → R].

We now define the output function λf . A machine transition is defined for each triple ⟨u, σ,ω⟩ ∈ U × {Σ ∪ {ε}} × {0, 1}k.
Upon reading an input symbol, the machine transitions producing λc(u, σ,ω) = x for some x ∈ R. To emulate λc, the reward
function returned by λf for the transition is required to return x for all inputs in the set S × A× S. As a result, λf may return
the function defined as

fx : S ×A× S → {x}

fx(s, a, s
′) = x ∀ ⟨s, a, s′⟩ ∈ S ×A× S

In general,

λf (u, σ,ω) = f : S ×A× S → {λc(u, σ,ω)}



C. Theorem 1.2

Proof. LetRPSA = ⟨UR, uR
0 , FR, δu, δr⟩ be a reward machine.

The number of RM states is equal to |UR|. By definition, an RM transition exists for each pair ⟨u, σ⟩ ∈ UR × 2P . It
follows that the number of RM transitions is equal to |UR × 2P |.

We now show how to define a CRA capable of emulating the RM. Firstly, to emulate the RM, the CRA does not re-
quire the use of its counters. Therefore, the counter values remain 0 at all times, as they are not modified in any transitions.
Secondly, the CRA only transitions when the RM transitions, that is, after reading an input symbol. The CRA is defined as
APSA = ⟨UA, FA,Σ,∆, δ, λ, uA

0 ⟩ where UA = UR, FA = FR, uA
0 = uR

0 , Σ = 2P , ∆ = Im(δr),

δ(u, σ,0) = ⟨δu(u, σ),0⟩ ∀ ⟨u, σ⟩ ∈ UA × 2P

and

λ(u, σ,0) = δr(u) ∀ ⟨u, σ⟩ ∈ UA × 2P

From UA = UR, it follows that the machines have the same number of states. As the domain of the CRA transition function δ
is equal to UA × 2P = UR × 2P , it follows that the machines have the same number of transitions.

D. Pseudo-code Implementation

Algorithm 2: Tabular Q-Learning for AAMDP
Input: AAMDPM = ⟨SA, AA, TA, γA, RA⟩
Output: Optimal Q-value function Q∗

1: Initialise Q(s, u, c, a)← 0 ∀ ⟨s, u, c, a⟩ ∈ SA ×AA
2: repeat
3: Initialise u← u0

4: Initialise c← 0
5: Initialise s as initial environment state
6: while u /∈ F and s non-terminal do
7: Sample a from ⟨s, u, c⟩ using policy derived from Q (e.g. ϵ-greedy)
8: Execute action a, observe s′

9: Compute ⟨u′, c′⟩ ← δ(u, L(s, a, s′), Z(c))
10: Compute r = λ(u, L(s, a, s′), Z(c))(s, a, s′)
11: if u′ ∈ F or s′ is terminal then
12: Q(s, u, c, a)

α← r
13: else
14: Q(s, u, c, a)

α← r + γ max
a′∈A

Q(s′, u′, c′, a′)

15: end if
16: Set u← u′

17: Set c← c′

18: end while
19: until end.



E. Learning Curves for Office Gridworld

Figure 9: Learning curves for Office Gridworld. Mean and variance reported over 5 independent trials.

F. Visualisation of Office Gridworld state machines

Fetch mail Make coffee Deliver

Remaining mail

All mail collected

Insufficient coffee count

Correct coffee count

More items in inventory

All items delivered

Decoration broken/task violation Decoration broken/task violation Decoration broken/task violation

Figure 10: Illustration of simplified CCRA used to solve the Office Gridworld task for any value of N .



Figure 11: Illustration of RM used to solve the Office Gridworld task for N = 10.

G. LLM Conversation
1. Formal Language Specification

User: The following events of interest have been defined: “M” mail is collected; “P” an item has been delivered to the
person; ”D” a decoration is broken.

A sequence of events can be represented as a string from a formal language.

Provide the formal language corresponding to the sequence of events: Collect exactly one item of mail and
deliver a single item of mail to a person. Do not break a decoration at any point in the sequence.

Bot: Let’s denote the events as follows:
• ”M” for collecting mail
• ”P” for delivering mail to a person
• ”D” for breaking a decoration

The formal language corresponding to the given sequence of events can be represented as:

L = {(MP )1}

This language specifies a sequence of events where exactly one ”M” (mail collection) is followed by exactly one ”P”
(mail delivery to a person). The superscript 1 indicates that this sequence occurs exactly once, and there should be no
”D” (decoration breaking) event in the sequence.

2. Automaton Specification



User: Describe an automaton that is able to recognise this language. This automaton should accept any strings if they
are in the language and reject any strings if they are not in the language. Describe the transition function for the machine
in each state for each input symbol in the alphabet.

Bot: To recognize the language L = {(MP )1}, where exactly one ”M” is followed by exactly one ”P,” without
any ”D” in between, you can design a simple deterministic finite automaton (DFA). The DFA will have three states
corresponding to the different phases of the sequence: initial state, mail collected state, and mail delivered state.

The alphabet for this language consists of three symbols: Σ = {M,P,D}.

Here’s the description of the automaton:
1. States:

• q0: Initial state
• q1: Mail collected state
• q2: Mail delivered state (Accepting state)

2. Transition function:
• Transition from the initial state q0:
– On input M , move to state q1 (mail collected).
– On input P or D, go to a trap state qtrap (a non-accepting state indicating an invalid sequence).

• Transition from the mail collected state q1:
– On input P , move to state q2 (mail delivered, accepting state).
– On input M or D, go to qtrap.

• Transition from the mail delivered state q2:
– On any input symbol (M,P,D), go to qtrap since the sequence is complete.

• Transition from the trap state qtrap:
– On any input symbol (M,P,D), remain in qtrap.

3. Accepting states:
• The only accepting state is q2 (mail delivered state).

This DFA ensures that exactly one ”M” is followed by exactly one ”P,” and any deviation results in the automaton
entering a non-accepting trap state.

Here’s a formal representation of the transition function:

δ(q0,M)→ q1

δ(q0, P )→ qtrap

δ(q0, D)→ qtrap

δ(q1,M)→ qtrap

δ(q1, P )→ q2

δ(q1, D)→ qtrap

δ(q2,M)→ qtrap

δ(q2, P )→ qtrap

δ(q2, D)→ qtrap

δ(qtrap,M)→ qtrap

δ(qtrap, P )→ qtrap

δ(qtrap, D)→ qtrap



Note: In the transition function, δ(q, a) → q′ denotes that on input symbol a in state q, the automaton transitions to
state q′.

H. Function Approximation Hyperparamters
• We use feed-forward networks with 2 hidden layers.
• Hidden layers contain 128 neurons and make use of the rectified linear unit (ReLU) as an activation function.
• Networks are trained for 12,000 environmental interactions with a learning rate of η = 10−4.
• On every optimisation step the Q-functions are using 32N sampled experiences from the replay buffer of size 50,000 where
N = 1 for DQN and N = |U | for CRM and CQL.


