
CLUSTERING MDPS FOR TRANSFER LEARNING

Clustering Markov Decision Processes For Continual Transfer

M. M. Hassan Mahmud† HMAHMUD@STAFFMAIL.ED.AC.UK

Majd Hawasly† M.HAWASLY@ED.AC.UK

Benjamin Rosman†,∗ B.S.ROSMAN@ED.AC.UK

Subramanian Ramamoorthy† S.RAMAMOORTHY@ED.AC.UK
†School of Informatics
University of Edinburgh
Edinburgh, EH8 9AB, UK.
∗Mobile Intelligent Autonomous Systems Group
CSIR, Pretoria, South Africa.

Editor: TBD

Abstract
We present algorithms to effectively represent a set of Markov decision processes (MDPs), whose

optimal policies have already been learned, by a smaller source subset for lifelong, policy-reuse-
based transfer learning in reinforcement learning. This is necessary when the number of previous
tasks is large and the cost of measuring similarity counteracts the benefit of transfer. The source
subset forms an ‘ε-net’ over the original set of MDPs, in the sense that for each previous MDP
Mp, there is a source Ms whose optimal policy has < ε regret in Mp. Our contributions are
as follows. We present EXP-3-Transfer, a principled policy-reuse algorithm that optimally reuses
a given source policy set when learning for a new MDP. We present a framework to cluster the
previous MDPs to extract a source subset. The framework consists of (i) a distance dV over MDPs
to measure policy-based similarity between MDPs; (ii) a cost function g(·) that uses dV to mea-
sure how good a particular clustering is for generating useful source tasks for EXP-3-Transfer and
(iii) a provably convergent algorithm, MHAV, for finding the optimal clustering. We validate our
algorithms through experiments in a surveillance domain.
Keywords: Reinforcement learning, transfer learning, Markov decision process, MDP abstrac-
tions, policy reuse, discrete optimisation using MCMC.

1. Introduction

Reinforcement learning (RL) in Markov decision processes (MDPs) is a well known framework
in machine learning for modelling artificial agents (Puterman, 1994; Sutton and Barto, 1998). In
transfer learning for RL in MDPs (TLRL), the goal is to solve a particular RL problem (the target
task) quicker by using information gained from previously solved related tasks (the source tasks) –
see (Taylor and Stone, 2009) for a recent, comprehensive survey. Being able to transfer information
is important if we want learning agents to scale up to autonomously and efficiently handle many
different learning problems that are related.

In this paper we consider the problem of TLRL in the lifelong learning setting (Mitchell and
Thrun, 1993; Thrun and Mitchell, 1995; Thrun, 1996), where the agent learns a (possibly very
large) set of tasks presented in sequence on a continual basis. One issue that arises in this case is
that the benefit of transfer may be outweighed by the resources spent in performing transfer. In

1



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

particular, when learning, we need to test whether the tasks we are transferring from are actually
relevant to the current problem. We need to do this because otherwise we may end up with negative
transfer (i.e. transfer hurts performance) by using the wrong task from which to transfer. However,
this testing itself often results in loss both in terms of wasted learning time and accumulated negative
rewards. So, if we are transferring from a large number of tasks, we need some way to encode them
compactly so that we properly achieve the best tradeoff between loss due to testing and gain due to
transferring.

As a motivating example, consider a surveillance agent that is monitoring a large geographical
region (this is a variant of the kinds of problems that are considered, for instance, in (An et al.,
2012)). The agent faces a sequence of monitoring problems where each problem corresponds to
the pattern in which infiltrators appear in different locations. If two tasks have similar infiltration
patterns, then the same surveillance policy may be good for both of them. During each task, the goal
of the agent is to learn the regions where infiltrators appear and choose the appropriate surveillance
policy. We do not expect the patterns to be completely different every time, but at the same time
we cannot completely rule out a new pattern emerging. In the former case, we should recognize
this repetition and take advantage of this fact by reusing old surveillance policies. In the latter
case, we should also determine that the new scenario is novel and learn an appropriate policy for
that scenario. Furthermore, if the number of previous patterns becomes too large, we also need to
compactly re-represent them so that the procedure for determining the correct way to act is more
sample efficient.

More formally, in this paper we consider TLRL for the case of a ‘lifelong’ learning agent that
learns a (possibly never-ending) sequence of MDPs which are defined on the same state and ac-
tion space but differ in terms of the transition and reward distributions. We assume the distribution
generating the sequence is unknown and unlearnable (for instance, in the motivating surveillance
problem described above, the infiltration pattern may depend on the internal variables of the infiltra-
tors that are not known to us). In this setting, the goal of the agent is to, if possible, reuse the optimal
policies in the previous MDPs in order to learn the new MDP more efficiently. In this continual set-
ting, we assume that the agent operates in the new MDP for a fixed number of episodes, and hence
we measure efficiency by the total reward accumulated while learning the new task during these
fixed number of episodes. Reusing a policy means that we try the optimal policies of the previous
MDPs in the new MDP and if one results in efficient behavior we should keep using it. However,
as we described above, a problem in this setting is that, when the number of previous tasks become
too large, transfer becomes ineffective as we spend too much time testing the old policies. In this
instance, one possible solution to this problem is to find a subset of the N previous policies, which
we call source policies, that are, in a well-defined and useful sense, representative of all the N pre-
vious policies (see Section 1.1 for alternative encodings). In other words, the source policies should
form the analogue of an ε-net in a metric space (Kolmogorov and Fomin, 1970) over the space of
previous MDPs with respect to an appropriate distance over MDPs. In this paper we present a clus-
tering based approach to finding this smaller subset of source policies. Our main idea is to cluster
the N previous MDPs into c clusters, where the number c and the clusters themselves are to be
determined via discrete optimization, and then choose the representative element of each cluster to
obtain the source MDPs. The optimal policies of the source MDPs then become the source policies.
In our approach to choosing the clustering and the corresponding source policies, we attempt to
ensure a-priori that the chosen source policies are a good representative of the previous tasks for the
purposes of transferring to the unknown target task.

2



CLUSTERING MDPS FOR TRANSFER LEARNING

In particular, we define a transfer learning algorithm, EXP-3-Transfer, with performance bound
g(c) that depends on the number c of source policies. Hence this explicitly measures how good
the size of the clustering c is. We are now left with the task of choosing the clustering and the
corresponding source policies. To that end, we define a distance function dV between two MDPs
that measures how well the optimal policy of one MDP performs in the other. Hence, given that
our goal is to reuse optimal policies of one MDP in another, we choose our clustering so that within
each cluster the pairwise dV distances between the elements of the cluster are low. Similarly, we
choose the source policy for each cluster to be the optimal policy of the MDP in that cluster which
has low dV distance with respect to all the other elements. Hence, the cost of a clustering with c
clusters is, roughly speaking, g(c) + ε where ε is a measure of the inter-element dV distances in the
clusters.

Given the cost function, we show that it is NP-hard to find the optimal clustering and so we
introduce a Markov chain Monte Carlo based discrete optimization algorithm to find it. The al-
gorithm is an extension of the Metropolis-Hastings algorithm, which we call Metropolis-Hastings
with Auxiliary Variables (MHAV in short), and can also be thought of as an extension to simulated
annealing (Kirkpatrick et al., 1983) with stochastic temperature changes. Simulated annealing is a
well known algorithm for discrete optimization, but requires carefully setting of an infinite sequence
of parameters known as the temperature schedule. Setting this schedule in practice to ensure con-
vergence is considered very difficult, and an art form. In our version of the algorithm, we search
over both the temperature and the optimal point simultaneously, thereby handling the problem of
setting the schedule automatically.

To summarize, our overall continual transfer algorithm is as follows. We continually learn
MDPs given to us in sequence. When learning a particular MDP, we use the optimal policies of
previous MDPs in a policy reuse transfer learning algorithm. To make transfer more effective, at
fixed intervals, we cluster the previous MDPs and then derive a small subset as the set of source tasks
and use those as input to the policy reuse algorithm. The clustering is chosen so as to optimize the
regret of the transfer algorithm, and is found by using a convergent discrete optimization algorithm.

We conclude this brief introduction to our method by noting that our transfer algorithm EXP-
3-Transfer is in fact an extension of the well known EXP-3 algorithm (Auer et al., 2002b) for
non-stochastic multi-armed bandits, and our performance bound g(c) is in fact a regret bound of
the type well known in bandit algorithm literature. Our strategy is to cast the policy reuse transfer
learning problem as a bandit problem, with ‘pure reinforcement learning algorithm’ as one arm, and
the c source policies as the remaining arms. The regret bound for EXP-3 ensures that we minimize
negative transfer by never performing much worse than pure reinforcement learning. We will now
discuss related work.

1.1 Related Work

As evidenced by the survey paper (Taylor and Stone, 2009), a significant amount of work has been
done in transfer learning in reinforcement learning. As mentioned previously, lifelong learning
in reinforcement learning was first explicitly considered in (Mitchell and Thrun, 1993; Thrun and
Mitchell, 1995; Thrun, 1996) in the context of learning in robots. In these works, the main aim was
to learn the dynamics of robot motion in one circumstance using a function approximator (such as
neural networks) and then use these learnt dynamics as an initial bias in a new situation using an
explanation based learning framework.

3



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

In terms of recent work on TLRL, two different strands are relevant – the first is work on policy
reuse and the second on task encoding. For policy reuse, the only papers that seem to have con-
sidered this are (Fernandez et al., 2006, 2010). The algorithms presented there, at the beginning of
every episode, choose between different source policies by using a softmax criteria on accumulated
reward and then use the chosen policy as an initial exploration policy before switching to Q-learning
exclusively. In contrast, we extend the EXP-3 algorithm for multi-armed bandits to choose between
source policies and Q-learning, and as a result inherit its theoretical guarantees. Additionally, they
do not consider the problem of source task selection, whereas in our work this is a major focus. A
related paper is (Azar et al., 2013) who consider the best way to choose between a set of stationary
policies. While this work is quite interesting, it lacks a key ingredient of policy reuse which is to
not do much worse than a base RL algorithm.

We now look at previous work that uses a smaller set of source tasks to represent the complete
set of previous tasks. The problem of source task selection through clustering seems to have been
considered only by Carroll and Seppi (2005). They introduce several measures for task similarity
and then consider clustering tasks according to those measures. The distance functions introduced
were heuristic, and the clustering algorithm used was a simple greedy approach. The evaluation of
their method was on several toy problems. In contrast, we derive a cost function for clustering in a
principled way to optimize the regret of our EXP-3-Transfer policy reuse algorithm. Additionally,
instead of constructing the cluster in a greedy fashion, we search through clustering space using a
convergent discrete optimization algorithm.

A recent paper that also chooses selectively from previous tasks is (Lazaric and Restilli, 2011).
The setting for this paper is a collection of tasks defined on the same state-action space with the
tasks and the state-action-state triples for the different tasks generated i.i.d. (similar to the multi-
task transfer in classification setting considered in (Baxter, 2000)) rather than sequentially as is
typical in RL. Under this setting the authors are able to bound the error when samples from one task
are used to learn the new task. This is quite a different setting from us as it is ‘batch’ RL rather
than the typical online and sequential RL and measures similarity in terms of the actual transition
and reward functions rather than policies or values. Additionally, the analysis and algorithms are
derived under the assumption of a fixed set of prior tasks rather than the continual lifelong learning
setting we consider.

Source task selection is not the only possible way to represent previous tasks, and the overall
goal of finding abstractions for exploiting commonality has received considerable attention in the
transfer learning community. Most of the work done in deriving abstractions for the purposes of
transfer has been for MDP homomorphisms (Ravindran and Barto, 2003; Ferns et al., 2004; Ravin-
dran, 2013; Konidaris and Barto, 2007; Sorg and Singh, 2009; Castro and Precup, 2010). In these
works, similarity between MDPs is defined in terms of bisimulation between states of different
MDPs. Bisimulation is a concept borrowed from process algebra. In the context of transfer learning
in MDPs, at its most general formulation, a bisimulation is an isomorphism f, g between the state
and action spaces that is preserved under the transition distribution – that is for every state-action-
state triple s, a, s′, T1(s′|s, a) = T2(f(s′)|f(s), g(a)) where Ti are the transition distribution of the
two MDPs. Unfortunately, in this pure form, bisimulation is absolute (two MDPs are either bisim-
ilar or not) and does not take into account the reward function. And so, in the papers mentioned
above, this basic notion was extended in various ways to address both these issues. However, one
of the main issues with bisimulation is computational cost, and this remains so in the extensions as
well. Another issue with these approaches is that, as observed by Castro and Precup (2010), bisim-

4



CLUSTERING MDPS FOR TRANSFER LEARNING

ulation is a worst case metric (two states may have identical optimal actions but still be completely
different according to the metric) and as a result requires heuristic modifications.

Technically, the main difference between our approach and bisimulation based methods is that
the similarity between different MDPs are ultimately determined by distance between value func-
tions. In our case, however, we are interested in distance in terms of policy. As a result, even though
two tasks might be quite different in terms of the value function they might be identical in terms of
the optimal policy, and our approach will capture this (as noted earlier, failing to do this was one of
the issues with bisimulation based approaches).

Another interesting line of work that uses a different approach to abstracting MDPs is the proto-
value function based approach of (Ferrante et al., 2008). Proto-value functions were introduced
in (Mahadevan, 2005) as an efficient way to represent the value function for large state spaces as a
linear combination of functions, which are called proto-value functions. The main innovation in this
approach is that, in representing the value function as a real function over state space, the state-space
is treated as a manifold where the distance between points/states is determined by the reachability
graph of the MDP. This idea of a spectral-decomposition of the value function naturally lends itself
to transfer learning, as, given a new task, we can imagine using the proto-value functions learned
in a previous task to initialize the new value function in the new task. It has been noted that proto-
value function based transfer has issues in terms of scalability and tractability. The main difference
between this and our work is that, as with the homomorphism based approach, our similarity notion
is based on policy similarity, while theirs is based on similarity between value functions. Identifying
policy similarity is more desirable because tasks similar in terms of value function will be similar
in terms of policy, but not necessarily the other way round.

1.2 Paper Organization

In the following we proceed as follows. We present related work and then preliminaries in Sections
1.1 and 2 respectively. Then we define our transfer learning algorthm and framework for measuring
distance in Sections 3 and 4 respectively. Sections 5 and 6 presents our clustering algorithm and the
full continual transfer algorithm. We then present our experiments in Section 7 and then end with a
conclusion in Section 8.

2. Preliminaries

We use , for definitions, Pr to denote probability and IE for expectation. A finite MDP M is
defined by the tuple (S,A,R, P,R, γ) where S is a finite set of states, A is a finite set of actions
andR = [l, u] ⊂ IR is the set of rewards. P (s′|s, a) is a the state transition distribution for s, s′ ∈ S
and a ∈ A while R(s, a), the reward function, is a random variable taking values in R. Finally,
γ ∈ [0, 1) is the discount rate.

A (stationary) policy π forM is a map π : S → A. For a policy π, the Q functionQπ : S×A →
IR is given by Qπ(s, a) = IE[R(s, a)] + γ

∑
s′ P (s′|s, a)Q(s, π(s′)). The value function for π is

defined as V π(s) = Qπ(s, π(s)). An optimal policy π∗ satisfies V π∗(s) ≥ V π(s) for all policy π
and state s – it can be shown that every finite MDP has an optimal policy. V π∗ is written V ∗, and
the corresponding Q function is given by Q∗(s, a) = IE[R(s, a)] + γ

∑
s′ P (s′|s, a)Q∗(s′, π∗(s′)).

When the agent acts in the MDP, at each step it takes an action a at a state s, and moves to the
next state s′ and the reward r. The goal of the agent is to learn π∗ from these observations and then
choose the action π∗(s) at each state. If there are multiple optimal policies, we will designate the

5



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

first policy in a lexicographical order as the canonical policy. We will assume that Rmax is a known
upper bound on the reward of all the agents. Without loss of generality, in the sequel we assume
that there is a single initial state s◦. We define the regret of a policy π to be V ∗(s◦)− V π(s◦). We
call a policy π ε-optimal if its regret is at most ε.

In the transfer learning setting, we are given previous MDPsMi, 1 ≤ i ≤ N and we transfer
from these tasks to solve the N + 1st MDP MN+1. We denote the optimal policy of the ith

previous MDP by π∗i , and the value of a policy π in MDP i as V π
i . Similarly, we denote the reward

and transition functions of the ith MDP by Pi and Ri respectively. We will assume that the rewards
of all MDPs fall within the range [Rmin, Rmax] and we define ∆R , Rmax −Rmin.

3. Policy Reuse and Cost of Clusterings

In this section we first clarify the problem of policy-reuse for transfer learning and then we intro-
duce our algorithm EXP-3-Transfer for this problem. EXP-3-Transfer extends the EXP-3 algorithm
(Auer et al., 2002b) for multi-armed bandits to the setting of TLRL and inherits similar regret
bounds. It essentially extends EXP-3 to the setting where the arms are MDP-policies run for a
whole episode, and where we know that some of the arms have i.i.d. payoffs.

3.1 The Policy Reuse Problem

In the policy reuse transfer problem, we have a target task M and a set of c source policies
ρ1, ρ2, · · · , ρc (which are, in our case, optimal policies of c source tasks). Policy reuse as a method
for transfer was first introduced in (Fernandez et al., 2006, 2010). The algorithm introduced was
called Policy Reuse (PR)1, and the goal of the algorithm was to balance using the c source poli-
cies and pure reinforcement learning policy so that the learning algorithm converges faster than just
running pure RL by itself. The basic idea in PR is as follows. At the beginning of each episode,
PR chooses a a policy from among the previous policies and ε-greedy Q-learning using a softmax
criterion on the observed returns of the policies in previous episodes. It then initiates a policy-reuse
episode, where it probabilistically chooses between ε-greedy Q-learning and the chosen policy, with
probability of choosing ε-greedy Q-learning going to 1 during the episode. In essence, the c source
policies serve as a initial exploration policy, so that if they happened to take the agent through paths
of the optimal policy, it will result in faster learning of the optimal policy.

There are several aspects of the above algorithm that are noteworthy. First, even if the c source
policies contained the optimal policy, the algorithm would deterministically switch to Q-learning
after the initial phase. Another aspect is that, while there is a intuitive connection between the
Boltzmann distribution and the benefit of using a policy, the actual connection is not made rigorous.
Both these issues arise from the fact that the goal of policy reuse was not defined concretely in
(Fernandez et al., 2006). So, taking a cue from the definition of online learning algorithms (Vovk,
1990; Littlestone and Warmuth, 1994; Cesa-Bianchi and Lugosi, 2006), we define the policy reuse
problem concretely as designing an algorithm that chooses policies at every episode such that it
does not perform much worse than any of the c policies or Q-learning. Formally,

Definition 1 (The policy reuse problem) Let transfer learning for the target taskM be run for T
episodes, and let x̄i(t) ,

∑Kt
n=1 γ

nrn be the discounted return accumulated by running ρi (with

1. We use the term ‘policy reuse’ to refer to the generic problem of transfer using policy reuse as defined in this section,
and the upper-case ‘Policy-Reuse’ to denote the specific algorithm of (Fernandez et al., 2006).

6



CLUSTERING MDPS FOR TRANSFER LEARNING

ρc+1 being the non-stationary Q-learning policy) at episode t, with rn the reward at step n and Kt

the length of the episode. Let the total discounted reward for policy ρi be Ri(T ) =
∑T

t=1 x̄i(t).
Let RA(T ) be the total discounted reward accumulated by a policy-reuse algorithm. Then we
require that either Ri(T )−RA(T ) = o(T ), or, failing that, IE[Ri(T )−RA(T )] = o(T ) where the
expectation is with respect to randomization in the algorithm and the dynamics inM.

The above definition subsumes that main goal of the Policy-Reuse algorithm, which is using the
previous MDPs as an exploration policy, and also imposes the additional constraint that the choice
should be made in a manner that eliminates negative transfer asymptotically. That is, the learner
should choose the c source policies in a way so as to ensure that the exploration does not harm
the base Q-learning performance. In the following section we present an algorithm to solve this
problem.

3.2 Policy Reuse As Nonstochastic Bandits

In the following, we will frame the problem of policy-reuse as a non-stochastic multi-armed bandits
problem (Auer et al., 2002b). In the non-stochastic multi-armed bandits problem, there are c + 1
arms where each arm i has a payoff process xi(t) associated with it. The learner runs for T steps
and at each step t needs to pull/select one of the arms f(t) and its payoff is xf(t)(t). Additionally,
the learner only gets to view the payoff of the arm f(t) it has chosen. The goal of the learner is to
minimize its regret with respect to the best arm, that is minimize the quantity

max
i

T∑
t=1

xi(t)−
T∑
t=1

xf(t)(t)

In general it is not possible to minimize this in any meaningful sense. An optimal algorithm in
the general case, for minimizing the expected regret, was developed in (Auer et al., 2002b), called
EXP-3. We now show how we can frame the policy reuse problem as a non-stochastic multi-armed
bandit problem and then adapt the EXP-3 algorithm for our purpose.

Our adaptation of EXP-3, which we call EXP-3-Transfer, is listed as Algorithm 1. This algo-
rithm is in essence EXP-3 with c + 1 arms, where arms 1 to c each correspond to a ρi and arm
c + 1 corresponds to the Q-learning policy (Watkins, 1989)2. When arm i is pulled at iteration
t, we run the corresponding policy/algorithm for one episode and observe the discounted payoff
x̄i(t) ,

∑Kt
n=1 γ

nrn, where rn is the reward obtained at time step n and Kt is the time step at
which the episode t ended.

Now note, each arm ρi has i.i.d. payoff as it is stationary, while the payoff of Q-learning arm is
non-stationary as the Q-learning policy is non-stationary. The main difference between EXP-3 and
our EXP-3-Transfer algorithm is that we take advantage of the i.i.d. payoffs by eliminating ρi from
consideration as soon as we determine with high probability that the arm is not the best arm. In
particular, the algorithm is given as input δ ∈ (0, 0.5] and then (lines 10 – 16) it eliminates arm ρi
as soon as it is certain that with probability at least 1 − δ, all the arms are better than that arm. We
can now adapt the known bound for the EXP-3 algorithm from Corollary 3.2 (Auer et al., 2002b).

2. We could have used any other RL algorithm, but we use Q-learning to make the comparison with Policy Reuse in our
experiments more meaningful.

7



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Algorithm 1 EXP-3-Transfer(M, {ρ1, ρ2, · · · , ρc}, β, T, l,∆R)
1: Input: MDPM, arms 1 to c: the source policies ρ1, · · · , ρc and EXP-3 parameters β and T ; l

the interval at which to eliminate arms; ∆R, the range of discounted returns
2: Initialize:

• Set Q-learning policy as the c+ 1th arm

• Set wi(1) = 1, let xi(t) be the payoff of the arm i at step t; let rem = ∅ be the set of
arms removed.

• Set ni ← 0, where 1 ≤ i ≤ c, and ni is the number of times ρi has been used; set zi ← 0,
where 1 ≤ i ≤ c, and zi is the total normalized discounted reward observed for ρi when
it was run.

3: for t = 1 to T do
4: If i 6∈ rem then set pi(t) = (1− β) wi(t)Pc+1

i=1,i/∈rem
wi(t)

+ β
c+1−|rem| ; else set pi(t) = 0.

5: Select arm it for step t to be i with probability pi, increment nit ← nit + 1.
6: Run arm it for one-episode, and observe discounted payoff x̄it(t); normalize xit(t) ←

x̄it(t)/[∆R(1− γ)−1].
7: if it is not the Q-learning arm then set zit ← zit + xit .
8: For each j 6∈ rem, set

x̂j(t)←

{
xj/pj(t) if j = it

0 otherwise
(1)

9: For each j /∈ rem, set wj(t+ 1)← wj(t) exp[βx̂j(t)/(c+ 1)].
10: if t mod l = 0 then
11: for k = 1 to c, k 6∈ rem do
12: if ∃ρj arm j ≤ c, j /∈ rem, such that, for ε = zj/nj − zk/nk, we have

ε/2 >
√
− ln(δ/2c)(2nj)−1 and ε/2 >

√
− ln(δ/2c)(2nk)−1 then

13: rem← rem ∪ {k}.
14: end if
15: end for
16: end if
17: end for

Theorem 2 EXP-3-Transfer, with probability 1− δ, with respect to randomization due to the target
MDPM, satisfies,

IE[
T∑
t=1

xj ]− IE[GE3T ] ≤ 2.63
√

(c+ 1) ln(c+ 1)T (2)

for an arm j when run with β = min{1,
√

(c+ 1) ln(c+ 1)/[T (e− 1)]}. Here IE[GE3T ] is the
expected payoff of EXP-3-Transfer over T iterations given the c policies ρi and the Q-learning al-
gorithm as arms, and the expectations are with respect to randomization in the EXP-3 arm-selection
policy and the randomization due to P and R.

The proof is given in Appendix A.

8



CLUSTERING MDPS FOR TRANSFER LEARNING

Hence, this theorem tells us that if we use EXP-3-Transfer, then we will not do much worse
than the best arm, be it one of the previous ρi policies or pure reinforcement learning policy like
Q-learning. In particular, if one of the previous policies is close to optimal, we will do almost as
well as playing with that policy right from the start, and if none of the policies are good enough, we
will not do much worse than Q-learning run on its own. Hence, this essentially accomplishes the
goal of policy reuse while minimizing negative transfer. The rest of the paper is devoted to showing
how to compute the c policies ρi from a set of N previous MDPs. Before proceeding, we give a
corollary to the above theorem which is obtained by noting that IE[

∑T
t=1 x̄j ] = TV ρj when ρj is

not the Q-learning arm, and taking into account the fact that above bound is obtained on quantities
normalized by ∆R(1− γ)−1 at step 6 in EXP-3-Transfer.

Corollary 3 EXP-3-Transfer, with probability 1−δ, with respect to randomization due to the target
MDPM, satisfies,

TV ρj − IE[GE3T ] ≤ 2.63∆R(1− γ)−1
√

(c+ 1) ln(c+ 1)T (3)

for a source policy ρj under the conditions of Theorem 2.

4. The Clustering Approach To Task Encoding

In this section we present our clustering based approach to encoding N previous MDPs into c
source MDPs, where c will depend on the set of previous MDPs. First we present the basic idea of
the clustering approach and derive the high level structure of a cost function for clusterings which
helps us choose the best clustering for the purposes of transfer. After that, we derive two different
versions of the cost function under worst-case and best-case assumptions on the target task. The
worst-case cost function is pleasing theoretically, but empirically leads to poor results (please see
Section 7), while for the best-case cost function the opposite turns out to be true.

4.1 Encoding By Clustering

Our goal is to, given N previous MDPs, choose a subset c of those MDPs whose optimal policies
will be used as input to EXP-3-Transfer as the c source policies when solving the N + 1th MDP
MN+1. Here, the number c as well as the MDPs themselves are to be determined by our learning
algorithm. To that end, we begin by noting that the regret bound of EXP-3-Transfer in Corollary 3
increases monotonically with the number of source policies. This indicates that we should have as
few source policies as possible. However, at the same time, if we have fewer source policies, we
risk leaving out a previous optimal policy π∗k of a previous MDPMk that may have obtained high
discounted return inMN+1. Hence, in choosing the source policies, we need to achieve a tradeoff
between the number of source policies and how well they represent the set of all previous policies.

Our approach to choosing the source policies will be as follows (illustrated in 1). We will divide
the N previous MDPs into c different groups or clusters {A1, A2, · · · , Ac} , A and then choose
optimal policies of the representative element of the Ais as the c source policies. We will set the
representative elementMi of Ai to be the MDP whose optimal policy ρi does as well as possible
in the a-priori unknownMN+1 as the optimal policy of any other elements Ai. The problem now
is to find the best possible clustering A and for that we need an objective or cost function for the
clustering A when it is used to learn the unknownMN+1 using EXP-3-Transfer. We may define it

9



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

as follows:

regret of EXP-3-Transfer w.r.t. one of the c source policies ρi
+ minimum regret of using π∗k in the unknownMN+1

+ maximum over regret of a ρi w.r.t. an MDPMk ∈ Ai (4)

The first component in (4) is the bound in Corollary 3. In Sections 4.3 and 4.4 we derive two
different ways to get the second and third component (recall from Section 2 that the regret of a
policy π is V ∗k (s◦) − V π

k (s◦) where s◦ is the initial state). Both approaches build on the policy
based distance between MDPs that we introduce in Section 4.2. But then they diverge in terms of
the assumptions made onMN+1. The first cost function assumes that theMN+1 is arbitrary, while
the second one assumes thatMN+1 is one of the N previous MDPs. Correspondingly, we refer to
these as, respectively, the worst case and best case assumption onMN+1.

Figure 1: This figure sketches our basic approach to deriving the source policies. The black circles
represent our set of previous N MDPs. The goal is to them into c clusters and then derive c source
policies from the c source tasks. The figure illustrates the idea for c = 3. Each cluster is an analogue
of an ε-ball (Kolmogorov and Fomin, 1970) according to an appropriate distance/similarity function
d. The source policies are chosen so that together they form an analogue of an ε-net (Kolmogorov
and Fomin, 1970) over the set of previous MDPs with respect to the same function d. The function
d measures how well the policy of one MDP performs in the other – and hence the source policies
being an ε-net implies that, given any MDP in the set of previous MDPs, there is at least one
source policy which has performance that is ‘ε-close’ to the performance of the optimal policy of
the previous MDP.

10



CLUSTERING MDPS FOR TRANSFER LEARNING

4.2 A Policy Based Distance Between MDPs

In this section we define a distance between MDPs based on their optimal policies. Let M1 and
M2 be two MDPs with the same state and action space but different transition and reward functions.
Denote by V π

i the value of policy π when executed inMi at the initial state (this can be generalized
to different initial states and/or distribution over initial states very easily – but we stick to the same
initial state situation to keep the presentation simple). Letting the optimal policies for the two MDPs
be π∗1 , π∗2 , we define the optimal policy similarity between two MDPs as follows.

dV (M1,M2) , max{V ∗1 − V
π∗2

1 , V ∗2 − V
π∗1

2 } (5)

So this distance upper bounds how much we lose if we use the optimal policy of one MDP in the
other – in particular we have the following lemma by construction.

Lemma 4 If dV (M1,M2) ≤ ε, then the optimal policy ofM1 is at least ε-optimal inM2 and vice
versa.

This definition is motivated by the fact that the goal of policy reuse is to use the optimal policy of
one MDP in another. Now given a clustering A = {A1, A2, · · · , Ac} we may think of choosing the
source policy for cluster Ai as the optimal policy ρi for the MDP defined as:

Mi , arg min
M∈Ai

max
M′∈Ai

dV (M,M′) (6)

That is,Mi is the element of Ai that minimizes the maximum dV distance to the other elements of
the cluster, and hence, by Lemma 4, is in a worst case sense the best representative of the clusterAi.
Therefore mini maxM∈Ai dV (Mi,M) gives us the second term of (4). For the third term we need
to bound the dV distance between any arbitrary Mi and MN+1 as a function of the dV distance
between a Mi, M ∈ Ai and M, MN+1. This is possible if either dV is a metric or if MN+1

has optimal policy identical to another previous MDP. Since in the first case we need to make no
assumptions about MN+1, this corresponds to a ‘worst case’ assumption, while the second case
corresponds to a ‘best case’ assumption. However, the worst case is not directly achievable because
dV is not a metric (the proof is in appendix A):

Lemma 5 There existsM1,M2,M3 all defined on the same state and action space such that the
function dV does not satisfy the triangle inequality: dV (M1,M3) ≥ dV (M1,M2)+dV (M2,M3).
Hence dV is not a metric in general.

So, in Section 4.3 we develop a Lipschitz metric that ‘envelops’ dV , and develop a cost function
under the worst-case assumption. In Section 4.4 we develop the cost function under the best case
assumption.

4.3 Cost Function Under Worst Case Assumption

To derive the cost function for the worst case assumption, when MN+1 is arbitrary, we start by
defining a class of functions that envelop dV in a certain sense and is a Lipschitz metric. We call
this class of functions value preserving Lipschitz metrics (abbreviated to VPL metric):

Definition 6 Let M be a set of MDPs defined over the same state and action space. Then, we call
function d : M × M → IR a value preserving Lipschitz (VPL) metric if it satisfies the following
conditions:

11



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

1. d(M,M′) ≥ 0.

2. d(M,M) = 0.

3. d(M,M′) = d(M′,M).

4. d(M,M′) = ε implies that dV (M,M′) ≤ k(ε) where k is a monotonically increasing
function dependent only on d.

5. d(M,M′) ≤ K[d(M,M′′) + d(M′,M′′)] where K is a constant dependent only on d.

The first three conditions are standard conditions for metrics. The fourth condition dictates the
dependency of d on dV . In the fifth condition the triangle inequality is replaced by a Lipschitz type
inequality. These last two conditions gives the qualifications ‘value-preserving’ and ‘Lipschitz’ to
the metric. A VPL metric is useful because it allows us to operate on the space of MDPs almost as
if it were a metric space while still ensuring that if two points are close in terms of the VPL metric,
then they have optimal policies that work well in the other MDP. In our experiments, we use the
following VPL metric (our results apply for any possible VPL metric).

dM (M,M′) , max
s,a

max{|R(s, a)−R′(s, a)|, ||P (·|s, a)− P ′(·|s, a)||1} (7)

where || · ||1 is the L1 norm of the two probability vectors. So we have the following:

Lemma 7 The function dM defined in (7) is a VPL metric with K = 1 and k(ε) = kM (ε) ,
ε(1+γRmax)

(1−γ)2
.

To derive the cost function for a clustering A, we define

M̂i , arg min
M∈Ai

max
M′∈Ai

dM (M,M′) (8)

(this is an analogue of (6)) with corresponding optimal policy ρi. We ascribe parameters (c, ε) to
each clustering A, where c is the number of clusters and ε , maxi maxM∈Ai d(M̄i,M) (i.e. ε is
the maximum diameter of a clustering Ai in A).

Definition 8 The worst-case cost of a clustering A with parameters (c, ε) is defined to be:

cost1(A) , g(c) + kM (ε) (9)

where g(c) , ∆R(1− γ)−12.63
√

(c+ 1) ln(c+ 1)/T .

This cost function is justified by the following result which derives immediately from Corollary 3.

Theorem 9 For any clustering A with parameters (c, ε), there is a constant C, independent of A,
but dependent on the previous N MDPsMi, such that V ∗N+1 − IE[GE3T ]/T ≤ g(c) + kM (ε) +C,
when EXP-3-Transfer is run with source policies given by A with β set as in Theorem 2.

The proof is in Appendix A. Hence, the above theorem shows us that our regret with respect to
the best performing MDP is bounded by g(c) + kM (ε) + C. Hence, we can choose this as the
cost of encoding the previous MDPs into c source policies using A. Since C is independent of the
clustering A, we can ignore this, and use cost1(A) as our cost function.

12



CLUSTERING MDPS FOR TRANSFER LEARNING

4.4 Cost Function Under Best-Case Assumption

We now derive the cost function under the best case assumption which is that π∗N+1 is identical to
a π∗k, the optimal policy of a previousMk. In this case, we use dV directly, instead of using d as
a proxy as in the previous section. That is, given a clustering A = {A1, A2, · · · , Ac}, we set the
source task corresponding to Ai to beMi as defined in (6). We associate with A parameters (c, ε̄)
where c is the number of clusters andε̄ is the average diameter of the cluster, defined as follows. Let
the diameter of a cluster Ai be:

εi , max
i

max
M∈Ai

dV (Mi,M) (10)

Then, we define:

ε̄ ,
1
n

c∑
i=1

|Ai|εi (11)

So ε̄ is the ‘average maximum dV distance’ from a previous MDP to the centroid of the cluster it
belongs to.

Definition 10 The best case cost of a clustering A with parameters (c, ε̄) is defined to be:

cost2(A) , g(c) + ε̄ (12)

where g(c) was defined in Definition 8.

This cost function is justified by the following result which derives immediately from Corollary 3.

Theorem 11 For any clustering A with parameters (c, ε̄), under the assumption thatMN+1 is a
previous task drawn uniformly at random, we have IE[V ∗N+1]− IE[GE3T ]/T ≤ g(c)+ ε̄, when EXP-
3-Transfer is run with source policies given by A with β set as in Theorem 2. Here the expectation
is taken over the randomization of the task drawing process, randomization in EXP-3-Transfer and
PN+1 and RN+1.

The proof is in Appendix A. Hence, the above theorem shows us that our regret with respect to
the best performing MDP is bounded by g(c) + ε̄. As a result, we can choose this as the cost of
encoding the previous MDPs into c source policies using A.

5. Finding the Optimal Clustering

In this section we derive an algorithm to solve the discrete optimization problem of computing
arg minA∈C costj(A), j ∈ {1, 2}, where C is the set of all possible clusterings of Mis. To mo-
tivate the need for the algorithm, in Appendix B we show that it is NP-complete to optimize both
cost1, and an upper bound of cost2 (regrettably we do not have the same result for cost2 itself).
After that we present our novel discrete optimization algorithm. Our basic strategy is to sample
repeatedly from a distribution over C, where the distribution concentrates around the optimum, and
also around clusterings with low cost. This way, we are guaranteed with high probability to hit the
optimum clustering, or at least a good clustering. Exact sampling from the distribution is difficult,
and so our algorithm samples approximately from this distribution using a Markov chain Monte
Carlo approach – see Robert and Casella (2005) for a comprehensive introduction to MCMC and
Metropolis Hastings Markov chains (MH chain in short) that we use.

13



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Our algorithm is essentially simulated annealing (Kirkpatrick et al., 1983) with stochastic tem-
perature changes, which means that we bypass the very hard problem of setting the cooling sched-
ule in the standard version of the algorithm. We give a simple proof of convergence and speed
of convergence of the algorithm (see, for instance, (Locatelli, 2000) for contrast). The algorithm,
Search-Clusterings is given in Algorithm 3 and the distributions used in the algorithm are described
below.

5.1 Sampling Using Metropolis-Hastings Chains

In this subsection, we use upper-case Roman letters for random variables and lower-case letters to
refer to their realized values. In the following, we use the theory of Markov chains as found in (for
instance) Levin et al. (2009). A Markov chain over a (finite) state-space X is stochastic process Xn

taking values in X such that Pr(Xn = x|x0, x1, x2, · · · , xn−1) = Pn(x|xn−1). The distribution
Pn(·|·) is called the transition kernel for the chain, and can be represented by a |X | × |X | matrix,
also denoted by Pn, such that the entry (x, y) is Pn(y|x) (here we have identified each element of X
with an integer in {1, 2, · · · , |X |} in some order). A Markov chain is said to be time-homogeneous
if Pn(x′|x) = P (x′|x), i.e. Pn is independent of time n. We will only consider time-homogeneous
chains. A distribution Π over X is said to be stationary for the chain with kernel P if it satisfies:

Π(x′) =
∑
x

Π(x)P (x′|x) (13)

Let Px(Xn = x′) be the probability that Xn = x′ given that X0 = x, that is

Px(Xn = x′) =
∑

x1,x2,···xn−1

n−1∏
i=0

P (xi+1|xi), where x0 = x, xn = x′

Then the chain Xn (equivalently, the kernel P (·|·)) is said to be irreducible if for each x, x′ ∈ X ,
∃n with Px(Xn = x′) > 0. It is called a-periodic if the set {n : Px(Xn = x) > 0} has greatest
common divisor of 1 – that is there is no period to the set of time steps at which the chain returns to
some state x, starting from x itself.

Theorem 12 The following are true for any a-periodic and irreducible Markov chain with kernel
P :

1. P has a stationary distribution Π and for any y ∈ X ,

lim
n→∞

||Py(Xn = ·)−Π(·)||TV = 0 (14)

where ||P − P ′||TV = supA⊂X |P (A) − P ′(A)| is the total variation distance between any
two distributions P, P ′ over X .

2. If Π is stationary for P and ||Py(Xn = ·)−Π(·)||TV ≤ k then ||Py(Xn′ = ·)−Π(·)||TV ≤ k
for all n′ > n.

Proof For the first part and second part, see (for instance), respectively, Theorem 4.9 and Lemma
4.12 in (Levin et al., 2009)).

This result is important because it can be used to approximately sample from a distribution Π that is

14



CLUSTERING MDPS FOR TRANSFER LEARNING

hard to sample from directly. The idea is to construct a Markov chain X with stationary distribution
Π. Theorem 12 implies that if we simulate X long enough, then eventually we will start sampling
from Π. To that end, the Metropolis-Hastings chain (MH chain in short) gives a standard way to
define such a chain given Π as input (see Robert and Casella (2005) for an in-depth introduction).

A MH chain is defined via an irreducible kernel φ(x, x′) over X and an acceptance probability
Acc(x, x′), which is a distribution over the second argument, indexed by the first. φ is problem
dependent while Acc is defined as follows:

Acc(x, x′) , min
{

1,
φ(x′, x)Π(x′)
φ(x, x′)Π(x)

}
(15)

Given this, the MH chain has transition

PMH(x, x′) =

{
φ(x, x′)Acc(x, x′), if x 6= x′

1−
∑

x′ 6=x φ(x, x′)Acc(x, x′), otherwise ,
(16)

It can be easily checked that PMH satisfies the detailed balance equation Π(x)PMH(x, x′) =
Π(x′)PMH(x′, x) which in turn is equivalent to (13) (which can be seen by summing both sides
over x′). So we have in our hands a chain which if simulated long enough will sample from the
target distribution Π.

5.2 Discrete Optimization Using Metropolis Hastings With Auxiliary Variables (MHAV)

In this section, we show how we may use Metropolis-Hastings with an auxiliary variable as a dis-
crete optimization algorithm. In particular, the algorithm may be thought of as simulated annealing
without a temperature schedule. We discuss this connection in more detail below.

Assume that our goal is to minimize a cost function f defined over some finite set Y . In par-
ticular assume that there is a subset Ŷ ⊂ Y for which y ∈ Ŷ has acceptable cost f(y). Let
Λ = {λ1, λ2, · · · , λn}, λi < λi+1 such that ∃Λ̂ ⊂ Λ which satisfies∑

λ∈Λ̂,y∈Ŷ

λ−f(y) ≥ θ, where θ is close to 1 (17)

In our MH algorithm, we have X = Y × Λ and our target distribution is

Π̄(λ, y) , λ−f(y)Z−1 (18)

where Z ,
∑

y,λ λ
−f(y) is the normalization term. We briefly note here that if we plug Π̄ into

(15), then this normalization term cancels out, and in our algorithms there will never be any need to
compute Z.

Continuing from above, given the above condition on Λ, if we draw repeatedly from Π, then
after t draws, with probability at least

1− (1− θ)t (19)

we will draw an element (λ, y) where y ∈ Ŷ . For θ sufficiently close to 1, t will be sufficiently
small and we will discover an element from the acceptable set rapidly and hence this solves the
discrete optimization problem.

15



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Of course, in general it is not possible to sample from Π̄ directly, so we will instead sample
using P̄MH that has Π̄ as the stationary distribution. To that end, let φY be any irreducible kernel
over Y (this will depend on the nature of Y and will be an input to the optimization algorithm – we
discuss this below). Define the following transition kernel over Λ, parametrized by α′ ∈ (0, 1):

φΛ(λ, λ′) ,


α′ if i < N and λ = λi, λ

′ = λi+1

1− α′ if i > 1 and λ = λi, λ
′ = λi−1

1 if λ = λ0, λ
′ = λ1 or λ = λN , λ

′ = λN−1

0 otherwise

Lemma 13 φΛ is irreducible.

The proof is given in Appendix A.
Given the above, the proposal distribution φ̄[(λ, y), (λ′, y′)] for P̄MH is defined using the pa-

rameters α, β ∈ (0, 1), α+ β < 1, as follows.

φ̄[(λ, y), (λ′, y′)] ,


αφΛ(λ, λ′) if λ 6= λ′, y = y′

βφY (y, y′) if λ = λ′, y 6= y′

(1− α− β) + βφY (y, y) otherwise

(20)

The transition kernel P̄MH is now defined as in (16) using φ̄ as the proposal distribution and (18) as
the target distribution:

P̄MH(x, x′) =

{
φ̄(x, x′)Ācc(x, x′), if x 6= x′

1−
∑

x′ 6=x φ̄(x, x′)Ācc(x, x′), otherwise ,
(21)

Given the above, the overall discrete optimization algorithm MHAV (Metropolis-Hastings with
Auxiliary Variable) is listed in Algorithm 2.

Algorithm 2 MHAV(Λ, Y, Π̄, φ̄, TM )
1: Input: The set of auxiliary variables Λ, the search space Y , the target distribution Π̄, and

proposal distribution φ̄, TM number of iterations to run algorithm.
2: Output: An near optimal element y.
3: Initialize: Initial, λ(0) = λ0, y(0) = arbitrary element of Y .
4: for t = 1 to TM do
5: Sample (λ′, y′) ∼ φ̄[(λ(t), y(t)), ·]
6: With probability Ācc[(λ(t), y(t)), (λ′, y′)], set λ(t + 1) = λ′, y(t + 1) = y′, and with

probability 1− Ācc[(λ(t), y(t)), (λ′, y′)], set λ(t+ 1) = λ(t), y(t+ 1) = y(t).
7: end for
8: return arg mint f(y(t)).

5.3 Analysis of the MHAV Algorithm

We begin analysis of our algorithm by showing that the kernel P̄MH for the φ̄ defined above is indeed
irreducible and a-periodic.

16



CLUSTERING MDPS FOR TRANSFER LEARNING

Lemma 14 If Π̄ and φY satisfy minx,x′
Π̄(x′)φY (x′,x)
Π̄(x)φY (x,x′)

> b > 0, the kernel P̄MH defined using φ∗ is
irreducible and a-periodic.

The following theorem establishes the probability with which we draw an element from the accept-
able set Ŷ when using P̄MH to sample.

Theorem 15 P̄MH has Π̄ as its stationary distribution, and hence for any initial state x0 of the
chain P̄MH,

lim
n→∞

||P̄MH(Xn = ·|X0 = x0)− Π̄(·)||TV = 0 (22)

In particular if at step t ||P̄MH(Xt = ·|X0 = x0) − Π(·)||TV ≤ k, then P̄MH(Xt′ ∈ λ̂ × Ŷ |X0 =
x0) ≥ θ − k for all t′ > t.

The proof is given in Appendix A.
We can also derive a convergence rate which establishes that for every k, there is a tk for

which ||P̄MH(Xtk = ·|X0 = x0) − Π(·)||TV ≤ k. In the following, we introduce the notation
P̄nMH(x, x′) , P̄MH(Xn = x′|X0 = x). Now define the diameter of X given the Markov chain
P̄MH to be

D , min{l|∀x, x′, P̄ lMH(x, x′) > 0} (23)

Now define the ratio

δ , min
x,x′

P̄DMH(x, x′)
Π̄(x′)

(24)

Then we have the following:

Theorem 16 The convergence rate of P̄MH to Π̄ satisfies:

||P̄MH(Xn = ·|X0 = x0)− Π̄(·)||TV ≤ (1− δ)n/D

for any initial state x0.

This derives directly from the proof of Theorem 4.9 (Levin et al., 2009) and is given in Appendix
A.

5.4 Setting the Optimization Parameters

We now discuss how to set the parameters α′ in φΛ and α, β in P̄MH so as to optimize the conver-
gence rate derived above. In setting these parameters, we are given the proposal distribution φY ,
which was required to be an irreducible kernel on Y , and the target distribution Π̄ over Λ× Y . We
start with the following result which simplifies deriving our result

Lemma 17 D is independent of α′, α, β.

The proof is given in Appendix A.

Corollary 18 Given f, φY , the set of paths of positive probability under P̄MH is invariant with
respect to α′, α, β.

17



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Proof Follows directly from the proof of Lemma 17.

So, we need to set α′, α, β to maximize δ. However, δ also depends on f and φY , both of which
are unknown and so it is difficult to specify optimal values for these a-priori. However, we can
give heuristic arguments for setting these parameters in terms of increasing the ‘flow’ of the search
process through the search space Y . First, α′ is used to choose whether we should increase or
decrease the λ value. We set α′ to 1/2 to ensure a neutral value and that we do not favor either
direction and ensure maximum motion through the search space.

Now note that at each step the chain P̄MH moves either in Λ space or Y space. α and β de-
termine, respectively, how often we move in the Λ and how often in Y . To make the search more
effective (based on analysis of simulated annealing type algorithms), it seems we need to make sure
that initially we need to explore the Y quite a bit and only settle down after we have explored suf-
ficiently, by increasing the λi value. Hence, our recommendation is to set the α to be significantly
smaller than β, ideally the ratio α/β should reflect how difficult we expect it to be to get close to
the best y∗ (with smaller ratio for greater difficulty). Even though our parameter settings are heuris-
tic, we again stress that this only affects the convergence speed, but not the ultimate convergence.
This is in contrast to simulated annealing where convergence itself is guaranteed only if we set the
parameters carefully.

5.5 Searching for the Optimal Cluster

Searching for the optimal cluster can now be be solved using the Markov chain P̄MH. In this case,
Y = C, and the objective function is f(A) = costi(A), where i ∈ {1, 2}. To complete the
specification of MHAV for our problem, we now define the distribution φMY (A,A′) as follows.
Given a clustering A = A1, · · · , An, we choose an Ai uniformly at random. We then choose
ki > 0 points of Ai according to the exponential distribution over IN+ truncated to have support
1, 2, · · · , |Ai|:

PE(k; θ1) ,
1− exp(−θ1)

exp(−θ1)

∞∑
m=1

exp[−θ1((m− 1)|Ai|+ k)]

Then we choose another Aj ∈ (A − {Ai}) ∪ {B} uniformly at random, where B is an empty set
representing a new cluster. We then move the chosen points of Ai to Aj . Note that if Aj = B, then
Ai loses points, which are then used to create a new cluster. The above procedure converts A to A′.
The following Lemma shows that this φY is irreducible and hence satisfies the condition in Lemma
14 and hence ensures the convergence results in Section 5.3.

Lemma 19 φY defined above is irreducible.

The proof is in Appendix A.

6. The Continual Transfer Algorithm

In this brief section we combine all the algorithms presented so far into the full continual transfer
algorithm, which is listed as Algorithm 4. The algorithm runs in phases and in each phase it solves
a MDP using the EXP-3-Transfer algorithm and the current set of source policies as input. In line 4,
the function sourcePol(A, d, cost) generates the c source policies ρ1, ρ2, · · · , ρc from clustering

18



CLUSTERING MDPS FOR TRANSFER LEARNING

Algorithm 3 Search-Clusterings(M, d,Λ, TM )
1: Input: A set of MDPs M = {M1,M2, · · · ,MN}, the set of auxiliary variables Λ, a cost

function cost, input condition term.
2: Initialize: φMY defined with respect to M; φ̄ defined using φMY using (20); define Π̄(λ,M) =
λ−cost(M).

3: return MHAV(Λ,M, Π̄, φ̄, TM )

A such that ρj is the optimal policy forMj whereMj is chosen from Aj according to (7) or (6)
depending, respectively on whether cost is either cost1 or cost2. If the current phase h satisfies h
mod J = 0, then it runs the Search-Clustering algorithm to find a new set of source tasks from the
h tasks solved so far.

Algorithm 4 Continual-Transfer(d,Λ, cost, TM , l,∆R, β, T )
1: Input: A metric d, which is either a dM or dV ; cost function cost, which is either cost1 or
cost2; Search-Clustering parameters TM , l,∆R, EXP-3-Transfer parameters β, T .

2: Initialize: Initial clustering A = ∅, collection of previous MDPs M.
3: for h = 1 to∞ do
4: Get unknown MDP Mh from the environment and run EXP-3-

Transfer(Mh, sourcePol(A, d, cost), β, TM , l).
5: Set M← M ∪ {Mh}
6: if h mod J = 0 then A = Search-Clusterings(M,Λ, cost, TM ).
7: end for

7. Experiments

We performed two sets of experiments to illustrate various aspects and efficacy of our algorithm 3.
Our baseline algorithm for comparison was Policy Reuse of Fernandez et al. (2006) which, as we
mentioned in Section 1.1, is the only prior work on policy reuse algorithms. Given this, we report
results of various combinations of learning algorithms and clustering approaches as given in Table
1. For each graph we present in the subsequent sections, the results are averaged over 10 different
target tasks with 10 trials per task. The various parameters used for the clustering and transfer
algorithms are given in Table 2.

We present results on two different domains. In Section 7.1 we present results from a simple
Windy Corridor domain to give an idea of the types of clusters found by our approach. The results
show that the clusters found are natural. In Section 7.2, we present results on the more complex
surveillance domain (described briefly in the Section 1) which is a variant of the kinds of problems
that are considered, for instance, in (An et al., 2012). In this experiment we show the performance
for the algorithm combinations in Table 1 for various numbers of previous tasks.

In the following sections, we only use cost2. While cost1 is better motivatived as it is derived
from much weaker conditions than cost2, it is nonetheless too weak in the sense that the distance
function dM used in it highlights differences that may be irrelevant. For instance, if there are two

3. The code used in the experiments, as well as the data, can be found here
http://wcms.inf.ed.ac.uk/ipab/autonomy/code/MDP Clustering code.zip

19



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Algorithm FULL SANS HANDPICKED GREEDY

EXP-3-TRANSFER X X X X
POLICY REUSE X X X X
Q-LEARNING N/A N/A N/A N/A

Table 1: EXPERIMENT SETUP MATRIX. This table shows combinations of algorithms and clustering
methods used in our experiments. ‘Full’ means Search-Clustering, ‘sans’ means without any kind
of clustering, ‘handpicked’ means a set of source policies that we believe to be optimal. ‘Greedy’
means a clustering obtained as follows. We choose a threshold for the dM or dV distance and then
greedily construct clusters. That is, we choose a MDP arbitrarily to seed a cluster and then add all
the MDPs with distance < threshold to that cluster. In our graphs, we present the results for the
best/lowest cost clustering found by using various threshold values.

EXP-3-TRANSFER SEARCH-CLUSTERINGS RL
T δ α β α′ θ TM γ

1000, 5000 and 104 0.1 0.1 0.8 0.5 1 105 (for each of 20 random restarts) 0.9

Table 2: VALUES OF ALGORITHM PARAMETERS. This table gives the values for the different pa-
rameters used in our various algorithms. RL refers to general parameters for reinforcement learning
algorithms. The T parameter was chosen to illustrate effect of this parameter on algorithm perfor-
mance. The δ parameter was chosen to allow for high degree of confidence in the performance of
EXP-3-Transfer. The α, α′ and β parameters where chosen according to Section 5.4, and θ was
chosen heuristically. TM was chosen because we found that restarting gave better results. γ was
chosen as appropriate for our problems.

MDPs with identical optimal policies and transition distributions, but a state where the reward dif-
ference is 1000, the dM distance between the two MDPs is kM (1000) (defined in Section 4.3) while
the dV distance between the two MDPs is 0. Indeed the dM distance function is similar to bisimu-
lation based distance functions studied in (Castro and Precup, 2010) which, while theoretically well
motivated, were also found to be inadequate for applications.

7.1 Windy-Corridor Domain

The windy corridor domain is illustrated in Figure 2. The domain consists of a row of 10 corridors
with a ‘wind’ blowing from the South to the North along the cells right in front of the entrance to
the corridor. The agent has one action for each possible cardinal direction which moves it in that
direction deterministically. In a windy cell, the motion of the agent becomes probabilistic with the
probability of moving North being p, and moving in the desired direction being 1 − p. p depends
on the strength of wind, increasing from 0 to 0.9. The MDPs in the domain are distinguished by the
location of the goal state and the strength of the wind. There are 10 possible wind speeds, and given
10 possible goal locations, this gives us a total of 100 possible MDPs.

For this domain, we learned the value function for each of the MDPs, and from that computed the
distance between every pair of MDPs. This was then used to cluster the MDPs using our clustering

20



CLUSTERING MDPS FOR TRANSFER LEARNING

algorithm. Figure 3 presents the final cluster we found for this domain using cost2. This figure
shows that the best clustering we found put domains with the same goal state in the same cluster.
This makes sense, because despite the wind speed, the policies requried for MDPs with identical
goal states will be identical, while different for states with different goal states. So this shows that
our algorithm recovers the clusters we expect to find, and provides a basic sanity check for our
algorithm.

Figure 2: THE WINDY CORRIDOR DOMAIN. This shows the 10 corridors, the location of the goal
states and the direction of the wind (the small arrows). The start state is marked by s.

7.2 Surveillence Domain Setup

The surveillance domain is illustrated in Figure 4. In this domain, the goal of the agent is to catch
infiltrators who wish to break into a target region. There are L different vulnerable locations (ab-
breviated v-locations) in the domain, and the infiltrators only choose a subset of those v-locations
to infiltrate through – we call these target v-locations. The type of the infiltrators is defined by the
sequence in which they visit the target v-locations and the goal of the agent is to find out where the
target locations are and surveil them in the right sequence. The actions available to the agent are
the motion actions in the cardinal directions and a surveil action. Every action results in a reward of
−1, an unsuccessful inspect action (i.e. inspecting the target v-location in the wrong order) results
in a reward of −10, while a successful inspect action (i.e. inspecting the correct v-location at the
right time) results in a reward of 200. The task relatedness takes the following form. If instead of

21



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Figure 3: CLUSTERING FOR THE WINDY CORRIDOR DOMAIN. The clustering was obtained by
running Search-Clustering and cost2. Each point in the 2D grid is a MDP with the goal location and
wind-speed given by the x and y axis respectively. The colors indicate the cluster to which the MDP
was found to belong to, and shows that all the MDPs belonging with the same goal state belong to
the same cluster. Additionally, the cluster centersMi are marked with ∗s.

surveilling the right v-location, the agent visits a v-location in the same block (see Figure 4) as the
true location, then the agent receives a reward of 190. These notions are illustrated in Figure 5.

We present the following results for a combination of previous MDPs and number of tar-
get locations. The results show that the more complex the transfer task is the better EXP-3-
Transfer+clustering is compared to Policy Reuse, where complexity is measured by the number
of previous MDPs and the difficulty of the target task.

• We compare the performance of EXP-3-Transfer, Policy-Reuse and Q-learning as the com-
plexity of the transfer problem increases. Here, the complexity of the transfer problem is both
the number of previous tasks, and the complexity of the MDP itself (i.e. the number of target
v-locations). We call these results clustering gains.

• We compare the effect of having different types of clusterings (in Table 1) for EXP-3-Transfer
with T = 10, 000 . We call these results clustering comparisons.

• We compare the effect of having different T ∈ {1000, 5000, 10000} for EXP-3-Transfer with
clustering for various number of previous tasks. We call these results time comparisons.

We now present these results below.

7.2.1 CLUSTERING GAINS

We begin presentation of our experimental results with two summary graphs which show the benefit
of clustering vs. not clustering for our algorithm EXP-3-Transfer and Policy-Reuse. These results
are presented in Figures 6 and 7 respectively. The full results that these graphs summarize are

22



CLUSTERING MDPS FOR TRANSFER LEARNING

Figure 4: THE SURVEILLANCE DOMAIN. The domain is 48 × 48 gridworld with 64 possible
surveillance locations (v-locations) marked in green. Each MDP in the domain requires the agent
to surveil i different locations, i ∈ {1, 2, 3, 4} in a particular sequence to receive positive reward of
200 for each location surveilled. A wrong location results a negative reward of −10 (the infiltrators
have escaped). Each step gives a reward of −1. The target v-locations are clustered in groups of
4, such that surveilling one location in the cluster instead of the other results in a reward of 190 (a
penalty of 200− 190 = 10) but does not end the episode (please see Figure 5 for further details).

given in Appendix D. Figures 6a and 6b both show that EXP-3-Transfer always benefits from using
clustering and in fact the more complex the task is, the better the performance is. This is observed in
the general upwards trend in the curves with increasing number of previous MDPs and the fact that
the curve for the 3 v-locations lies above the curve for the 2 v-locations. This result is in complete
agreement with our expectations, that in a bandit like algorithm lowering the number of arms will
result in lower regret. In addition, it also shows that our clustering algorithm retains the correct arms
so that with the removal of arms, the performance of EXP-3-Transfer is not affected adversely. The
above figure does not give comparison with Q-learning. In the full results given in the Appendix D,
we also show that EXP-3 consistently outperforms Q-learning by a large margin which shows that
our algorithm escapes negative transfer.

Interestingly, for Policy-Reuse the trend is reversed. It appears that clustering does not help
this algorithm, and the more complex the task is, the more harmful clustering is. Our conjecture
regarding the reason for this is that Policy-Reuse does not reuse policies in the sense of using them
as potential optimal policies, but as exploration devices. By clustering the MDPs, we remove arms
and hence reduce the number of exploration policies and hence lower Policy-Reuse’s scope for
exploration. This in turn results in negative performance gain for Policy-Reuse.

23



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Figure 5: TRAJECTORY EXAMPLES. Example of different types of trajectories for the surveillance
domain for a given MDP with two v-locations, 30 and 50 in sequence. The optimal trajectory for
this MDP is shown in black/solid line. A trajectory that obtains a reward of 190 per target v-location
is shown in green/dotted line (it visits two v-locations in the same block in the right sequence). The
red/dashed trajectory (result in rewards of −10,−10 when the surveil action is taken at the two
v-location. The red/dashed-black/solid trajectory result in rewards of −10, 200.

It is also interesting to see that in Figure 6b, which shows the gain in terms of the final reward
obtained, the initial gain for EXP-3-Transfer and Policy-Reuse are both negative, and the gain for
Policy-Reuse is higher. But as the transfer complexity increases (both in terms of previous MDPs
and task complexity) the cumulative reward gain becomes positive for EXP-3-Transfer, while for
Policy-Reuse it continues to decrease.

Given that the previous figures show that Policy-Reuse does not benefit from clustering, we com-
pare the cumulative reward obtained by EXP-3-Transfer with clustering and Policy-Reuse without
clustering for the complex 3-target-v-locations problem in Figure 7. This result shows that EXP-3-
Transfer completely dominates Policy-Reuse, with the difference becoming particularly stark when
the number of previous tasks increases to 300.

7.2.2 CLUSTERING COMPARISON

In this section we compare performance of EXP-3-Transfer using the different types of clustering
methods in Table 1. As in the previous section, we look at the change in performance with increasing
complexity of the transfer tasks. The summary of these results is given in Figure 8. As can be seen,
EXP-3-Transfer using using Search-Clustering to obtain the source policy outperfoms the case when
we do not cluster the previous tasks. This was the result reported in the previous section. However,
in addition we also see that using greedy clustering is as good as using Search-Clustering. This is
largely due to the structure of the domain, where groups of tasks are all similar to each other. To

24



CLUSTERING MDPS FOR TRANSFER LEARNING

(a) CUMULATIVE CLUSTERING GAINS. (b) FINAL CLUSTERING GAINS.

Figure 6: CLUSTERING GAINS. The above figures shows the clustering gain for EXP-3-Transfer
and Policy-Reuse. For each (x, y) data-point in each curve, the y-value is the difference in perfor-
mance between using clustering and not using it when there are x previous MDPs. The performance
measure in cumulative clustering gains (Figure 6a) is the total cumulative discounted reward over
10, 000 episodes. The performance measure in final clustering gains (Figure 6b) is the discounted
reward in the final episode. We re-note that each (x, y) point is averaged over 10 different target
tasks with 10 trials per task.

show cases where greedy clustering fails, we performed additional experiments, which are described
in the next section.

7.2.3 GREEDY CLUSTERING MAY FAIL

In this section, we present results from an extension of the surveillance domain where the greedy
clustering may fail and using Search-Clustering is necessary. In the original surveillance domain,
if the agent surveilled v-locations in the same block, then it received rewards close to the optimal
(see Figure 5), and this defined the similarity between the domain. In this subsection only, we
consider a different similarity measure defined by a graph over the v-locations. If there is an edge
between the v-locations then the reward obtained is 190, otherwise it is 200. This is illustrated in
Figure 9. This can be interpreted as the center v-location being at the top of a ’hill-top’ and the 4
other surrounding points being at sea-level. Hence, if we surveil the hill-top location we can also

25



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Figure 7: CUMULATIVE REWARD SUMMARY. This figure shows the final cumulative rewards after
10, 000 episodes for EXP-3-Transfer with clustering and Policy-Reuse without clustering for the
surveillance domain with 3 target-v-locations. The x-axis is the number of previous MDPs.

surveil the lower locations automatically. Surveilling one sea level location means we may surveil
the hill-top location, but not necessarily the other locations.

In this case, the results of Greedy clustering and Search-Clustering are illustrated in Figure 10.
As the figure shows, greedy clustering performs very poorly in this case, while Search-Clustering
finds the right clusters.

7.2.4 TIME COMPARISONS

In this section we look at the effect of the T parameter on performance. Recall that the T parameter
affects both the clustering algorithm Search-Clustering and EXP-3-Transfer. We performed experi-
ments with 7 different combinations of previous MDPs and MDP complexity. The results are more
or less identical, and so we present only two graphs in Figure 11 for the most complex and the least
complex transfer problem we have considered. We relegate the remaining graphs for the rest of the
experiments to Appendix D.2 since these two figures are representative of the other graphs. As they
show, the curve for EXP-3-Transfer with parameter T lies above the curves of EXP-3-Transfer with
parameter T ′ > T . This confirms that setting this parameter is actually important.

8. Conclusion

In this paper we developed a framework to concisely represent a large number of previous MDPs by
a smaller number of source MDPs for transfer learning. We presented a principled online transfer
learning algorithm, a principled way to evaluate source sets for use in this algorithm and way to
find the source set. The key idea was to cluster the previous MDPs and then use the representative

26



CLUSTERING MDPS FOR TRANSFER LEARNING

Figure 8: EFFECT OF CLUSTERING METHODS. This figure compares the performance of Greedy-
Clustering and Search-Clustering for the domain with graph based distance. The performance is
measured in terms of the total cumulative discounted rewards over 10, 000 episodes. In this figure
‘Full’ refers to EXP-3-Transfer run with Search-Clustering.

element of each cluster as the source tasks. We also presented extensive experiments to show the
efficacy of our method. We now discuss several interesting directions for future work.

In this paper we only considered discrete domains. However, it is possible to translate the overall
approach to the continuous setting. In particular, to apply our approach to continuous space problem,
all we will need is a pure RL algorithm (as an arm in EXP-3-Transfer) and a way to evaluate policies
(to compute the dV distances). All our definitions, algorithms and results will then hold true in this
setting. This is because our algorithms EXP-3-Transfer, MHAV and Search-Clustering and distance
function dV treats the underlying MDPs and policies as black boxes with certain properties. The
discreteness of the MDP is never exploited or required in either the algorithms or their analysis.

We also only looked at only one possible VPL metric. As we pointed out in the introductory
material of Section 7, this metric is not particularly interesting, and additionally, after extensive
search we were unable to discover another one. So another possible interesting line of future enquiry
is to fully develop the theory of VPL metrics as it results in a theory that holds under weaker
assumptions. This work may involve the development of measures of similarity used in related
work on bisimulation (Castro and Precup, 2010).

Finally, we end by pointing out that the idea of clustering a set of tasks to obtain a representative
set is much more general. For instance, any other cost function derived under different assumptions
can be applied with the clustering approach. As another example, the clustering approach may also
be used in multi-agent systems to group together opponents according to whether the same policy of
ours is equally effective against opponents in the same group. It will also be interesting to implement
these methods and algorithms on scaled up, real version of the types of problems considered in this
paper. We plan to pursue these and other extensions to the above in future work.

27



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Figure 9: THE EXTENDED GRAPH DOMAIN. The extended graph domain consists of groups of
target v-locations, with 5 v-locations per group. In our experiments we used 16 groups but for sim-
plicity we only show two groups here. If there is an edge between two v-locations, then surveilling
in one instead of the other location is acceptable with a penalty (of 200 − 190 = 10)– otherwise
it is not acceptable. As before, each MDP consists of surveiling the correct sequence of target v-
locations. As in Figure 5, the black/solid line shows the optimal trajectory for a particular MDP.
The green/dotted line shows a trajectory that incurs a penalty but is acceptable. A red/dashed line
indicates a trajectory where the surveil action at the end incurs a reward of −10.

Figure 10: CLUSTERING IN EXTENDED SURVEILLANCE DOMAIN. This figure compares perfor-
mance of EXP-3-Transfer in the extended surveillance domain when using greedy clustering vs.
Search-Clusterings (referred to by Full in the legends). The performance is measured in terms of
the total cumulative discounted rewards over 10, 000 episodes.

28



CLUSTERING MDPS FOR TRANSFER LEARNING

(a) LOW COMPLEXITY TRANSFER PROBLEM. (b) HIGH COMPLEXITY TRANSFER PROBLEM.

Figure 11: EFFECT OF T PARAMETER. The above figures show the learning curve of EXP-3-
Transfer when run for different numbers of time steps (parameter T ). This affects both the clustering
and the arms chosen by EXP-3-Transfer. The parmaters for the experiments are given in the title of
the figure. As the figure shows, for shorter T , the EXP-3-Transfer run with the lowest T = 1000
is optimal. For the intermediate duration, T = 5000 is optimal, and for the remaining time T =
10, 000 is optimal. Figures 11a and 11b respectively give the curves for the lowest and highest
complexity task. The shaded areas give the standard deviation for the learning curves.

29



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Appendix A. Proofs

Proof [Proof of Theorem 2] A direct application of Corollary 3.2 in (Auer et al., 2002b) is not
possible because our algorithm diverges from EXP-3 because the number of arms possibly decreases
across time steps. But the steps in the first part of the proof correspond closely to Theorem 3.1 (often
identically), from which Corollary 3.2 is derived. The second part, where we deal with arms that
were removed, is novel.

Let Ct , {1, 2, ·, c+ 1}− remt be the arms that are in play at line 4 of EXP-3-Transfer, and let
ct = |Ct|. Let Wt ,

∑
i∈Ct

wi(t), and W̃t−1 ,
∑

i∈Ct
wi(t− 1) (note the Ct, rather than Ct−1 in

the summation in W̃ ). Then for all sequences of policies i1, i2, · · · , iT , drawn by EXP-3-Transfer,

Wt+1

Wt
≤ Wt+1

W̃t

≤ 1 +
β/ct
1− β

xit(t) +
(e− 2)(β/ct)2

1− β
∑
i∈Ct

x̂i (25)

The first inequality follows because Wt ≤ W̃t as the latter contains fewer elements, while the final
inequality follows from (8) in the proof of Theorem 3.1 (Auer et al., 2002a). Using the fact that
1 + x ≤ exp(x) gives us

ln
Wt+1

Wt
≤ β/ct

1− β
xit(t) +

(e− 2)(β/ct)2

1− β
∑
i∈Ct

x̂i

Now since ct is non-increasing, γ/ct ≤ γ/cT , and so

ln
Wt+1

Wt
≤ β/cT

1− β
xit(t) +

(e− 2)(β/cT )2

1− β
∑
i∈Ct

x̂i

Summing over t telescopes and gives us

ln
WT

W1
≤ β/cT

1− β
GE3T +

(e− 2)(β/cT )2

1− β

T∑
t=1

∑
i∈CT

x̂i

Now, going in the opposite direction, for each j ∈ CT we have

ln
WT

W1
≥ ln

wj
c+ 1

=
β

cT

T∑
t=1

x̂j(t)− ln(c+ 1)

Putting these together, we have for each j ∈ CT ,

GE3T ≥ (1− β)
T∑
t=1

x̂tj −
cT ln(c+ 1)

β
− (e− 2)β

cT

∑
i∈CT

x̂i (26)

Taking expectation in terms of the randomization in the algorithm in both sides above, we have

IE[GE3T ] ≥ (1− β)
T∑
t=1

xj(t)−
cT ln(c+ 1)

β
− (e− 2)β

cT

T∑
t=1

∑
i∈CT

xi(t) (27)

30



CLUSTERING MDPS FOR TRANSFER LEARNING

where we used that fact that IE[x̂i(t)|i1, i2, · · · , it−1] = xi(t) for any i. Using the fact that∑T
t=1

∑
i∈CT

xi(t) ≤ cTGmax and then rearranging, we get for each j ∈ CT ,

T∑
t=1

xj(t)− IE[GE3T ] ≤ β
T∑
t=1

xj(t) + cT ln(c+ 1) + (e− 2)βGmax

=
cT ln(c+ 1)

β
+ (e− 1)βGmax

Plugging in the value of β and using the fact that Gmax ≤ T and then taking expectations with
respect to randomness due to P and R, we get that

IE[
T∑
t=1

xj(t)]− IE[GE3T ] ≤ 2.63
√
c ln(c)T (28)

Taking expectation with respect to the transition and reward distributions P and R of the target
task, and putting back the normalization term, now gives us the required result for an arm that was
not removed. We now need to show that (28) is true for an arm xk that is removed at some t ≤ T .

To that end, we first need the Hoeffding bound (see, for instance, (Dubhashi and Panconesi,
2009) for an exposition) which states that if y1:n , y1, y2, · · · , yn are i.i.d. draws of a random
variable Y , with Yi ∈ [a, b], and ȳn is the empirical mean of the yi, then

Pr[|ȳn − IE(Y )| > ε] ≤ exp[−2nε2/(b− a)2] (29)

In the sequel, we will assume that b = 1, a = 0, and so the denominator in the exponent on the
left hand side of the equation is just 1. This bound then has the following simple and well known
consequence. Assume we have two i.i.d. samples y1:n and y′1:m, drawn from two random variables
Y and Y ′. Assume that ȳn − ȳ′m > ε, and n and m both satisfy exp[−2nε2/4] ≤ δ′/2 and
exp[−2mε2/4] ≤ δ′/2. Then, by (29)

Pr[|ȳn − IE(Y )| > ε/2] ≤ δ′/2, P r[|ȳ′n − IE(Y ′)| > ε/2] ≤ δ′/2 (30)

Then, by the triangle inequality and the union bound, with probability at least 1 − δ′, IE(Y ) >
IE(Y ′).

Now in line 12 of EXP-3-Transfer, we remove a source policy arm if ε = zj/nj − zk/nk,
we have ε/2 >

√
− ln(δ/2c)(2nj)−1 and ε/2 >

√
− ln(δ/2c)(2nk)−1. This implies, that with

probability > 1 − δ/c, V ρj > V ρk . Since there are c arms, this implies that if there is an arm that
was removed, by the union bound with probability at least > 1− δ, V ρj > V ρk for some arm j that
is never removed for every arm k that is eventually removed. Now note that the expectation of the
first term

∑T
t=1 xj(t) in (28) is TV ρj when ρj is a stationary source policy. Hence, coupling the

results of this paragraph with (28) we get that

IE[
T∑
t=1

xk]− IE[GE3T ] ≤ 2.63
√
c ln(c)T

which is what we are required to prove.

31



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Proof [Proof of Lemma 5] Let there be three MDPsM1,M2,M3 defined on a state space with a
single state and three actions a1, a2, a3. Assume that R1(a1) = 100, R1(a2) = 90, R1(a3) = −100
and for i ∈ {2, 3}, Ri(ai) = 100, and Ri(aj) = 90 when i 6= j. So the optimal action
for Mi is ai. But now, dV (M1,M2) = 100 − 90 = 10, dV (M2,M3) = 100 − 90, but
dV (M1,M3) = 100 − (−100) = 200, showing that dV does not satisfy the triangle inequality
and hence is not a metric.

For the next two proofs, we need to restate Lemma 1 in (Strehl et al., 2009).

Lemma 20 [Strehl, Li and Littman] IfM1 andM2 are two MDPs defined on the same state-action
space, and ε1 = |R1(s, a) − R2(s, a)|, and ε2 = ||P1(·|s, a) − P2(·|s, a)||1, then for any policy π
and state s,

|V π
1 (s)− V π

2 (s)| ≤ (ε1 + γRmaxε2)(1− γ)−2 (31)

�

Now we can state our proofs.
Proof [Proof of Lemma 7] For dM , conditions 1-3 and 5 of a VPL metric follows from the fact
that we are taking max of two metrics (with K = 1), while 4 follows from Lemma 20 with
k(ε) = ε(1+γRmax)

(1−γ)2
, whereRmax was defined in Section 2. To see this last fact, if dM (M1,M2) ≤ ε

then maxs,a max(|R1(s, a)−R2(s, a)|, ||P1(·|s, a)−P2(·|s, a)||1 ≤ ε. Plugging this into the state-
ment of Lemma 20, we get that |V π

1 −V π
2 | ≤ k(ε) for any policy π. In particular, this is true for π∗1 ,

and π∗2 , and hence by the definition of dV , it follows that dV (M1,M2) ≤ k(ε).

Proof [Proof of Theorem 9] LetM∗ ,1≤k≤N arg min dM (MN+1,Mk) and let dM (MN+1,Mk) =
ε∗. Let M̂∗ be the centroid of the cluster Ai (as defined in (8)) such that M∗ ∈ Ai. Then
dM (M∗,M̂∗) ≤ ε by definition of ε. By the Lipschitz property of dM , dM (MN+1,M̂∗) ≤ ε∗ + ε
(because by Lemma 7 K = 1 for dM ). This implies that dV (MN+1,M̂∗) ≤ k(ε∗) + k(ε), and in
particular V ∗N+1 − V

ρ
N+1 ≤ k(ε∗) + k(ε) where ρ is the optimal policy of M̂∗, which is used as an

arm in EXP-3-Transfer. The definition of dV implies. By Corollary 3, V ρ
N+1 − IE[GE3T ] ≤ g(c).

Putting this altogether, this implies that V ∗N+1− IE[GE3T ] ≤ g(c)+k(ε)+k(ε∗). The theorem now
follows with K̂ = k(ε∗).

Proof [Proof of Theorem 11] Fix any previousMk and letMjk be the centroid of the cluster Ajk
of A thatMk belongs to. Let the optimal policy ofMjk , used as an arm in EXP-3-Transfer, be ρjk .
Then by Corollary 3, V

ρjk
N+1−IE[GE3T ]/T ≤ g(c), and therefore V π∗k

N+1−IE[GE3T ]/T ≤ g(c)+εjk ,

where εjk was defined in (10). Summing over k, and dividing by N yields 1
N [
∑N

k=1 V
π∗k
N+1 −

N IE[GE3T ]/T ≤ g(c) + 1
N

∑N
k=1 εjk which is equivalent to

IE[V π∗k
N+1]− IE[GE3T ]/T ≤ g(c) + ε̄

which completes the proof.

Proof [Proof of Lemma 14] To show irreducibility we have to show that for any (λ, y) and (λ′, y′)
there exists a n such that P̄MH[Xn = (λ′, y′)|X0 = (λ, y)] > 0. To see this, first note that φY was

32



CLUSTERING MDPS FOR TRANSFER LEARNING

assumed to be irreducible. So, there exists a n1 such that with φY (Yn = y′|Y0 = y) > 0. Now
consider a particular path y , y0y1y2, · · · yn−1, yn (where y0 = y, yn = y′) with probability > 0
under φY . From the definition in (16), the probability under P̄MH of each transition yi → yi+1 is

βφ̄[(λ, yi), (λ, yi+1)]Acc[(λ, yi), (λ, yi+1)] > βbφY [(λ, yi), (λ, yi+1)]

where the inequality follows as Acc[·, ·] > b by definition of b and Acc. Hence, the total proba-
bility of the path yy1y2, · · · yn−1, y

′ under P̄MH is lower bounded by bnβnφY (y) (where φ(y) =∏n
i=0 φ(yi, yi+1)). Summing over all possible paths of length n going from y to y′ gives that the

probability of each (λ, y′) from (λ, y) is lower bounded by bnβnφY (Yn = y′|Y0 = y).
Now assume that λ = λk while λ′ = λk′ . If k < k′, we can bound the probability under P̄MH

of going from (λi, y′) to (λi+1, y
′), where k ≤ i < k′, by zi , αα′ (1−α)

α (λi+1/λi)−f(y) (this
follows from definition of P̄MH and Acc). Hence we reach (λ′, y′) from (λ, y′) with probability
z ,

∏k′−1
i=k zi. By a symmetric argument, if k′ < k, we reach λ′ from λ with probability at least

z′ ,
∏k′−1
i=k z′i, where z′i , α(1−α′) α

(1−α)(λi/λi+1)−f(y). Both z, z′ are positive by the finiteness
of f(y) and λis. Putting all the above together, we have that the probability of transitioning from
(λ, y) to (λ′, y′) is lower bounded by

bnβnφY (Yn = y′|Y0 = y) min{z, z′} > 0

which shows that P̄MH is irreducible.
To show that P̄MH is a-periodic, it is sufficient to note that α + β < 1. Then, with probability

1 − α − β, P̄MH returns to the same state in 1 step, which ensures that the g.c.d. of the set of time
steps where P̄MH returns to the same state is 1.

Proof [Proof of Theorem 15] φ̄ is irreducible by Lemma 14 and by construction of an MH chain,
P̄MH has Π̄ stationary distribution. Hence, by the first part of Theorem 12 P̄MH converges to Π̄ in
total variation. By the second part of the same theorem, if ||P̄MH(Xt = ·|x0)− Π̄(·)||TV ≤ k, then
for all t′ > t, ||P̄MH(Xt′ = ·|x0)− Π̄(·)||TV ≤ k.

Proof [Proof of Theorem 16] As we mentioned above, this proof follows very closely the proof of
Theorem 4.9 in (Levin et al., 2009). To begin with, first we note that by irreducibility of P̄MH, the
diameter D (defined in (23)) is finite. Hence, by definition of δ in (24), for each x, x′ we have that
P̄MH(x, x′) ≥ δΠ̄(x′).

Let P̄MH denote the transition matrix for the kernel P̄MH and let Π̄ denote the transition matrix
where each row is Π̄. Then, setting θ , (1− δ), we can write

P̄MH = (1− θ)Π̄ + θQ

where Q is another transition matrix. To see that Q is a valid transition matrix, note that row
i of Q is given by θ−1[P̄MH(x, ·) − (1 − θ)Π̄(·)]. Summing the elements of this row, we get∑

x′ P̄MH(x, x′) − (1 − θ)Π̄(x′) = θ, whence each row of Q sums to 1. Furthermore, by the
definition that (1 − θ) = δ, each entry is also positive, showing that Q is indeed a valid transition
matrix.

33



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Now note that for any transition matrix M , MΠT = ΠT (where T indicates the transpose),
whence MΠ̄ = Π̄. Additionally, since Π̄ is stationary for P̄MH, Π̄P̄MH = Π̄. We will now use the
above facts to show by induction on k that

P̄DkMH = (1− θk)Π̄ + θkQk (32)

which will imply the convergence we seek.
Clearly (32) is true for k = 0. Assume, as the inductive hypothesis, that it is true for k ≤ n.

Then, we have

P̄
D(n+1)
MH = P̄DnMHP̄

D
MH

= (1− θn)Π̄ + θnQnP̄DMH

= (1− θn)Π̄ + θnQn[(1− θ)Π̄ + θQ]

= (1− θn)Π̄− θn+1Π̄ + θnΠ̄ + θn+1Qn+1

= (1− θn+1)Π̄ + θn+1Qn+1

The first equality is just the definition of k-step transitions. The second equality is obtained by
applying the inductive hypothesis and because Π̄P̄MH = Π̄. The third and fourth equality follows
from applying the inductive hypothesis on P̄DMH and the two facts about Π̄ established above. The
final equality is obtained by cancelling out the terms.

Now θk → 0 as k → ∞ , and so each row of P̄MH converges to Π̄. In other words for each x,
limt→∞

∑
x′ P̄

t
MH(x′) − Π̄(x′) = 0. This implies limt→∞ ||P̄ tMH(x, ·) − Π̄(·)||1 = 0. Now since

||P̄ tMH(x, ·)− Π̄(·)||TV = 1
2 ||P̄

t
MH(x, ·)− Π̄(·)||1, this completes the proof.

Proof [Proof of Lemma 17] Fix any two (λ, y) and (λ, y′) and let x , x0x1 · · ·xn be a path
with x0 = (λ, y) and xn = (λ′, y′). Assume that this path has positive probability under P̄MH

for certain value a, b, c, respectively of α′, α, β. Then, by definition (21) of P̄MH, the probability
of this path has the form Cak(1 − a)k2bk2ck3(1 − b − c)k4 where the ki are integers and C is a
constant. Then, under a difference set of values a′, b′, c′, the probability of this path has the form
Ca′k(1−a′)k2b′k2c′k3(1−b′−c′)k4 . Since α′, α, β ∈ (0, 1), this probability must also be non-zero.
Hence the set of paths of positive probability are invariant with respect to the values of α′, α and β.
Since D is the length of the shortest path of positive probability, this proves the lemma.

Proof [Proof of Lemma 19] We just need to show that, for any two clusterings A and A′, only
a finite number of re-arrangement steps is sufficient to obtain A′ from A. Let the clusters of A′,
in some order, be A′1, A

′
2, · · · , A′n. Assume that the points of A′i are spread across Ai1 , · · · , Aik

with n1, n2, · · · , nk points respectively. Then, with non-zero probability A′i will be created with n1

points from Ai1 (see Appendix C for the explicit computation). And from then on, with non-zero
probability (again, see the computations given) the points of A′i in Aij will be added to A′i. Hence
with non-zero probability A′i will be created. This holds for each A′i, and hence we have a non-zero
probability of constructing A′ from A.

34



CLUSTERING MDPS FOR TRANSFER LEARNING

Appendix B. Hardness of the Clustering Problem

In this section we show that it is hard to optimize cost1 and an upper bound cost2m of cost2, where
cost1 and cost2 are given in Definitions 8 and 10 respectively. To that end, define the average
max-diameter of a clustering A to be:

ε̄m =
1
N

∑
i

|Ai|ε̄im, where εim =
1
|Ai|

∑
M∈Ai

max
M′∈Ai

dV (M,M′) (33)

Now define,

Definition 21 Define cost2m(A) , g(c) + ε̄m.

We have the following relationships:

Lemma 22 The parameter ε̄m of A is an upper bound on the parameter ε̄ of A defined in (11).
Furthermore, cost2m upper bounds cost2:

Proof This follows directly from the definition of ε̄ – in particular, ε̄m upper bounds ε̄ because
maxM,M′∈Ai

dV (M,M′) > minMmaxM′ dV (M,M′) = dV (Mi,M). The second part of the
lemma now follows by the definitions of the functions.

We show that finding the clusterings optimizing cost1 and cost2m are in fact NP-complete by
reducing the minimum clique-cover problem (Karp, 1972) to finding the optimal clustering of a
given set of MDPs. We start by describing the clique cover problem. Let G = (V,E) be a graph
where V is the set of vertices and E is the set of edges. A subset V ′ ⊂ V is a clique if for any
v, v′ ∈ V , there is an edge (v, v′) ∈ E. The minimum clique cover problem is finding a partition
V1, V2, · · · , Vn of V such that each Vi is a clique and n is minimum – that is there exists no other
partition with V ′1 , V

′
2 , · · · , V ′m of V such that each V ′i is a clique and m < n. We have the following

theorem for cost1.

Theorem 23 Given a graph G = (V,E), in time polynomial in the |V | and |E|, we can reduce the
minimum clique cover problem for G to finding the clustering A∗ of MDPsM1,M2, · · · ,M|V |,
with allMi defined on the same state and action spaces, where A∗ , arg minA∈C cost1(A).

An analogous theorem, using essentially the same proof, holds for cost2m.

Theorem 24 Theorem 23 is also true if A∗ , arg minA∈C cost2m(A).

The proofs are given below. Since the clique cover problem is NP-complete, we immediately have
the following corollary, which motivates the need for an algorithm to find the optimal clustering.

Corollary 25 Finding the clustering optimizing either cost1 or the upper bound cost2m of cost2 is
NP-complete.

We now prove the theorems.
Proof [Proof of Theorem 23] First, let |V | = M , and given any ordering of the elements of V ,
identify each vertex v ∈ V with its position in the ordering – so we can take V = {1, 2, · · · ,M}.
Let M1,M2, · · · ,MM be a set of MDPs defined on a state space S = {s}, and action space

35



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

A = {1, 2, · · · ,M}. The transition function for the MDPs in this case is trivial (all actions transition
with probability 1 from s to s). The reward function for MDP i defined as follows. Ri(s, ai) = 0;
if (i, j) ∈ E then Ri(s, aj) = 0, otherwise Ri(s, aj) = −ε∗ where ε∗ satisfies kM (ε∗) = hg(M),
where h > 1 and g is the function used in Definition 8 to define the cost function for clusters. This
ε∗ exists because kM is invertible. In the following we will identify MDPMi with vertex i ∈ V
and this way show that the optimal clustering for this corresponds to a maximal clique under the
mapping i→ vi and A→ Vi.

By construction, π∗i (s) = ai, V ∗i = 0, V
π∗j
i = V

aj

i = 0 iff (i, j) ∈ E, and V aj

i = −ε∗
otherwise. Hence, by the definition in (5),

dM (Mi,Mj) =

{
0 iff (i, j) ∈ E
ε∗ otherwise

(34)

First recall that by Definition 8, the cost of a clustering A of an MDP is g(c) + ε where c is the
number of clusters and ε is the maximum over the diameter of the clusters in A. Let an optimal
clustering be A∗ and let A(Mi) denote the cluster in A∗ thatMi belongs to.

We now show that ifMi1 ,Mi1 , · · · ,Mil ∈ A ∈ A∗, then i1, i2, · · · , il form a clique in G. In
other words, we show that, if A(Mi) = A(Mj) then (i, j) ∈ E, or equivalently (i, j) 6∈ E then
A(Mi) 6= A(Mj). By way of contradiction, assume that (i, j) 6∈ E but A(Mi) = A(Mj). Since
i, j do not have an edge between them, by (34) the diameter of A∗ is at least dM (Mi,Mj) = ε∗.
This in turn implies that cost1(A∗) = g(|A∗|) + k(ε∗) = g(|A∗|) + hg(M). Now consider
the clustering A′ obtained by putting each MDP Mi in its own cluster. This clustering has cost
g(M) + 0 < g(|A∗|) + hg(M) – contradicting the optimality of A∗. Hence, the clusters of A∗

have cost g(|A∗|) and corresponds to a collection of cliques that partition V – denote this collection
of cliques by J∗.

Now note that each collection of cliques V1, V2, · · ·Vj that partition V correspond to a clustering
A such thatMi,Mj ∈ A iff (i, j) ∈ Vl for some l; in this case j = |A|. Now assume that there
is a clique I such that |I| < |J∗| and let the corresponding clustering be AI . Then we show that
cost1(AI) < cost1(A∗), resulting in a contradiction. To see this note that eachMi,Mj ∈ A ∈ AI

then dM (Mi,Mj) = 0 by (34). Hence the diameter of AI = 0. So the cost of AI is g(|AI |) + 0 <
g(|A∗|) since by definition of AI , |AI | < |A∗|.

Because of the contradiction, J∗ is indeed a minimum clique cover, showing that the problem of
minimum clique cover can be reduced to the problem of finding the optimal clustering. To complete
the proof, we need to show that this reduction takes polynomial time. The only cost in computing a
Mi is setting the reward function, which takes time C|V | for some constant C.

Proof [Proof of Theorem 24] The overall steps in the proof are quite similar to the proof of Theorem
23 but some important details vary. First, let |V | = M , and given any ordering of the elements of V ,
identify each vertex v ∈ V with its position in the ordering – so we can take V = {1, 2, · · · ,M}.
Let M1,M2, · · · ,MM be a set of MDPs defined on a state space S = {s}, and action space
A = {1, 2, · · · ,M}. The transition function for the MDPs in this case is trivial (all actions transition
with probability 1 from s to s). The reward function for MDP i defined as follows. Ri(s, ai) = 0; if
(i, j) ∈ E thenRi(s, aj) = 0, otherwiseRi(s, aj) = −hMg(M) where h > 1 and g is the function
used in Definition 10 to define the cost function for clusters. In the following we will identify MDP

36



CLUSTERING MDPS FOR TRANSFER LEARNING

Mi with vertex i ∈ V and this way show that the optimal clustering for this corresponds to a
maximal clique under the mapping i→ vi and A→ Vi.

By construction, π∗i (s) = ai, V ∗i = 0, V
π∗j
i = V

aj

i = 0 iff (i, j) ∈ E, and V aj

i = −hMg(M)
otherwise. Hence, by the definition in (5),

dV (Mi,Mj) =

{
0 iff (i, j) ∈ E
hMg(M) otherwise

(35)

Now recall that cost2m , g(c) + ε̄m. Let an optimal clustering be A∗ and let A(Mi) denote
the cluster in A∗ that Mi belongs to. We now show that if Mi1 ,Mi1 , · · · ,Mil ∈ A ∈ A∗,
then i1, i2, · · · , il form a clique in G. In other words, we show that, if A(Mi) = A(Mj) then
(i, j) ∈ E, or equivalently (i, j) 6∈ E then A(Mi) 6= A(Mj). By way of contradiction, assume
that (i, j) 6∈ E but A(Mi) = A(Mj). Since i, j do not have an edge between them, by (35) the
diameter of A∗ is at least dV (Mi,Mj) = hMg(M)/M = hg(M). Which in turn implies that
cost2m(A∗) = g(|A∗|) + hg(M). Now consider the clustering A′ obtained by putting each MDP
Mi in its own cluster. This clustering has cost g(M) + 0 < g(|A∗|) + hg(M) – contradicting the
optimality of A∗. Hence, the clusters of A∗ has cost g(|A∗|) and corresponds to a collection of
cliques that partition V – denote this collection of cliques by J∗.

Now note that each collection of cliques V1, V2, · · ·Vj that partition V correspond to a clustering
A such that Mi,Mj ∈ A iff (i, j) ∈ Vl for some l; in this case j = |A|. Now assume that
there is a clique I such that |I| < |J∗| and let the corresponding clustering be AI . Then we
show that cost2m(AI) < cost2m(A∗), resulting in a contradiction. To see this note that each
Mi,Mj ∈ A ∈ AI then dV (Mi,Mj) = 0 by (35). Hence the diameter of AI = 0. So the cost of
AI is g(|AI |) + 0 < g(|A∗|) since by definition of AI , |AI | < |A∗|.

Because of the contradiction, J∗ is indeed a minimum clique cover, showing that the problem of
minimum clique cover can be reduced to the problem of finding the optimal clustering. To complete
the proof, we need to show that this reduction takes polynomial time. The only cost in computing a
Mi is setting the reward function, which takes time C|V | for some constant C.

Appendix C. Computations

Here we present the computation of the ratio φ̄(λ′,A′)/φ̄(λ,A) defined using (20) and constructed
using φ̄MY defined in Section 5.5. For this section, we set |A| = N . We have four cases to consider.

Case 1: With probability αα′, λ′ increased and A′ = A. In this case, we have φ[(λ,A), (λ′,A)] =
αα′, φ[(λ′,A), (λ,A)] = α(1− α′) and φ(λ′,A′)

φ(λ,A) = (1− α′)/α′.

Case 2: With probabilityα(1−α′), λ′ decreased and A′ = A. In this case we have φ[(λ,A), (λ′,A)] =
α(1− α′), φ[(λ′,A), (λ,A)] = αα′, and φ(λ′,A′)

φ(λ,A) = α′/(1− α′).

Case 3: With probability 1−α−β, λ′ = λ and A = A′. φ[(λ,A), (λ′,A)] = φ[(λ′,A), (λ,A)] =
1− α− β and φ(λ′,A′)

φ(λ,A) = 1.

37



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Case 4: With probability ββ′, λ′ = λ and is rearranged. Now the probability of moving ki points
from Ai to Aj is,

P (Ai, Aj ; ki) = N−2PE(ki; |Ai|, θ1)
(
|Ai|
ki

)−1

The reverse probability now depends on what actually has been moved. We have 4 subcases:

Case 4.1: If ki points are moved between clusters Ai and Aj from clustering , with 0 < ki < |Ai|:

P (Aj , Ai; ki) = N−2PE(ki; |Aj |+ ki, θ1)
(
|Aj |+ ki

ki

)−1

Now, we have that φ[(λ,A), (λ,A′)] = ββ′P (Ai, Aj ; ki) and φ[(λ,A′), (λ,A)] = ββ′P (Aj , Ai; ki),
so that, we have:

φ(λ′,A′)
φ(λ,A)

=
PE(ki; |Aj |+ ki, θ1)

(|Ai|
ki

)
PE(ki; |Ai|, θ1)

(|Aj |+ki

ki

)
Case 4.2: If ki points are moved from cluster Ai to a new cluster A|A|+1, with 0 < ki < |Ai|:

P (AN+1, Ai; ki) = (N + 1)−2PE(ki; ki, θ1)

note that |AN+1| = ki. Now, we have that φ[(λ,A), (λ,A′)] = ββ′P (Ai, AN+1; ki) and φ[(λ,A′), (λ,A)] =
ββ′P (AN+1, Ai; ki). So the desired ratio is:

φ(λ′,A′)
φ(λ,A)

=
N2PE(ki; ki, θ1)

(|Ai|
ki

)
(N + 1)2PE(ki; |Ai|, θ1)

Case 4.3: If |Ai| points are moved from cluster Ai to existing cluster Aj , now we have one less
cluster so that,

P (Aj , Ai : |Ai|) = (N − 1)−2PE(|Ai|; |Aj |+ |Ai|, θ1)
(
|Ai|+ |Aj |
|Ai|

)−1

The φ values are: φ[(λ,A), (λ,A′)] = ββ′P (Ai
|Ai|−−→ Aj) and φ[(λ,A′), (λ,A)] = ββ′P (Aj

|Ai|−−→
Ai). Together, this gives us the ratio:

φ(λ′,A′)
φ(λ,A)

=
N2PE(|Ai|; |Aj |+ |Ai|, θ1)

(N − 1)2PE(|Ai|; |Ai|, θ1)
(|Ai|+|Aj |
|Ai|

)
Case 4.4: If |Ai| points are moved from cluster Ai to a new cluster A|A|+1:

P (AN+1, Ai : |Ai|) = N−2PE(|Ai|; |Ai|, θ1)

The clustering A does not change in this case and the φ values are: φ[(λ,A), (λ,A′)] = ββ′P (Ai, AN+1; |Ai|),
φ[(λ,A′), (λ,A)] = ββ′P (AN+1, Ai; |Ai|), which gives us φ(λ′,A′)

φ(λ,A) = 1.

38



CLUSTERING MDPS FOR TRANSFER LEARNING

Appendix D. Surveillance Domain Experiments: Algorithm Comparisons

In this section we give detailed cumulative reward curves for the 4 algorithms: E3T with clustering,
Policy-Reuse with clustering and Policy-Reuse with clustering. The results are given in Figures
12 to 14. The results more or less show what the summary graphs showed. In particular, when
the number of previous tasks and the complexity of task is low, Policy-Reuse is better than our
algorithm. However, as the complexity keeps increasing, our algorithm begins to dominate both
versions of Policy-Reuse, showing that clustering is beneficial.

(a) (b)

Figure 12: ALGORITHM COMPARISONS. These figures compares the performance of EXP-3-
Transfer with clustering, Policy-Reuse with and without clustering, and Q-learning for various set-
tings of the task (see the figure title). These are the detailed plots of the summary results presented
in Section 7.2.1.

39



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

(a) (b)

Figure 13: ALGORITHM COMPARISONS CONTINUED. These figures compares the performance
of EXP-3-Transfer with clustering, Policy-Reuse with and without clustering, and Q-learning for
various settings of the task (see the figure title). These are the detailed plots of the summary results
presented in Section 7.2.1.

(a) (b)

Figure 14: ALGORITHM COMPARISONS CONTINUED. These figures compares the performance
of EXP-3-Transfer with clustering, Policy-Reuse with and without clustering, and Q-learning for
various settings of the task (see the figure title). These are the detailed plots of the summary results
presented in Section 7.2.1.

40



CLUSTERING MDPS FOR TRANSFER LEARNING

D.1 Surveillance Domain: Clustering Comparisons

In this section in figures 15 to 17 we present the learning curves summarized in figure 8. The general
trend follows what was observed in Section 7.2.2.

(a) (b)

Figure 15: CLUSTERING COMPARISIONS EXTENDED RESULTS. These figures show the results
that are summarized in Figure 8. The title of the graphs describe the experiment setup.

(a) (b)

Figure 16: CLUSTERING COMPARISIONS EXTENDED RESULTS CONTINUED. These figures show
the results that are summarized in Figure 8. The title of the graphs describe the experiment setup.

D.2 Time Comparisons

Figures 18 to 20 gives the time comparison results for transfer problems not described in Figure 11.

41



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Figure 17: CLUSTERING COMPARISIONS EXTENDED RESULTS CONTINUED. These figures show
the results that are summarized in Figure 8. The title of the graphs describe the experiment setup.

(a) (b)

Figure 18: TIME COMPARISIONS EXTENDED RESULTS. These figures show time comparsion re-
sults for transfer tasks in addition to Figure 11. The title of the graphs show the experiment setup.
The shaded areas give the standard deviation for the learning curves.

42



CLUSTERING MDPS FOR TRANSFER LEARNING

(a) (b)

Figure 19: TIME COMPARISIONS EXTENDED CONTINUED. These figures show time comparsion
results for transfer tasks in addition to Figure 11. The title of the graphs show the experiment setup.
The shaded areas give the standard deviation for the learning curves.

Figure 20: TIME COMPARISIONS EXTENDED CONTINUED. These figures show time comparsion
results for transfer tasks in addition to Figure 11. The title of the graphs show the experiment setup.
The shaded areas give the standard deviation for the learning curves.

43



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

References

Bo An, David Kempe, Christopher Kiekintveld, Eric Shieh, Satinder Singh, Milind Tambe, and
Yevgeniy Vorobeychik. Security games with limited surveillance. In Proceedings of the 26th
Conference on Artificial Intelligence, 2012.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47:235–256, 2002a.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing, 32:48–77, 2002b.

Mohammad Gheshlaghi Azar, Alessandro Lazaric, and Emma Brunskill. Regret bounds for rein-
forcement learning with policy advice. In Proceedings of 23rd European Conference on Machine
learning (ECML), 2013.

Jonathan Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research,
12:149–198, March 2000.

James L. Carroll and Kevin Seppi. Task similarity measures for transfer in reinforcement learning
task libraries. In Proceedings of 2005 IEEE International Joint Conference on Neural Networks,
2005.

Pablo Samuel Castro and Doina Precup. Using bisimulation for policy transfer in mdps. In Pro-
ceedings of the the 24th AAAI Conference on Artificial Intelligence, 2010.

Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction Learning and Games. Cambridge University
Press, 2006.

Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure Inequalities for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009.

Fernando Fernandez, Javier Garcia, and Manuela Veloso. Probabilistic policy reuse in a reinforce-
ment learning agent. In Proceedings of the 5th International Conference on Autonomous Agents
and Multiagent Systems, 2006.

Fernando Fernandez, Javier Garcia, and Manuela Veloso. Probabilistic policy reuse for inter-task
transfer learning. Robotics and Autonomous Systems, 58:866–871, 2010.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2004.

Eliseo Ferrante, Alessandro Lazaric, and Marcello Restelli. Transfer of task representation in rein-
forcement learning using policy-based protovalue functions. In Proceedings of the 7th Interna-
tional Confernce on Autonomous Agent And Multiagent Systems, 2008.

Richard Karp. Reducibility among combinatorial problems. In Proceedings of a Symposium on the
Complexity of Computer Computations, 1972.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:
671–680, 1983.

44



CLUSTERING MDPS FOR TRANSFER LEARNING

Andrey Kolmogorov and Sergei V. Fomin. Introductory Real Analysis. Dover Publications, 1970.

George Konidaris and Andrew G. Barto. Building portable options: skill transfer in reinforcement
learning. In Proceedings of the 20th International Joint Conference on Artificial Intelligence,
2007.

Allesandro Lazaric and Marcello Restilli. Transferring from multiple mdps. In Proceedings of the
Neural Information Processing Systems Conference, 2011.

David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times. American
Mathematical Society, 2009.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

M. Locatelli. Simulated annealing, algorithms for continuous global optimization: convergence
conditions. Journal of Optimization Theory and Applications, 104(1):121–133, 2000.

Sridhar Mahadevan. Proto-value functions: Developmental reinforcement learning. In Proceedings
of International Conference on Machine Learning, 2005.

Tom M. Mitchell and Sebastian Thrun. Explanation-based neural network learning for robot control.
pages 287–294, 1993.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley and Sons, 1994.

Balaraman Ravindran. Relativized hierarchical decomposition of markov decision processes. De-
cision making: neural and behavioural approaches, 42:465–488, 2013.

Balaraman Ravindran and Andrew G. Barto. SMDP homomorphisms: An algebraic approach to as-
traction in semi-markov decision processes. In Proceedings of the International Joint Conference
on Artificial Intelligence, 2003.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer, Berling, 2005.

Jonathan Sorg and Satinder Singh. Transfer via soft homomorphisms. In Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent Systems, 2009.

Alexander L. Strehl, Lihong Li, and Michael L. Littman. Reinforcement learning in finite MDPs:
PAC analysis. Journal of Machine Learning Research, 10:2413–2444, 2009.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

Matthew Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10:1633–1685, 2009.

Sebastian Thrun. Explanation-Based Neural Network Learning: A Lifelong Learning Approach.
Kluwer Academic Publishers, Boston, MA, 1996.

45



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

Sebastian Thrun and Tom Mitchell. Lifelong robot learning. Robotics and Autonomous Systems,
15:25–46, 1995.

Vladimir Vovk. Aggregating strategies. In Proceedings of the 3rd Internation Conference on Com-
putational Learning Theory, 1990.

Christopher Watkins. Learning From Delayed Rewards. PhD thesis, Cambridge University, 1989.

46


