
Anticipatory Bayesian Policy Selection for Online Adaptation of
Collaborative Robots to Unknown Human Types

O. Can Görür
DAI-Labor

Technische Universität Berlin
Berlin, Germany

orhan-can.goeruer@dai-labor.de

Benjamin Rosman
CSIR, and University of the

Witwatersrand
Johannesburg, South Africa

brosman@csir.co.za

Sahin Albayrak
DAI-Labor

Technische Universität Berlin
Berlin, Germany

sahin.albayrak@dai-labor.de

ABSTRACT

As a key component of collaborative robots (cobots) working with
humans, existing decision-making approaches try to model the un-
certainty in human behaviors as latent variables. However, as more
possible contingencies are covered by such intention-aware mod-
els, they face slow convergence times and less accurate responses.
For this purpose, we present a novel anticipatory policy selection
mechanism built on existing intention-aware models, where a robot
is required to choose from an existing set of policies based on an
estimate of the human. Each of these intention-aware robot models
anticipates and adapts to a different human’s short-term changing
behaviors. Our contribution is the Anticipatory Bayesian Policy
Selection (ABPS) mechanism which selects from a library of dif-
ferent response policies that are generated from such models, and
converges to a reliable policy after as few interactions as possible
when faced with unknown humans. The selection is based on the
estimation of the human in terms of long-term workplace char-
acteristics that we call types, such as level of expertise, stamina,
attention and collaborativeness. Our results show that incorporat-
ing this policy selection mechanism contributes positively to the
efficiency and naturalness of the collaboration, when compared to
the best intention-aware model in hindsight running alone.
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1 INTRODUCTION

Recent advancements in robotics are enabling more human-robot
teams to work together for increased productivity. For this purpose,
research into human-robot collaboration (HRC) has been mainly
inspired by human-human teamwork, the core of which lies in
an ability to adapt one’s behaviors to the other collaborators by
categorizing their observed behaviors. By doing so, humans select
appropriate behavioral responses to maintain a reliable and efficient
collaboration [13]. Our motivation here is to implement a similar
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mechanism for robots to ensure their autonomous adaptation to
different humans having naturally changing intentions, preferences
and behaviors. We call such robots social cobots [10].

Towards building such robots, many approaches have been pro-
posed, most of which model human intentions and behaviors as a
latent variable in robot planning [3–6, 8–10]. An important open
problem of such intention-aware models, for their usability in real
life scenarios, is the degree to which they allow for interacting with
different humans that change their intentions (goals) [1]. A limita-
tion for such models is that they become computationally expensive
and less accurate as a wider variety of human behaviors are mod-
eled [12, 22]. Therefore, for more efficient decision-making, existing
models implicitly make the assumptions that a human’s intention
and collaboration preferences are constant or always relevant to
an assigned task [10]. This majorly limits a human’s intention and
behavior space, whereas in reality a human’s dynamic desires and
emotions introduce greater uncertainty in human behaviors over
the course of repeated interactions [19]. Failing to adapt would
restrict the fluency of the collaboration also leading to distrust and
frustration from the collaborating human [14].

Our belief is that it is very difficult to design and/or learn a
single model for a person a robot is collaborating with, let alone for
different human types. A robot could face various type of human
behaviors. A human behavior may change as a reaction to robot
responses. For example, a human may become less collaborative
when a robot frustrates her by interfering with a task that she would
not trust the robot with. Such human behaviors may also adapt
to the context, such as a different task to collaborate on, changing
working conditions, daily mood, etc. [7]. Those changes may even
be as a result of another human worker starting to collaborate
(e.g. a work shift). To ensure long-term usability of robots, a robot
should adapt to both short-term changes in a human collaborator’s
mental state (e.g. tough day at work) and long-term personal habits,
preferences and trust. We call each different combination of such
long-term behaviors a unique human type. Our intuition is that
rather than a single adaptive model, sometimes a robot may need to
follow completely different decision-making strategies, i.e. policies,
to enable fast and reliable online adaptation to various human types.

In this paper, we present a novel anticipatory policy selection
mechanism built on top of existing intention- and situation-aware
models for an extended adaptation of robots to various human types.
In our previous study, we designed a partially observable Markov
decision process (POMDP) that adapts to a human’s short-term
changing behaviors, modeling her availability, intention (motiva-
tion) and capability as a latent variable [10]. Our focus in this study
is on a robot’s adaptation to human long-term behaviors, i.e, human



types. We create a policy library by randomly constructing different
robot models based on our existing model design. Through this
random generation, we are agnostic to specific human types and
behaviors modeled. Our contribution is an Anticipatory Bayesian
Policy Selection (ABPS) mechanism based on Bayesian Policy Reuse
(BPR) [25], which selects a policy from the library in short time
and converges to a reliable and nearly optimal policy after as few
interactions as possible. The selection is based on a human’s es-
timated long-term workplace characteristics, such as level of ex-
pertise, stamina (or fatigue), attention and collaborativeness1, that
correlate to the policy performance. Instead of modeling known
human types as a latent variable, we estimate unknown human
types from the observed human behaviors using Bayesian belief
estimation. To our knowledge, this is the first time such a policy
selection mechanism has been proposed complementing intention-
aware planning approaches in HRC, providing fast and reliable
anticipatory decision-making for both long-term and short-term
adaptation to unknown human types (through ABPS) and their
changing behaviors through each selected policy.

Our goal is to show that integrating such a policy selection
mechanism contributes positively to the efficiency (e.g. time to
finish a task, success rate) and naturalness (e.g. a human’s increased
willingness to collaborate) of the collaboration, when compared
to the best intention-aware model in hindsight running alone. We
consider a simulated HRC scenario at a conveyor belt for the task of
inspecting and storing various products, each of which has different
weights. Different types of modeled humans, responsive to both
robot actions and changing environment, collaborate on the task
autonomously with our adaptive robot decision-makingmechanism
implementing ABPS (Section 3). We present our experiments and
analysis on our policy selection through its effects on the efficiency
and the naturalness of the collaboration (Section 4).

2 RELATEDWORK

Human-robot interaction studies have lately focused on human
intention-aware robot decision-making models for anticipatory
adaptation of the robots to humans. Most of these models introduce
human intentions as a latent variable in a POMDP, which causes
great complexity with an increasing number of human intentions
anticipated and handled. For a reasonable convergence time, such
a design conventionally has to limit the human intention space
and systemic errors a human can make [12]. Therefore, the studies
implicitly make the assumption that either a human’s intention (or
goal) is constant or it is changing in a known limited intention space
[10]. We were unable to find any studies that consider the human
behaviors as freely stochastic in an unconstrained environment. As
a result, robot decision policies generated by such complex models
have been developed and tested under constrained environments
with rather limited interactions [2–6, 15]. It has been stated that
such assumptions limit a robot’s anticipation of a human’s dynamic
behaviors and goals that mostly occur in the long-term as a result
of changing preferences, habits, needs and trust [1, 10, 19].

There has been a handful of studies that removes such assump-
tions on human intentions and behaviors. Contingencies in human

1We use this term to indicate the level of a human’s will to collaborate that may change
due to, for example, task-relevant distrust of the human to the robot.

actions have been partly considered [11, 18]; however, all actions
are still assumed to be toward fulfilling a task, possibly in a way that
differs from the expected plan. In our recent work, we conceptualize
an anticipatory decision-making model (a POMDP) for the robot
that removes those assumptions and handles a human’s unexpected
behaviors after the human’s changing availability, motivation and
capability in collaboration tasks [10]. Even though we show that
such a proactive model performs better than a robot model with the
assumptions, the handled behaviors are limited and less dynamic,
and the POMDP model handles only the basic type of behaviors
(i.e., tired, distracted, incapable) as a latent variable. In other words,
the robot model was not adapting to different humans but instead
acting proactively against one simulated person randomly generat-
ing such short-term changing behaviors. In this study, we extend a
robot’s adaptation to anticipate a variety of human types.

Towards incorporating more variety in human characteristics,
some studies have proposed complementary solutions to be built
on top of a robot’s intention-aware planner to foster high-level
strategies. In [21], humans are clustered from observations during a
training phase into a finite number of human types. The estimated
human type is again used as a latent variable in a MOMDP (mixed
observability MDP) model to decide on robot actions. The number
of types in this study is a limiting factor, where each different type is
considered as a partially observable state. This limitation is majorly
due toMOMDPs struggling to scale tomore states when each type is
introduced as a latent state variable. It has been recently stated that
when POMDPs are used to optimize spatio-temporal assignments of
robots, accurate system models are needed to evaluate both actions
and rewards, which are often unavailable or fail to anticipate and
adapt to various conditions in long-term missions [20].

To overcome the limitation of a Markov decision process in its
larger scale adaptation, the authors in [3] build several such robot
models with varying reward and transition functions to handle
different tasks. In other words, the robots are given the ability to
explore different policies and trade-off toward higher interaction
and task quality. However, the study is limited to analyzing differ-
ent policies to govern such varieties in humans in the context of
pedestrian-robot vehicle interaction leaving out the autonomous
selection of an optimal one. Our approach brings together the idea
of generating many such reliable Markov models [3] to construct a
policy library, and the idea of estimating human types on a meta-
level as a complementary solution to the intention-aware models
[21]; and goes beyond them to offer a fast and reliable policy selec-
tion mechanism as part of a closed-loop robot system. Our policy
selection replaces the conventional method of using hierarchical
or more complicated POMDPs, as it acts as a discretization of the
POMDP models instead of modeling types as a latent variable. This
allows us to deal with the problem in a more computationally effi-
cient way, and to handle unknown human types while mitigating
the need to learn (expensive) response policies on the fly.

For the policy selection in the context of adaptive social agents,
some studies have developed decision trees [17] or Bayesian mod-
els, e.g. [22], selecting from a limited number of policies. Towards
broader adaptations, a recent study proposes a contextual multi-
arm bandit (CMAB) approach in an assistant selection mechanism
for a robot [20]. Although this approach has proven to be useful in
adapting to human capabilities and constraints in a simulation, the



exploration factor of a CMAB would be very dangerous and frus-
trating for a human collaborator in real world. In addition, in policy
or reward learning algorithms, the learning rate is very di�cult to
tune and the response time is considerably high for any interaction
in real time. Therefore, to satisfy fast learning rates in HRC, which
is related to how fast the human behaviors are changing, the studies
mostly assume limited human intention space [21, 23]. Particularly,
when human workers have their shift changes or when a human
drastically exerts di�erent behaviors (e.g. loss of attention, fatigue
or injuries in workplaces [7, 16]), learning a new reward function or
a policy would take time which is very costly, especially in collabo-
ration scenarios. Moreover, we still need to have an accurate reward
and transition model which, in the end, needs to be applicable to
all humans being interacted with, and yet again is not realistic to
�nd. In such cases, it is better to reuse a pretrained model rather
than spending too much time on training a new one [25].

In an online HRC, a robot's autonomous, reliable and fast re-
sponse is a direct in�uence on the �uency and the naturality of
the human-robot teaming [14]. Toward more e�cient and safe
HRC, we believe the Bayesian Policy Reuse (BPR) algorithm is
the best �t to our problem [25]. BPR has been shown to perform
better than a multi-arm bandit (fast and reliable policy selection)
in online adaptation tasks when faced with a greater uncertainty
about the description of the task. It considersa priori information
leading to less exploration and so less unreliable responses of the
robot during operation. In our solution, ABPS, we have updated
BPR to incorporate anticipation of a human's uncertainty in her
long-term behaviors and to be a generic and complementary so-
lution to the existing intention-aware planning solutions for an
increased adaptation in real time. Even though ABPS is agnostic to
any labels of human types and robot policies, for our domain we
generalize some characteristic features of humans in workplaces,
inspired from [7, 16, 20], that are crucial for a collaborative robot
to know. These are a human's expertise, attention, stamina-level
and collaborativeness and they are used to describe a human type.

3 METHODOLOGY
3.1 Overall Framework
Figure 1 shows our overall framework with an overview of how
we organize the decision-making process in a human-robot col-
laboration. In the upper layer, tasks are created and assigned to
either the human or the robot. In the meta-cognitive level theABPS
agentselects one decision strategy among apolicy libraryaccord-
ing to the anticipated type of the human partner. Following the
selection, a decision strategy is forwarded to the cognitive level for
the decision-making agentto execute. In our implementation, each
decision strategy is a robot policy comprised of optimal actions for
each possible belief over the world states and generated when a
POMDP robot model is solved for maximizing expected rewards
(see in Section 3.2.1).

The cognitive level of the system in Figure 1 has been the fo-
cus of similar studies, which involves a robot's decision-making
agent acted upon one precomputed anticipatory model, in our
case a POMDP model [10]. In this work, we focus on themeta-
cognitive level. It includes the policy library constructed from such
handcrafted Markov models (detailed in Section 3.2.1) and our

Figure 1: Anticipatory Bayesian Policy Selection (ABPS)
agent in the overall framework of our autonomous system

ABPS mechanism consisting of human type (belief) estimation
(Section 3.2.2) and policy selection with an exploration heuristic
for a quick adaptation to a class of human types (Section 3.2.3).

3.2 Anticipatory Bayesian Policy Selection
(ABPS)

Our approach is based on the Bayesian policy reuse algorithm [25].
The de�nition of ABPS is given with De�nition 1.

Definition 1 ( ABPS). An ABPS agent is equipped with a policy
library � to act appropriately in the context of some human types and
tasks in HRC domain. The agent is presented with a human collabora-
tor having an unknown type in a known task, which must be solved
within a limited time and small number of trials. The goal of the agent
is to select policies from� for the new and possibly unknown human
type, over which it has a belief distribution� ¹:º, while minimizing the
total regret in a limited time. Minimizing the regret in this domain is
de�ned by increasing the task success rate and decreasing the amount
of warnings received from a human collaborator, relative to the best
alternative from� in hindsight.

ABPS measures the similarity between an unknown human type
and previously known types to identify which policies may be the
best to reuse. In this case, a collaborated human's type is latent
and the human type space is not fully known. Therefore, a corre-
lation between policies and a bounded set of human types is not
possible. The similarity of types is extracted from o�ine training
with some known types and by utilizing this trained model online,
constructing� ¹:º. The general algorithm is given in Algorithm 1.
We �rst detail how a policy and the library� is constructed in
Section 3.2.1. The observation signals and the observation model
for the human type belief update (seeline 7, 8of Algorithm 1) are
detailed in Section 3.2.2. Then, the policy selection step and the
construction of the performance model used in this step (inline 4
of Algorithm 1) is described in Section 3.2.3.

3.2.1 Policy Library Construction.To generate many policies
for the policy library, we use the anticipatory robot model design
simpli�ed in Figure 2 as a base, which we have previously shown



Algorithm 1 Anticipatory Bayesian Policy Selector (ABPS)

Require: Human type space� , robot policy library � , an observation
vector for observed human behaviors� in an observation space
 ,
an observation model to match observables to known human types
P¹
 j� ; � º, utility as accumulated discounted reward obtained from
running a policyU , a performance modelP¹U j� ; � º, number of tasks
K, exploration heuristics� .

1: Train o�ine for performance and observation models.
2: Initialize a belief:� 0 uniform distribution from the prior� .
3: for task IDst = 1:::K do
4: Select a policy� t 2 � using � t � 1 and performance model,

P¹U j� ; � º, using� in Equation (3).
5: Apply selected policy� t to the task and the human.
6: wait (until the taskt is completed)
7: Obtain observations� t from the human and the environment emit-

ted during the task.
8: Update belief� t using� t by belief update function in Equation(1).
9: end for

to perform well in this context [10]. The model is the POMDP tuple�
S;A;T;R; 
 ;O;

	
. S comprises the hidden states of a human's

task related availability, motivation and capability. These are antici-
pated at the �rst stage (seeStage-1in Figure 2). Then, moving from
Stage-1the robot anticipates whether the human needs assistance
or not from the robot's perspective atStage-2. The other states
are the global success and failure states that de�ne the result of
a task (terminal states), the states of a new task assigned to the
agents (initial states), and a state when the robot receives a warning
from the human for any reason.A is the robot actions to wait for
human (idle), plan for assisting action (planning) andassisthuman
as shown in Figure 2.T is the state transition probabilities.R is the
immediate reward the robot receives. Positive rewards are acquired
when a task has been accomplished by any agent and negative re-
wards are for a task failure or when warnings are received from the
human. The latter is to encourage the planning to be less intrusive,
i.e., the robot will not o�er assistance unless it is deemed part of the
optimal policy.
 is the set of human action and task observations
as detailed in Section 3.2.2 andO represents the conditional obser-
vation probabilities. is the discount factor for delayed rewards
and we solve the model for an optimal robot policy,� .

The o�ine generation of di�erent policies to construct the pol-
icy library is done by adjustingT andO: the state and observation
probabilities of the model corresponding to di�erent human types.
Changes inT correspond to di�erent transitions of a human's inter-
nal states, e.g. a robot policy assumes the human tires faster (related
to the stamina-level) or the human needs assistance when she is not
capable (related to the collaborativeness). Whereas changes inO
de�ne the observations emitted by the human as a function of her
internal states. For example, a human not being able to handle the
task could indicate that she is tired, or she is a beginner (related to
expertise) depending on her type, both of which should be handled
di�erently by the robot. Additionally, by adjustingO, we are able to
make the model a partially observable, mixed observability or fully
observable Markov decision process (POMDP, MOMDP or MDP,
respectively). We randomly adjust the probabilities as mentioned
above to generate various Markov decision models, each of which
handles a unique human type, and solve for their optimal policies

Figure 2: Our anticipatory robot model design as a Markov
decision model. At the �rst stage, the robot anticipates hu-
man states, such ashuman may be tired, may not be capable,
doing �ne . Then, it anticipates whether the human needs
help moving from �rst stage estimations [10].

to construct our policy library� . The main reason we move from a
base model as in Figure 2 is to limit the arbitrary generation of robot
policies to avoid overloading the space with unreliable candidates
[1]. This way we also show how we integrate ABPS to existing
intention-aware models.

3.2.2 Human Type Belief Estimation.The space of human types
is in general in�nite, but we limit this to control complexity. There-
fore, the construction of a type space� is a crucial process. For this
purpose, we train an estimation model from a set of known types
and use it online to estimate a new unknown type as a belief distri-
bution over the known ones,� ¹:º. In order to train such a model,
we generalize some characteristic human features to approximate
a human type. These features are inspired from [7, 16, 20] and are
stated to be crucial to be known by a collaborative robot. These are
a human's expertise, attention, stamina-level and collaborativeness.
The last term is a more general description of a human's acceptance
rate of a robot's o�er for assistance. The type space consists of many
human types by adjusting the level of these features, e.g. a human
with beginner skills, pensive, bad stamina and non-collaborative
behaviors (e.g. always rejecting a robot's assistance due to distrust).
We argue that any human worker can be represented as a distri-
bution of such features in our experiments. More details on the
simulated human types in type space� are given in Section 4.1.2.

The human type estimation model is used by ABPS asa priori
information, which we call theobservation model.

Definition 2 ( Observation model ). For a robot policy� , a hu-
man type� and an observation vector� obtained from the human
actions and the environment, the observation modelP¹� j� ; � º is a
probability distribution over the observation signals� 2 
 that results
by applying the policy� to the type� .

All the combinations of known human types in� and the robot
policies in the library are run against each other o�ine several
times to generate ourobservation model(detailed in Section 4.1.3).
The observation signals are emitted by the collaborated human and



the environment, re�ecting a human's actions and their impact
on the task and the environment. In our experiments, an obser-
vation vector,� 2 
 , is a 6-D boolean vector with the following
observables:

�
human is detected, human is looking around, human

has taken a task related action and succeeded in it (e.g. grasping and
lifting a package in our scenario), human has taken a task related
action and failed, human is warning the robot, human is idle

	
. The

ABPS agent receives these observables at every episode of a task
and accumulates them to update its belief on the human type after a
task �nishes (seeline 6, 7, 8of Algorithm 1). Finally, the type belief
update is Bayesian, given by

� t ¹� º =
P¹� t j� ; � t º� t � 1¹� º

Í
� 02� P¹� t j� 0; � t º� t � 1¹� 0º

; 8� 2 � (1)

where � t � 1 stands for the previous belief andP¹� t j� ; � t º is the
probability of observing� t after applying� t in an interaction with
any human type� . This distribution is directly retrieved from the
observation modelfor each requested type and policy.

3.2.3 Policy Selection with Exploration Heuristics.The policy
selection process of the robot is based on an exploration heuristic
calledexpected improvement (EI)[25]. As stated in line 4 of Algo-
rithm 1, this algorithm runs on another traineda priorimodel called
the performance model.

Definition 3 ( Performance model ). The performance model,
P¹Uj� ; � º, is a probability distribution over the utility,U, of a policy
� when applied to human type� 2 � .

The system utility,U, is the accumulated discounted reward
received after a policy is run (see Section 3.2.1 for the immediate
rewards a robot obtains during a task). All the combinations of
known human types� 2 � and the robot policies� 2 � are re-
peatedly run against each other o�ine to generate ourperformance
model. Then, this model is used by the policy selection heuristic.

The heuristic assumes that there is aU+ in reward space which
is larger than the best estimate under the current type belief,U � .
A probability improvement algorithm can be de�ned to choose the
policy that maximizes Equation (2) and achieves the utilityU+ .

� 0 = arg max
� 2�

Õ

� 2�
� ¹� ºP¹U+ j� ; � º (2)

Because the choice ofU+ directly a�ects the performance of the
exploration, its selection is crucial to the performance of this ex-
ploration. Theexpected improvementapproach instead addresses
this nontrivial selection ofU+ . The algorithm iterates through all
the possible improvements on an existingU � of the current be-
lief, which satis�esU � < U+ < Umax . The policy with the best
potential is then chosen, as given in Equation (3).

� 0 = arg max
� 2�

¹ U max

U �

Õ

� 2�
� ¹� ºP¹U+ j� ; � ºdU+ (3)

= arg max
� 2�

Õ

� 2�
� ¹� º¹1 � F¹U � j� ; � ºº (4)

whereF¹U � j� ; � º =
¯ U �

�1 P¹uj� ; � ºdu is the cumulative distribution

function ofU � for a � and� . The algorithm, therefore, selects the
robot policy with the most likely improvement on the expected
utility.

4 EVALUATION
4.1 Experiments
In this section, we �rst detail the simulation environment we have
used for our experiments in Section 4.1.1. We then give our human
simulation mechanism and how human models are crafted towards
simulating short and long-term changes in human behaviors and
types, in a task of inspection and storage of various products (Sec-
tion 4.1.2). After that, we describe the training phase to construct the
library and the estimation models for ABPS (Section 4.1.3). Finally,
we give the details of how we conduct the real-time experiments
and our performance metrics in Section 4.1.4.

4.1.1 Simulation Environment.We implement the proposed ar-
chitecture in Figure 1 in the Robot Operating System (ROS) and
use our simulation environment developed under the MORSE en-
vironment. As seen in Figure 3, we have developed an updated
version of the MORSE human and PR2 models with special actions
related to our use-case task. The simulation environment allows our
robotic system to run a long-term collaboration. Such long-term
experiments make it possible for the robots to face many di�erent
changing human types and behaviors under various conditions. As
a result, we do not have to be limited to constrained environments
and human interactions. This helps us train very accurate models
of the interaction, as well as run rigorous tests on our system facing
and covering more uncertainties of humans.

All of our scenarios consist of several sequential task assignments
to simulate a long-term collaboration. A task in our case is product
inspection and storing. It starts with an initial task assignment
to either robot or the human based on the product's weight and
fragility. We only consider the cases where a task is assigned to the
human, in order to keep our focus on anticipating the human's type
and behaviors and correctly assess her need for assistance. The
collaboration is when the robot correctly estimates the human's
such need and helps with the task. A task is successful when the
product is inspected and put into green containers either by the
human or by the robot (see Figure 3a). We set a maximum allowed
processing time for each product inspection,tmax , to keep the
collaboration and production �owing in the factory. The conveyor
belt waits fortmax for a package to be processed, or else it runs
and the product falls into the uninspected-product container (the
red container in Figure 3a) leading to a task failure. As stated in
Algorithm 1, a new policy is selected after each task is �nalized.

4.1.2 Human Simulation.We have modeled many di�erent hu-
man types for our collaboration scenarios. In our experiments, we
run randomly generated models to re�ect changing and unknown
levels of expertise, stamina, attention and collaborativeness. The
models re�ect them as actions, which are observations for the robot
obtained from 3D human body joints always available directly from
the simulated humans. Since it is not the focus of this study, we
use a state-of-the-art human activity recognition (HAR) system
inspired by existing studies, e.g., [24], to recognize the constrained
and distinctly simulated human gestures: the human is looking
around (i.e. distracted as in Figure 3a), attempting the task (see
Figure 3d), warning the robot (a special gesture to stop the robot as
shown in Figure 3b), idle (inactive), walking away (see Figure 3c).
During a task, the robot collects all the observations emitted from
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