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Abstract—Learning the underlying structure between pro-
cesses is a common problem found in the sciences, however
not much work is dedicated towards this problem. In this
paper, we attempt to use the language of structure learning to
address learning the dynamic influence network between partially
observable processes represented as hidden Markov models
(HMMs). The importance of learning an influence network is
for knowledge discovery and to improve density estimation in
temporal distributions. We learn the dynamic influence network,
defined by this paper, by first learning the optimal distribution for
each process using hidden Markov models, and thereafter apply
redefined structure learning algorithms for temporal models to
reveal influence relationships. This paper provides the following
contributions: we (a) provide a definition of influence between
stochastic processes represented by HMMs; and (b) expand
on the conventional structure learning literature by providing
a structure score and learning procedure to learn influence
relationships between HMMs. We provide empirical evidence of
the effectiveness of our method over several baselines.

Index Terms—Learning influence networks, Structure learning,
Hidden Markov models, Stochastic processes.

I. INTRODUCTION

The problem of describing the interaction or influence
between stochastic processes has received little scrutiny in the
current literature, despite its developing importance. Solving
this complex problem has large implications for density esti-
mation and knowledge discovery.

Usually, the individual structure of each stochastic process
is ignored and all are merged into one big process which
is modelled by some probabilistic temporal model. This ap-
proach undermines the explanatory importance of the relations
between these processes [1]. The core of the issue is that
we lose the underlying structure of the relationships between
the processes which is essential to learn how one process
influences the other.

In this paper, we provide a complete method for learning the
dynamic influence network between processes represented by
hidden Markov models (HMMs). This paper also explores the
case when we are learning the influence relationship between
partially observable processes. This is a significantly harder
problem since the likelihood of the temporal model to the
data has multiple optima which is induced from the missing
samples [1]. Unfortunately, given that learning parameters

from missing data is also a NP-hard problem, heuristic ap-
proaches are needed to solve for a suitable local optimum to
the likelihood function of the parameters [1].

The application of this research is broad. Influence networks
for stochastic processes can capture the complex relationships
of how processes impact others. For example, we can learn
the influence of traffic in a network of roads to determine
how the traffic condition of a road will impact on another
road. In educational data-mining we may want to determine the
influence of participants in a lecture environment to encourage
student success. We may wish to learn the influence between
an IoT network [2]–[4]; influence between musical pieces [5],
[6]; or influence between the skills of learners which impacts
on their attrition [7]–[9].

The following contributions is made by this paper: (a) The
concept of dynamic influence networks (DINs) which repre-
sents the influence (relationships) between partially observable
stochastic processes. (b) The extension of the Bayesian infor-
mation Criterion (BIC) for for dynamic models (d-BIC score).
(c) The concept of a structural assemble which is able to relate
dynamic models statistically. Finally (d), a greedy structure
learning procedure for learning DINs between these HMMs.

II. RELATED WORK

Numerous statistical procedures have been used to identify
influence between variables [10]–[13]. These statistical pro-
cedures have been extended to the temporal environment to
learn relationships between processes (variables over time). A
significant contribution is the use of hidden Markov models
(HMMs) which is defined as a set of parameters and con-
ditional independence assumptions which together make up
an acyclic structure between variables defined using factors
[14]–[16]. The values in these factors are referred to as the
parameters, and the list of conditional independence assump-
tions between variables are referred to as the structure of the
model.

Learning the independence assertions of a dynamic
Bayesian network can be used to make conditional inde-
pendence inferences over time (density estimation) or to
simply learn the relationships between variables (knowledge
discovery). [17]–[20]. On the one hand leaning a sparse
graph structure may have more generalisability for density



estimation, but on the other hand, having a more dense graph
can reveal unknown relationships for knowledge discovery.
Care must be taken when considering for what purpose is the
network required (more on this in the discussion) [16].

A successful approach to structure learning is using score-
based structure learning [16], [21]. In score-based structure
learning we develop a set of hypothesis structures which
are evaluated using a score-based function that computes
the likelihood of the data to the hypothesised structure. The
likelihood is usually expressed as the information gain (mutual
information) of the structure and parameters of the distribution
to the data.

A search algorithm is then performed to identify the highest
(possible) structure based on the structure score [22]–[25].
Viewing this problem as an optimisation problem allows us
to adopt the already established literature on search methods
in this super-exponential space to find the optimal structure
given the data [26]–[29].

The structure of this section is as follows. In section II-A we
introduce the well established BIC score which offers a way
to trade-off the fit to data vs model complexity (the amount
of independence assumptions between variables in the data).
Finally, in section II-B we introduce a greedy search method
to find the an optimal graph structure.

A. The BIC score

The BIC score models the structural fit to data verses
the complexity of the conditional independence assumptions
between variables. That is, the amount of independence as-
sumptions made on the structure [30]. This makes it a popular
choice for structure learning methods since the model com-
plexity has a direct impact on the performance to do inference
tasks. This is because the amount of conditional independence
assumptions on a particular variable increases the factor size
of that variable exponentially. The mathematical expression of
the BIC score comprises of two terms: the first term models the
fit to data; and the second term penalises the fit to data based
on the complexity of the structure considered. The complete
BIC score is as follows:

scoreBIC = `(θ̂G : D)− logM

2
DIM [G],

where the count of instances is denoted by M and the count
of independent parameters is denoted by DIM [G] in the
Bayesian network. `(θ̂G : D) represents the likelihood fit to
the data.

The intuition of the Bayesian score is that as the amount
of samples increase (ie. M ) the score is willing to consider
more complicated structures if enough evidence (samples, ie.
M ) is considered [31], [32]. The BIC core is particularly
effective since the likelihood score (one without a penalty to
complexity) will always prefer the most complicated network.
However, the most complex networks also impose the risk of
fragmentation, which is the exponential increase to the size
of the factors caused by the increase of the in-degree of a
variable. Penalty-based structure scores allows us to explore
the opportunity to adopt more complicated structures if there

is enough justification that the likelihood of the structure
and parameters to the data is high-enough to compromise
on the models speed to perform inference tasks caused by
fragmentation.

There has been much contributions in the literature on the
properties of the BIC score [30], [33], [34]. Key constitutions
include a proof the it is consistent and is score equivalent
which are necessary for efficient search procedures [35]–[37].

B. Learning General Graph-structured Networks

Since the search space for the optimal Bayesian structure is
super-exponential, the difficulty of learning a graph structure
for a Bayesian network is NP-hard. More specifically, for any
d ≥ 2, the problem of finding a structure with a maximum
score with d parents is NP-hard [26]–[29]. See [38]–[40] for
a detailed proof.

Despite this, there have been many contributions to learning
an optimal structure. A key contribution is using heuristic
search procedures to find an optimal acyclic graph structure
[41]. These heuristic search procedures make use of search op-
erators (changes to the graph structure) and a search algorithm
(e.g. greedy search, best first search, simulated annealing e.t.c.)
[42]. The intuition of this approach is to find an optimal acyclic
structure by gradually improving the choice of the structure
using the various search operators [43]–[47].

III. INFLUENCE BETWEEN HIDDEN MARKOV MODELS

In this paper we consider a structure learning procedure
which evaluates candidate dynamic influence networks (DINs)
using scoring metrics. We provide evidence for the effective-
ness of our structure learning procedure over the standard
benchmarks selected.

An overview of the proposed structure learning procedure
is given by the below instructions relating to Figure 1.

Fig. 1. An overview of the proposed structure learning procedure in
this paper.

(i) The stochastic processes are given as input. The param-
eters for a HMM is learned for each stochastic process.
This is the input.

(ii) A structure is imposed between the HMMs (using a rela-
tion function called an assemble). This gives us a dynamic
influence network (DIN). The observable parameters are
relearned in the model. The structure score for the DIN
is computed.

(iii) Expectation maximisation is performed to learn the latent
parameters of the DIN.

(iv) A candidate DIN is presented as output.



(v) The resulting DIN is evaluated and the score is recorded.
If the score converges or a threshold is reached then
the learning procedure is terminated. If not, we apply a
structural operator (edge addition, deletion, reversal) and
move back to step (iii).

Figure 2 illustrates an examples of a DIN between a set of
HMMs. Each HMM is represented as a node in the acyclic
graph structure and is denoted as a tuple, 〈Hi

0,Hi
→〉, where

Hi
0 is the starting state of the HMM, and Hi

→ is the unrolled
state for HMM i. A DIN structure is the output of the structure
learning procedure.

〈H1
0,H1

→〉

〈H2
0,H2

→〉

〈H3
0,H3

→〉

〈H4
0,H4

→〉

〈H5
0,H5

→〉

〈H6
0,H6

→〉

Fig. 2. A dynamic influence network (DIN) whose nodes represent
six HMMs. Each HMM is represented as 〈Hi

0,Hi
→〉, where Hi

0 is the
initial network and Hi

→ is the unrolled network. The double edges
between each network represents the structure assemble (subsection
III-B).

We will begin by providing a brief introduction to the
hidden Markov model (HMM) which is used to represent the
stochastic processes. An HMM is a dynamic Bayesian network
(DBN). The likelihood function (mutual information) for a
HMM, as illustrated by Figure 3, decomposes as:

L(Θ : X0:T , O0:T ) =
∏
i,j

θ
M [Xi→Xj ]
Xi→Xj

∏
i,k

θ
M [Xi,Ok]

Ok|Xi ,

where the parameters correspond to the observable value k
in the state i to the exponent of the number of times we
observe both Xi and Ok. We will often refer to an HMM as a
tuple as we did in Figure 2. [16], [48]–[50] provide excellent
introduction to DBNs and HMMs.

In the section III-A we will extend the current literature
of structure scores for Bayesian networks to scores for DINs;
and finally, in section III-B we will introduce the notion of an
assemble to relate HMMs in our DIN.

A. Structure Scores for DINs

In Step (ii) of Figure 1, we needed to calculate the score of
the influence structure. In this paper we adapt the celebrated

X(0) X(1)

O(1)

X(2)

O(2)

X(3)

O(3)

Fig. 3. An illustration of a hidden Markov model (HMM) with 4
time-slices. The dotted lines indicate the inter-time-slice edges for
the persistent variable X(t). The solid line indicate the intra-time-
slice edges for each respective time-slice.

BIC score to a dynamic BIC (d-BIC) for our dynamic influence
networks. The d-BIC score make the same trade-off between
model complexity and fit to the data, only the d-BIC can be
applied to dynamic networks.

The d-BIC score is as follows:

scoreBIC(H0 : D) = M

K∑
k=1

(

T∑
t=1

(

N∑
i=1

(IP̂ (X
〈Hk0 ,H

k
→〉

(t)

i ;

PaG

X
〈Hk0 ,H

k
→〉

(t)

i

)))− logM

c
DIM [G],

where the amount of samples is given by M ; the amount of
dependency models is given by K; the amount of time-slices is
given by T for any dependency model; the amount of variables
in each time-slice is given by N ; IP̂ denotes the information
gain in terms of the empirical distribution; and DIM [G] is the
amount of independent parameters in the entire DIN.

The d-BIC score is designed to exchange the complexity
of the DIN, logM

c DIM [G], for the fit to the data, D. As the
amount of samples increases, the information gain term grows
linearly, and the model complexity part grows logarithmically.
The intuition of the d-BIC score is that we will be willing to
consider more complicated structures, if we have more data
that justifies the need for a more complex structure (i.e. more
conditional independence assumptions).

B. Structure Assembles

Choosing the set of parent variables in a DIN establishes
the notion of a structural assemble. A structural assemble
is a template which relates temporal models. The structural
assemble defines the parent sets for variables to construct a
DIN. More specifically, the assemble relation is defined as
follows:

Consider a family of hidden Markov models (H),
where 〈H0

0 , H
0
→〉 represents the child with the parent set

PaG〈H0
0 ,H

0
→〉

= {〈H1
0 , H

1
→〉, . . . , 〈Hk

0 , H
k
→〉}. Further assume

that I(〈Hj
0 , H

j
→〉) is the same for all j = 0, . . . , k.

Then the delayed dynamic influence network, denoted by
〈A0,A→〉, will satisfy all the independence assumptions in
I(〈Hi

0, H
i
→〉) ∀ i = 0, . . . , k. In addition, ∀ j and ∀ t,

〈A0,A→〉(t) also satisfies the following independence assump-
tions for each hidden or latent variable denoted Li and some
t > α ∈ Z+:



∀ L〈H
0
0 ,H

0
→〉

(t)

i : (L〈H
0
0 ,H

0
→〉

(t)

i ⊥⊥
NonDescendants

L
〈H0

0 ,H
0
→〉

(t)

i

|L〈H
k
0 ,H

k
→〉

(t)

i , L
〈Hk

0 ,H
k
→〉

(t)−1

i , . . . ,

L
〈Hk

0 ,H
k
→〉

(t)−α

i , Pa
〈H0

0 ,H
0
→〉

(t)

Li
).

The assemble is an expressive representation to capture
influence relationships that persist through time between tem-
poral models in this case HMMs. However, the choice of α is
important since choosing a large α will render many depen-
dencies on variables. This causes a fragmentation bottleneck
which causes a larger computational burden for learning and
inference tasks.

To illustrate an example of using an assemble relation be-
tween two HMMs, 〈A0,A→〉 and 〈B0,B→〉, consider Figure
4. Figure 4 unrolls two HMMs, 〈A0,A→〉 and 〈B0,B→〉, using
a structural assemble with α = 0.

〈A0,A→〉: A1
1

A1
4

. . . A1
6

A2
1

A2
4

. . . A2
6

A3
1

A3
4

. . . A3
6

〈B0,B→〉: B1
1

B1
4

. . . B1
6

B2
1

B2
4

. . . B2
6

B3
1

B3
4

. . . B3
6

Fig. 4. Two unrolled HMMs, 〈A0,A→〉 and 〈B0,B→〉, as represented
with 3 time-slices. The HMMs are connected by a structural assemble
with α = 0.

C. Structure Search

At this point we have the following well-defined optimisa-
tion problem:

1) A training set H〈I0,I→〉G = {H〈H1
0 ,H

1
→〉, . . . ,H〈Hk

0 ,H
k
→〉},

where H〈Hi
0,H

i
→〉 = {ξ1, . . . , ξM} is a set of M instances

from underlying ground-truth HMM 〈Hi
0, H

i
→〉;

2) a structure score: score(〈I0, I→〉 : H〈I0,I→〉G );
3) and, finally, we have an array of L distinct candidate

structures, G = {G1, . . . ,GL}, where each structure
Gl represents a unique list of condition independence
assertions I(G) = I(GI ∪ GB).

Our objective of this optimisation problem is to output the
DIN which produces the maximum score. We present the
following influence structure learning procedure in Algorithm
1, where S = {S1→, . . . ,SP→} represents the set of stochastic
processes; assemble, is the option of the parameters for a
structure assemble; and score, which is the selected scoring
function used by the search procedure.

Algorithm 1 Influence structure search

1: procedure STRUCSEARCH( S = {S1→, . . . ,SP→},
assemble, score)

2: for each process we learn a temporal model (H =
{〈H1

0 , H
1
→〉, . . . , 〈HP

0 , H
P
→〉)

3: Using the models in H we generate a search space (ie.
G = {G1, . . . ,Gn})

4: Find the structure Gi which produces the highest score
(w.r.t. assemble) in G

5: return Gi
6: end procedure

The dynamic influence network, 〈I0, I→〉G , holds a distri-
bution between a set of HMMs, denoted 〈H1

0 , H
1
→〉 , . . . ,

〈Hk
0 , H

k
→〉, with the conditional independence assumptions

listed by I(〈I0, I→〉G). We further assume that P ∗(〈I0, I→〉G)
is induced by another model, G∗(〈I0, I→〉G), we will refer
to this model as the underlying ground-truth model. The
model is evaluated by recovering the set of local independence
assertions in G∗(〈I0, I→〉G), denoted I(G∗(〈I0, I→〉G)), by
only observing H〈I0,I→〉G . This structure learning procedure is
referred to by this paper as the greedy structure search (GESS).

D. Computational Complexity and Savings

The overall computational complexity of the above structure
search algorithm is given by [1]. In order to allow for notable
computational savings we suggest using a cache to store
sufficient statistics and using a max priority queue (imple-
mented using heaps) to arrange contending structures using
their scores as keys. Random restarts and Tabu lists are also
used to manage the structure search procedure.

IV. EMPIRICAL RESULTS

This sections presents the performance of modelling influ-
ence between partially observable stochastic processes repre-
sented by HMMs using DINs. We evaluate the performance
of our model aside several benchmarks.

The experimental setup is as follows. We constructed a
ground-truth DIN which was used to sample sequential data.
To simulate a partially observed process, several variables
were removed from the sequential data sample. Algorithm 1
was used to learn candidate networks. Several variations of the
algorithm was also used, such as using the d-AIC (dynamic
Akaike Information Criterion) score instead of the d-BIC;
using prior knowledge of the ground-truth structure such as
the maximum in-degree used in the generative distribution;
using a random structure; and even using no structure.

The parameters for the ground-truth DIN distribution is
summarised by Table I. The ground-truth DIN distribution
described the influences between 10 processes, each repre-
sented using HMMs with 5 time-slices, 2 hidden layers, 5
observable variables and 3 latent variables per time-slice. Each
variable could take 3 discrete values. The overall ground-truth
DIN had a max in-degree of 2 for any variable; and finally,
the number of conditional independence assumptions (CIA)
between processes was limited to 15.

The results of the experiment is summarised by Figure 5,
which shows the relative entropy to the generative ground-truth
DIN over the number of training samples used.

The results are averaged over 10 trials for various structure
learning tasks:



TABLE I
A TABLE SUMMARISING THE PARAMETERS FOR THE GROUND-TRUTH DIN

DISTRIBUTION.

Ground-truth DIN Distribution
No. HMMs 10
Random variable values 3
No. time-slices 5
No. layers 2
No. CIAs between HMMs 15
max in-degree 2
No. Obs 5 p.t.
No. Latent 3 p.t.
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Fig. 5. The performance of parameter and structure learning tasks.

• Random, which used a randomly generated structure for a
DIN and learned the missing and observable parameters;

• No structure, which modelled each HMM as mutually
independent to others and learned parameters;

• d-BIC with GESS, which used the d-BIC score with
GESS and learned missing and observable parameters;

• d-AIC with GESS;
• RES ID3, which used the likelihood score but restricted

recovered structures with an in-degree greater than 3 and
also learned parameters;

• and finally, TSLP (Learning Procedure with the True
structure), which used the ground-truth DIN structure, but
relearned missing and observable parameters.

The parameters of the experiment were as follows: 20 EM
iterations were used for learning and latent variables. There
were 50 structure search iterations used to recover each model
(5 random restarts when reached local optima, and used a tabu
list of length 10). All learned variables used a Dirichlet Prior
of 5. To allow for a manageable use of memory all DIN with
over 5000 independent parameters were heavily penalised.

The reported results suggest that, on the one hand, when we
have fewer samples we are better-off not using any structure,
since fewer parameters allow us to generalise better. On
the other hand, when we have a sufficient amount of data,
then a random structure gives us more information than no
structure at all. The reason the random structure does better
is because the likelihood to the data of a structure with more
conditional independence assumptions rather than fewer will
also be greater.

The three penalty-based score methods do better than both
random and no structure. However we find that the sensitivity
of the d-BIC score to judge when to constrain the structure
(based on the number of training sample) guides the selection
of the independence assumptions and outperforms the d-AIC
score and the restricting the in-degree method. As expected,
knowing the true structure gives us the most information
and thus outperforms all the methods as the number of
observations increase.

V. CONCLUSION AND IMPLICATIONS

In this paper we empirically demonstrated a score-based
structure learning procedure to learn a DIN to represent the
influence relationships between partially observable stochastic
processes.

Why we would want to learn a DIN depends on what it
will be used for. On the one hand, if we are trying to identify
the original DIN for knowledge discovery, then we will need
to identify each of the original conditional independence
assumptions of the ground-truth network. This means we will
need to find the set I(G∗(〈I0, I→〉G)). This is not a pragmatic
task since there are many perfect maps for P ∗(〈I0, I→〉G) that
can be derived from D〈I0,I→〉G .

Recognising I(G∗(〈I0, I→〉G)) from the set of structures
from G∗(〈I0, I→〉G) will yield the same fit to the data.
Therefore identifying the original ground-truth structure is not
identifiable from H〈I0,I→〉G . This is because the structures in
the I-equivalent structure set all produce the same numeric
likelihood (mutual information) for H〈I0,I→〉G . Therefore, we
should rather try to learn a set of structures that are I-equivalent
to G∗.

On the other hand, if instead we are trying to learn a DIN for
density estimation (i.e. to draw probabilistic inferences), then
we are interested in capturing the distribution P ∗(〈I0, I→〉G).
If we can successfully construct such a distribution then we
can reason about or sample new data instances.

There are two implications when learning a structure or
density estimation: Firstly, Although capturing more inde-
pendence assertions than specified in I(G∗(〈I0, I→〉G)) may
still allow us to capture P ∗(〈I0, I→〉G , our selection of more
independence assumptions could result in data fragmentation.
Secondly, selecting very sparse structures can restrict us to
never being able to learn the true distribution P ∗(〈I0, I→〉G
no matter how we change the parameters. However, often
sparse DIN structures can be used to promote computational
complexity savings [16].
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